/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018-2019 Hisilicon Limited. */ #include #include #include #include #include #include #include #include #include "hns3_logs.h" #include "hns3_regs.h" #include "hns3_ethdev.h" #include "hns3_dcb.h" #define HNS3_SHAPER_BS_U_DEF 5 #define HNS3_SHAPER_BS_S_DEF 20 #define BW_MAX_PERCENT 100 #define HNS3_ETHER_MAX_RATE 100000 /* * hns3_shaper_para_calc: calculate ir parameter for the shaper * @ir: Rate to be config, its unit is Mbps * @shaper_level: the shaper level. eg: port, pg, priority, queueset * @shaper_para: shaper parameter of IR shaper * * the formula: * * IR_b * (2 ^ IR_u) * 8 * IR(Mbps) = ------------------------- * CLOCK(1000Mbps) * Tick * (2 ^ IR_s) * * @return: 0: calculate sucessful, negative: fail */ static int hns3_shaper_para_calc(struct hns3_hw *hw, uint32_t ir, uint8_t shaper_level, struct hns3_shaper_parameter *shaper_para) { #define SHAPER_DEFAULT_IR_B 126 #define DIVISOR_CLK (1000 * 8) #define DIVISOR_IR_B_126 (126 * DIVISOR_CLK) const uint16_t tick_array[HNS3_SHAPER_LVL_CNT] = { 6 * 256, /* Prioriy level */ 6 * 32, /* Prioriy group level */ 6 * 8, /* Port level */ 6 * 256 /* Qset level */ }; uint8_t ir_u_calc = 0; uint8_t ir_s_calc = 0; uint32_t denominator; uint32_t ir_calc; uint32_t tick; /* Calc tick */ if (shaper_level >= HNS3_SHAPER_LVL_CNT) { hns3_err(hw, "shaper_level(%d) is greater than HNS3_SHAPER_LVL_CNT(%d)", shaper_level, HNS3_SHAPER_LVL_CNT); return -EINVAL; } if (ir > HNS3_ETHER_MAX_RATE) { hns3_err(hw, "rate(%d) exceeds the rate driver supported " "HNS3_ETHER_MAX_RATE(%d)", ir, HNS3_ETHER_MAX_RATE); return -EINVAL; } tick = tick_array[shaper_level]; /* * Calc the speed if ir_b = 126, ir_u = 0 and ir_s = 0 * the formula is changed to: * 126 * 1 * 8 * ir_calc = ---------------- * 1000 * tick * 1 */ ir_calc = (DIVISOR_IR_B_126 + (tick >> 1) - 1) / tick; if (ir_calc == ir) { shaper_para->ir_b = SHAPER_DEFAULT_IR_B; } else if (ir_calc > ir) { /* Increasing the denominator to select ir_s value */ do { ir_s_calc++; ir_calc = DIVISOR_IR_B_126 / (tick * (1 << ir_s_calc)); } while (ir_calc > ir); if (ir_calc == ir) shaper_para->ir_b = SHAPER_DEFAULT_IR_B; else shaper_para->ir_b = (ir * tick * (1 << ir_s_calc) + (DIVISOR_CLK >> 1)) / DIVISOR_CLK; } else { /* * Increasing the numerator to select ir_u value. ir_u_calc will * get maximum value when ir_calc is minimum and ir is maximum. * ir_calc gets minimum value when tick is the maximum value. * At the same time, value of ir_u_calc can only be increased up * to eight after the while loop if the value of ir is equal * to HNS3_ETHER_MAX_RATE. */ uint32_t numerator; do { ir_u_calc++; numerator = DIVISOR_IR_B_126 * (1 << ir_u_calc); ir_calc = (numerator + (tick >> 1)) / tick; } while (ir_calc < ir); if (ir_calc == ir) { shaper_para->ir_b = SHAPER_DEFAULT_IR_B; } else { --ir_u_calc; /* * The maximum value of ir_u_calc in this branch is * seven in all cases. Thus, value of denominator can * not be zero here. */ denominator = DIVISOR_CLK * (1 << ir_u_calc); shaper_para->ir_b = (ir * tick + (denominator >> 1)) / denominator; } } shaper_para->ir_u = ir_u_calc; shaper_para->ir_s = ir_s_calc; return 0; } static int hns3_fill_pri_array(struct hns3_hw *hw, uint8_t *pri, uint8_t pri_id) { #define HNS3_HALF_BYTE_BIT_OFFSET 4 uint8_t tc = hw->dcb_info.prio_tc[pri_id]; if (tc >= hw->dcb_info.num_tc) return -EINVAL; /* * The register for priority has four bytes, the first bytes includes * priority0 and priority1, the higher 4bit stands for priority1 * while the lower 4bit stands for priority0, as below: * first byte: | pri_1 | pri_0 | * second byte: | pri_3 | pri_2 | * third byte: | pri_5 | pri_4 | * fourth byte: | pri_7 | pri_6 | */ pri[pri_id >> 1] |= tc << ((pri_id & 1) * HNS3_HALF_BYTE_BIT_OFFSET); return 0; } static int hns3_up_to_tc_map(struct hns3_hw *hw) { struct hns3_cmd_desc desc; uint8_t *pri = (uint8_t *)desc.data; uint8_t pri_id; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PRI_TO_TC_MAPPING, false); for (pri_id = 0; pri_id < HNS3_MAX_USER_PRIO; pri_id++) { ret = hns3_fill_pri_array(hw, pri, pri_id); if (ret) return ret; } return hns3_cmd_send(hw, &desc, 1); } static int hns3_pg_to_pri_map_cfg(struct hns3_hw *hw, uint8_t pg_id, uint8_t pri_bit_map) { struct hns3_pg_to_pri_link_cmd *map; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PG_TO_PRI_LINK, false); map = (struct hns3_pg_to_pri_link_cmd *)desc.data; map->pg_id = pg_id; map->pri_bit_map = pri_bit_map; return hns3_cmd_send(hw, &desc, 1); } static int hns3_pg_to_pri_map(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; struct hns3_pg_info *pg_info; int ret, i; if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE) return -EINVAL; for (i = 0; i < hw->dcb_info.num_pg; i++) { /* Cfg pg to priority mapping */ pg_info = &hw->dcb_info.pg_info[i]; ret = hns3_pg_to_pri_map_cfg(hw, i, pg_info->tc_bit_map); if (ret) return ret; } return 0; } static int hns3_qs_to_pri_map_cfg(struct hns3_hw *hw, uint16_t qs_id, uint8_t pri) { struct hns3_qs_to_pri_link_cmd *map; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QS_TO_PRI_LINK, false); map = (struct hns3_qs_to_pri_link_cmd *)desc.data; map->qs_id = rte_cpu_to_le_16(qs_id); map->priority = pri; map->link_vld = HNS3_DCB_QS_PRI_LINK_VLD_MSK; return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_qs_weight_cfg(struct hns3_hw *hw, uint16_t qs_id, uint8_t dwrr) { struct hns3_qs_weight_cmd *weight; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QS_WEIGHT, false); weight = (struct hns3_qs_weight_cmd *)desc.data; weight->qs_id = rte_cpu_to_le_16(qs_id); weight->dwrr = dwrr; return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_ets_tc_dwrr_cfg(struct hns3_hw *hw) { #define DEFAULT_TC_WEIGHT 1 #define DEFAULT_TC_OFFSET 14 struct hns3_ets_tc_weight_cmd *ets_weight; struct hns3_cmd_desc desc; uint8_t i; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_ETS_TC_WEIGHT, false); ets_weight = (struct hns3_ets_tc_weight_cmd *)desc.data; for (i = 0; i < HNS3_MAX_TC_NUM; i++) { struct hns3_pg_info *pg_info; ets_weight->tc_weight[i] = DEFAULT_TC_WEIGHT; if (!(hw->hw_tc_map & BIT(i))) continue; pg_info = &hw->dcb_info.pg_info[hw->dcb_info.tc_info[i].pgid]; ets_weight->tc_weight[i] = pg_info->tc_dwrr[i]; } ets_weight->weight_offset = DEFAULT_TC_OFFSET; return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pri_weight_cfg(struct hns3_hw *hw, uint8_t pri_id, uint8_t dwrr) { struct hns3_priority_weight_cmd *weight; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PRI_WEIGHT, false); weight = (struct hns3_priority_weight_cmd *)desc.data; weight->pri_id = pri_id; weight->dwrr = dwrr; return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pg_weight_cfg(struct hns3_hw *hw, uint8_t pg_id, uint8_t dwrr) { struct hns3_pg_weight_cmd *weight; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PG_WEIGHT, false); weight = (struct hns3_pg_weight_cmd *)desc.data; weight->pg_id = pg_id; weight->dwrr = dwrr; return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pg_schd_mode_cfg(struct hns3_hw *hw, uint8_t pg_id) { struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PG_SCH_MODE_CFG, false); if (hw->dcb_info.pg_info[pg_id].pg_sch_mode == HNS3_SCH_MODE_DWRR) desc.data[1] = rte_cpu_to_le_32(HNS3_DCB_TX_SCHD_DWRR_MSK); else desc.data[1] = 0; desc.data[0] = rte_cpu_to_le_32(pg_id); return hns3_cmd_send(hw, &desc, 1); } static uint32_t hns3_dcb_get_shapping_para(uint8_t ir_b, uint8_t ir_u, uint8_t ir_s, uint8_t bs_b, uint8_t bs_s) { uint32_t shapping_para = 0; hns3_dcb_set_field(shapping_para, IR_B, ir_b); hns3_dcb_set_field(shapping_para, IR_U, ir_u); hns3_dcb_set_field(shapping_para, IR_S, ir_s); hns3_dcb_set_field(shapping_para, BS_B, bs_b); hns3_dcb_set_field(shapping_para, BS_S, bs_s); return shapping_para; } int hns3_dcb_port_shaper_cfg(struct hns3_hw *hw) { struct hns3_port_shapping_cmd *shap_cfg_cmd; struct hns3_shaper_parameter shaper_parameter; uint32_t shapping_para; uint32_t ir_u, ir_b, ir_s; struct hns3_cmd_desc desc; int ret; ret = hns3_shaper_para_calc(hw, hw->mac.link_speed, HNS3_SHAPER_LVL_PORT, &shaper_parameter); if (ret) { hns3_err(hw, "calculate shaper parameter failed: %d", ret); return ret; } hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PORT_SHAPPING, false); shap_cfg_cmd = (struct hns3_port_shapping_cmd *)desc.data; ir_b = shaper_parameter.ir_b; ir_u = shaper_parameter.ir_u; ir_s = shaper_parameter.ir_s; shapping_para = hns3_dcb_get_shapping_para(ir_b, ir_u, ir_s, HNS3_SHAPER_BS_U_DEF, HNS3_SHAPER_BS_S_DEF); shap_cfg_cmd->port_shapping_para = rte_cpu_to_le_32(shapping_para); return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pg_shapping_cfg(struct hns3_hw *hw, enum hns3_shap_bucket bucket, uint8_t pg_id, uint32_t shapping_para) { struct hns3_pg_shapping_cmd *shap_cfg_cmd; enum hns3_opcode_type opcode; struct hns3_cmd_desc desc; opcode = bucket ? HNS3_OPC_TM_PG_P_SHAPPING : HNS3_OPC_TM_PG_C_SHAPPING; hns3_cmd_setup_basic_desc(&desc, opcode, false); shap_cfg_cmd = (struct hns3_pg_shapping_cmd *)desc.data; shap_cfg_cmd->pg_id = pg_id; shap_cfg_cmd->pg_shapping_para = rte_cpu_to_le_32(shapping_para); return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pg_shaper_cfg(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_shaper_parameter shaper_parameter; struct hns3_pf *pf = &hns->pf; uint32_t ir_u, ir_b, ir_s; uint32_t shaper_para; uint8_t i; int ret; /* Cfg pg schd */ if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE) return -EINVAL; /* Pg to pri */ for (i = 0; i < hw->dcb_info.num_pg; i++) { /* Calc shaper para */ ret = hns3_shaper_para_calc(hw, hw->dcb_info.pg_info[i].bw_limit, HNS3_SHAPER_LVL_PG, &shaper_parameter); if (ret) { hns3_err(hw, "calculate shaper parameter failed: %d", ret); return ret; } shaper_para = hns3_dcb_get_shapping_para(0, 0, 0, HNS3_SHAPER_BS_U_DEF, HNS3_SHAPER_BS_S_DEF); ret = hns3_dcb_pg_shapping_cfg(hw, HNS3_DCB_SHAP_C_BUCKET, i, shaper_para); if (ret) { hns3_err(hw, "config PG CIR shaper parameter failed: %d", ret); return ret; } ir_b = shaper_parameter.ir_b; ir_u = shaper_parameter.ir_u; ir_s = shaper_parameter.ir_s; shaper_para = hns3_dcb_get_shapping_para(ir_b, ir_u, ir_s, HNS3_SHAPER_BS_U_DEF, HNS3_SHAPER_BS_S_DEF); ret = hns3_dcb_pg_shapping_cfg(hw, HNS3_DCB_SHAP_P_BUCKET, i, shaper_para); if (ret) { hns3_err(hw, "config PG PIR shaper parameter failed: %d", ret); return ret; } } return 0; } static int hns3_dcb_qs_schd_mode_cfg(struct hns3_hw *hw, uint16_t qs_id, uint8_t mode) { struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QS_SCH_MODE_CFG, false); if (mode == HNS3_SCH_MODE_DWRR) desc.data[1] = rte_cpu_to_le_32(HNS3_DCB_TX_SCHD_DWRR_MSK); else desc.data[1] = 0; desc.data[0] = rte_cpu_to_le_32(qs_id); return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pri_schd_mode_cfg(struct hns3_hw *hw, uint8_t pri_id) { struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PRI_SCH_MODE_CFG, false); if (hw->dcb_info.tc_info[pri_id].tc_sch_mode == HNS3_SCH_MODE_DWRR) desc.data[1] = rte_cpu_to_le_32(HNS3_DCB_TX_SCHD_DWRR_MSK); else desc.data[1] = 0; desc.data[0] = rte_cpu_to_le_32(pri_id); return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pri_shapping_cfg(struct hns3_hw *hw, enum hns3_shap_bucket bucket, uint8_t pri_id, uint32_t shapping_para) { struct hns3_pri_shapping_cmd *shap_cfg_cmd; enum hns3_opcode_type opcode; struct hns3_cmd_desc desc; opcode = bucket ? HNS3_OPC_TM_PRI_P_SHAPPING : HNS3_OPC_TM_PRI_C_SHAPPING; hns3_cmd_setup_basic_desc(&desc, opcode, false); shap_cfg_cmd = (struct hns3_pri_shapping_cmd *)desc.data; shap_cfg_cmd->pri_id = pri_id; shap_cfg_cmd->pri_shapping_para = rte_cpu_to_le_32(shapping_para); return hns3_cmd_send(hw, &desc, 1); } static int hns3_dcb_pri_tc_base_shaper_cfg(struct hns3_hw *hw) { struct hns3_shaper_parameter shaper_parameter; uint32_t ir_u, ir_b, ir_s; uint32_t shaper_para; int ret, i; for (i = 0; i < hw->dcb_info.num_tc; i++) { ret = hns3_shaper_para_calc(hw, hw->dcb_info.tc_info[i].bw_limit, HNS3_SHAPER_LVL_PRI, &shaper_parameter); if (ret) { hns3_err(hw, "calculate shaper parameter failed: %d", ret); return ret; } shaper_para = hns3_dcb_get_shapping_para(0, 0, 0, HNS3_SHAPER_BS_U_DEF, HNS3_SHAPER_BS_S_DEF); ret = hns3_dcb_pri_shapping_cfg(hw, HNS3_DCB_SHAP_C_BUCKET, i, shaper_para); if (ret) { hns3_err(hw, "config priority CIR shaper parameter failed: %d", ret); return ret; } ir_b = shaper_parameter.ir_b; ir_u = shaper_parameter.ir_u; ir_s = shaper_parameter.ir_s; shaper_para = hns3_dcb_get_shapping_para(ir_b, ir_u, ir_s, HNS3_SHAPER_BS_U_DEF, HNS3_SHAPER_BS_S_DEF); ret = hns3_dcb_pri_shapping_cfg(hw, HNS3_DCB_SHAP_P_BUCKET, i, shaper_para); if (ret) { hns3_err(hw, "config priority PIR shaper parameter failed: %d", ret); return ret; } } return 0; } static int hns3_dcb_pri_shaper_cfg(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int ret; if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE) return -EINVAL; ret = hns3_dcb_pri_tc_base_shaper_cfg(hw); if (ret) hns3_err(hw, "config port shaper failed: %d", ret); return ret; } void hns3_set_rss_size(struct hns3_hw *hw, uint16_t nb_rx_q) { struct hns3_rss_conf *rss_cfg = &hw->rss_info; uint16_t rx_qnum_per_tc; int i; rx_qnum_per_tc = nb_rx_q / hw->num_tc; rx_qnum_per_tc = RTE_MIN(hw->rss_size_max, rx_qnum_per_tc); if (hw->alloc_rss_size != rx_qnum_per_tc) { hns3_info(hw, "rss size changes from %u to %u", hw->alloc_rss_size, rx_qnum_per_tc); hw->alloc_rss_size = rx_qnum_per_tc; } hw->used_rx_queues = hw->num_tc * hw->alloc_rss_size; /* * When rss size is changed, we need to update rss redirection table * maintained by driver. Besides, during the entire reset process, we * need to ensure that the rss table information are not overwritten * and configured directly to the hardware in the RESET_STAGE_RESTORE * stage of the reset process. */ if (rte_atomic16_read(&hw->reset.resetting) == 0) { for (i = 0; i < HNS3_RSS_IND_TBL_SIZE; i++) rss_cfg->rss_indirection_tbl[i] = i % hw->alloc_rss_size; } } void hns3_tc_queue_mapping_cfg(struct hns3_hw *hw, uint16_t nb_queue) { struct hns3_tc_queue_info *tc_queue; uint8_t i; hw->tx_qnum_per_tc = nb_queue / hw->num_tc; for (i = 0; i < HNS3_MAX_TC_NUM; i++) { tc_queue = &hw->tc_queue[i]; if (hw->hw_tc_map & BIT(i) && i < hw->num_tc) { tc_queue->enable = true; tc_queue->tqp_offset = i * hw->tx_qnum_per_tc; tc_queue->tqp_count = hw->tx_qnum_per_tc; tc_queue->tc = i; } else { /* Set to default queue if TC is disable */ tc_queue->enable = false; tc_queue->tqp_offset = 0; tc_queue->tqp_count = 0; tc_queue->tc = 0; } } hw->used_tx_queues = hw->num_tc * hw->tx_qnum_per_tc; } static void hns3_dcb_update_tc_queue_mapping(struct hns3_hw *hw, uint16_t nb_rx_q, uint16_t nb_tx_q) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; hw->num_tc = hw->dcb_info.num_tc; hns3_set_rss_size(hw, nb_rx_q); hns3_tc_queue_mapping_cfg(hw, nb_tx_q); if (!hns->is_vf) memcpy(pf->prio_tc, hw->dcb_info.prio_tc, HNS3_MAX_USER_PRIO); } int hns3_dcb_info_init(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int i, k; if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE && hw->dcb_info.num_pg != 1) return -EINVAL; /* Initializing PG information */ memset(hw->dcb_info.pg_info, 0, sizeof(struct hns3_pg_info) * HNS3_PG_NUM); for (i = 0; i < hw->dcb_info.num_pg; i++) { hw->dcb_info.pg_dwrr[i] = i ? 0 : BW_MAX_PERCENT; hw->dcb_info.pg_info[i].pg_id = i; hw->dcb_info.pg_info[i].pg_sch_mode = HNS3_SCH_MODE_DWRR; hw->dcb_info.pg_info[i].bw_limit = HNS3_ETHER_MAX_RATE; if (i != 0) continue; hw->dcb_info.pg_info[i].tc_bit_map = hw->hw_tc_map; for (k = 0; k < hw->dcb_info.num_tc; k++) hw->dcb_info.pg_info[i].tc_dwrr[k] = BW_MAX_PERCENT; } /* All UPs mapping to TC0 */ for (i = 0; i < HNS3_MAX_USER_PRIO; i++) hw->dcb_info.prio_tc[i] = 0; /* Initializing tc information */ memset(hw->dcb_info.tc_info, 0, sizeof(struct hns3_tc_info) * HNS3_MAX_TC_NUM); for (i = 0; i < hw->dcb_info.num_tc; i++) { hw->dcb_info.tc_info[i].tc_id = i; hw->dcb_info.tc_info[i].tc_sch_mode = HNS3_SCH_MODE_DWRR; hw->dcb_info.tc_info[i].pgid = 0; hw->dcb_info.tc_info[i].bw_limit = hw->dcb_info.pg_info[0].bw_limit; } return 0; } static int hns3_dcb_lvl2_schd_mode_cfg(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int ret, i; /* Only being config on TC-Based scheduler mode */ if (pf->tx_sch_mode == HNS3_FLAG_VNET_BASE_SCH_MODE) return -EINVAL; for (i = 0; i < hw->dcb_info.num_pg; i++) { ret = hns3_dcb_pg_schd_mode_cfg(hw, i); if (ret) return ret; } return 0; } static int hns3_dcb_lvl34_schd_mode_cfg(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; uint8_t i; int ret; if (pf->tx_sch_mode == HNS3_FLAG_TC_BASE_SCH_MODE) { for (i = 0; i < hw->dcb_info.num_tc; i++) { ret = hns3_dcb_pri_schd_mode_cfg(hw, i); if (ret) return ret; ret = hns3_dcb_qs_schd_mode_cfg(hw, i, HNS3_SCH_MODE_DWRR); if (ret) return ret; } } return 0; } static int hns3_dcb_schd_mode_cfg(struct hns3_hw *hw) { int ret; ret = hns3_dcb_lvl2_schd_mode_cfg(hw); if (ret) { hns3_err(hw, "config lvl2_schd_mode failed: %d", ret); return ret; } ret = hns3_dcb_lvl34_schd_mode_cfg(hw); if (ret) { hns3_err(hw, "config lvl34_schd_mode failed: %d", ret); return ret; } return 0; } static int hns3_dcb_pri_tc_base_dwrr_cfg(struct hns3_hw *hw) { struct hns3_pg_info *pg_info; uint8_t dwrr; int ret, i; for (i = 0; i < hw->dcb_info.num_tc; i++) { pg_info = &hw->dcb_info.pg_info[hw->dcb_info.tc_info[i].pgid]; dwrr = pg_info->tc_dwrr[i]; ret = hns3_dcb_pri_weight_cfg(hw, i, dwrr); if (ret) { hns3_err(hw, "fail to send priority weight cmd: %d", i); return ret; } ret = hns3_dcb_qs_weight_cfg(hw, i, BW_MAX_PERCENT); if (ret) { hns3_err(hw, "fail to send qs_weight cmd: %d", i); return ret; } } return 0; } static int hns3_dcb_pri_dwrr_cfg(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int ret; if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE) return -EINVAL; ret = hns3_dcb_pri_tc_base_dwrr_cfg(hw); if (ret) return ret; if (!hns3_dev_dcb_supported(hw)) return 0; ret = hns3_dcb_ets_tc_dwrr_cfg(hw); if (ret == -EOPNOTSUPP) { hns3_warn(hw, "fw %08x does't support ets tc weight cmd", hw->fw_version); ret = 0; } return ret; } static int hns3_dcb_pg_dwrr_cfg(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int ret, i; /* Cfg pg schd */ if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE) return -EINVAL; /* Cfg pg to prio */ for (i = 0; i < hw->dcb_info.num_pg; i++) { /* Cfg dwrr */ ret = hns3_dcb_pg_weight_cfg(hw, i, hw->dcb_info.pg_dwrr[i]); if (ret) return ret; } return 0; } static int hns3_dcb_dwrr_cfg(struct hns3_hw *hw) { int ret; ret = hns3_dcb_pg_dwrr_cfg(hw); if (ret) { hns3_err(hw, "config pg_dwrr failed: %d", ret); return ret; } ret = hns3_dcb_pri_dwrr_cfg(hw); if (ret) { hns3_err(hw, "config pri_dwrr failed: %d", ret); return ret; } return 0; } static int hns3_dcb_shaper_cfg(struct hns3_hw *hw) { int ret; ret = hns3_dcb_port_shaper_cfg(hw); if (ret) { hns3_err(hw, "config port shaper failed: %d", ret); return ret; } ret = hns3_dcb_pg_shaper_cfg(hw); if (ret) { hns3_err(hw, "config pg shaper failed: %d", ret); return ret; } return hns3_dcb_pri_shaper_cfg(hw); } static int hns3_q_to_qs_map_cfg(struct hns3_hw *hw, uint16_t q_id, uint16_t qs_id) { struct hns3_nq_to_qs_link_cmd *map; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_NQ_TO_QS_LINK, false); map = (struct hns3_nq_to_qs_link_cmd *)desc.data; map->nq_id = rte_cpu_to_le_16(q_id); map->qset_id = rte_cpu_to_le_16(qs_id | HNS3_DCB_Q_QS_LINK_VLD_MSK); return hns3_cmd_send(hw, &desc, 1); } static int hns3_q_to_qs_map(struct hns3_hw *hw) { struct hns3_tc_queue_info *tc_queue; uint16_t q_id; uint32_t i, j; int ret; for (i = 0; i < hw->num_tc; i++) { tc_queue = &hw->tc_queue[i]; for (j = 0; j < tc_queue->tqp_count; j++) { q_id = tc_queue->tqp_offset + j; ret = hns3_q_to_qs_map_cfg(hw, q_id, i); if (ret) return ret; } } return 0; } static int hns3_pri_q_qs_cfg(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; uint32_t i; int ret; if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE) return -EINVAL; /* Cfg qs -> pri mapping */ for (i = 0; i < hw->num_tc; i++) { ret = hns3_qs_to_pri_map_cfg(hw, i, i); if (ret) { hns3_err(hw, "qs_to_pri mapping fail: %d", ret); return ret; } } /* Cfg q -> qs mapping */ ret = hns3_q_to_qs_map(hw); if (ret) { hns3_err(hw, "nq_to_qs mapping fail: %d", ret); return ret; } return 0; } static int hns3_dcb_map_cfg(struct hns3_hw *hw) { int ret; ret = hns3_up_to_tc_map(hw); if (ret) { hns3_err(hw, "up_to_tc mapping fail: %d", ret); return ret; } ret = hns3_pg_to_pri_map(hw); if (ret) { hns3_err(hw, "pri_to_pg mapping fail: %d", ret); return ret; } return hns3_pri_q_qs_cfg(hw); } static int hns3_dcb_schd_setup_hw(struct hns3_hw *hw) { int ret; /* Cfg dcb mapping */ ret = hns3_dcb_map_cfg(hw); if (ret) return ret; /* Cfg dcb shaper */ ret = hns3_dcb_shaper_cfg(hw); if (ret) return ret; /* Cfg dwrr */ ret = hns3_dcb_dwrr_cfg(hw); if (ret) return ret; /* Cfg schd mode for each level schd */ return hns3_dcb_schd_mode_cfg(hw); } static int hns3_pause_param_cfg(struct hns3_hw *hw, const uint8_t *addr, uint8_t pause_trans_gap, uint16_t pause_trans_time) { struct hns3_cfg_pause_param_cmd *pause_param; struct hns3_cmd_desc desc; pause_param = (struct hns3_cfg_pause_param_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_MAC_PARA, false); memcpy(pause_param->mac_addr, addr, RTE_ETHER_ADDR_LEN); memcpy(pause_param->mac_addr_extra, addr, RTE_ETHER_ADDR_LEN); pause_param->pause_trans_gap = pause_trans_gap; pause_param->pause_trans_time = rte_cpu_to_le_16(pause_trans_time); return hns3_cmd_send(hw, &desc, 1); } int hns3_pause_addr_cfg(struct hns3_hw *hw, const uint8_t *mac_addr) { struct hns3_cfg_pause_param_cmd *pause_param; struct hns3_cmd_desc desc; uint16_t trans_time; uint8_t trans_gap; int ret; pause_param = (struct hns3_cfg_pause_param_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_MAC_PARA, true); ret = hns3_cmd_send(hw, &desc, 1); if (ret) return ret; trans_gap = pause_param->pause_trans_gap; trans_time = rte_le_to_cpu_16(pause_param->pause_trans_time); return hns3_pause_param_cfg(hw, mac_addr, trans_gap, trans_time); } static int hns3_pause_param_setup_hw(struct hns3_hw *hw, uint16_t pause_time) { #define PAUSE_TIME_DIV_BY 2 #define PAUSE_TIME_MIN_VALUE 0x4 struct hns3_mac *mac = &hw->mac; uint8_t pause_trans_gap; /* * Pause transmit gap must be less than "pause_time / 2", otherwise * the behavior of MAC is undefined. */ if (pause_time > PAUSE_TIME_DIV_BY * HNS3_DEFAULT_PAUSE_TRANS_GAP) pause_trans_gap = HNS3_DEFAULT_PAUSE_TRANS_GAP; else if (pause_time >= PAUSE_TIME_MIN_VALUE && pause_time <= PAUSE_TIME_DIV_BY * HNS3_DEFAULT_PAUSE_TRANS_GAP) pause_trans_gap = pause_time / PAUSE_TIME_DIV_BY - 1; else { hns3_warn(hw, "pause_time(%d) is adjusted to 4", pause_time); pause_time = PAUSE_TIME_MIN_VALUE; pause_trans_gap = pause_time / PAUSE_TIME_DIV_BY - 1; } return hns3_pause_param_cfg(hw, mac->mac_addr, pause_trans_gap, pause_time); } static int hns3_mac_pause_en_cfg(struct hns3_hw *hw, bool tx, bool rx) { struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_MAC_PAUSE_EN, false); desc.data[0] = rte_cpu_to_le_32((tx ? HNS3_TX_MAC_PAUSE_EN_MSK : 0) | (rx ? HNS3_RX_MAC_PAUSE_EN_MSK : 0)); return hns3_cmd_send(hw, &desc, 1); } static int hns3_pfc_pause_en_cfg(struct hns3_hw *hw, uint8_t pfc_bitmap, bool tx, bool rx) { struct hns3_cmd_desc desc; struct hns3_pfc_en_cmd *pfc = (struct hns3_pfc_en_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PFC_PAUSE_EN, false); pfc->tx_rx_en_bitmap = (uint8_t)((tx ? HNS3_TX_MAC_PAUSE_EN_MSK : 0) | (rx ? HNS3_RX_MAC_PAUSE_EN_MSK : 0)); pfc->pri_en_bitmap = pfc_bitmap; return hns3_cmd_send(hw, &desc, 1); } static int hns3_qs_bp_cfg(struct hns3_hw *hw, uint8_t tc, uint8_t grp_id, uint32_t bit_map) { struct hns3_bp_to_qs_map_cmd *bp_to_qs_map_cmd; struct hns3_cmd_desc desc; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_BP_TO_QSET_MAPPING, false); bp_to_qs_map_cmd = (struct hns3_bp_to_qs_map_cmd *)desc.data; bp_to_qs_map_cmd->tc_id = tc; bp_to_qs_map_cmd->qs_group_id = grp_id; bp_to_qs_map_cmd->qs_bit_map = rte_cpu_to_le_32(bit_map); return hns3_cmd_send(hw, &desc, 1); } static void hns3_get_rx_tx_en_status(struct hns3_hw *hw, bool *tx_en, bool *rx_en) { switch (hw->current_mode) { case HNS3_FC_NONE: *tx_en = false; *rx_en = false; break; case HNS3_FC_RX_PAUSE: *tx_en = false; *rx_en = true; break; case HNS3_FC_TX_PAUSE: *tx_en = true; *rx_en = false; break; case HNS3_FC_FULL: *tx_en = true; *rx_en = true; break; default: *tx_en = false; *rx_en = false; break; } } static int hns3_mac_pause_setup_hw(struct hns3_hw *hw) { bool tx_en, rx_en; if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) hns3_get_rx_tx_en_status(hw, &tx_en, &rx_en); else { tx_en = false; rx_en = false; } return hns3_mac_pause_en_cfg(hw, tx_en, rx_en); } static int hns3_pfc_setup_hw(struct hns3_hw *hw) { bool tx_en, rx_en; if (hw->current_fc_status == HNS3_FC_STATUS_PFC) hns3_get_rx_tx_en_status(hw, &tx_en, &rx_en); else { tx_en = false; rx_en = false; } return hns3_pfc_pause_en_cfg(hw, hw->dcb_info.pfc_en, tx_en, rx_en); } /* * Each Tc has a 1024 queue sets to backpress, it divides to * 32 group, each group contains 32 queue sets, which can be * represented by uint32_t bitmap. */ static int hns3_bp_setup_hw(struct hns3_hw *hw, uint8_t tc) { uint32_t qs_bitmap; int ret; int i; for (i = 0; i < HNS3_BP_GRP_NUM; i++) { uint8_t grp, sub_grp; qs_bitmap = 0; grp = hns3_get_field(tc, HNS3_BP_GRP_ID_M, HNS3_BP_GRP_ID_S); sub_grp = hns3_get_field(tc, HNS3_BP_SUB_GRP_ID_M, HNS3_BP_SUB_GRP_ID_S); if (i == grp) qs_bitmap |= (1 << sub_grp); ret = hns3_qs_bp_cfg(hw, tc, i, qs_bitmap); if (ret) return ret; } return 0; } static int hns3_dcb_bp_setup(struct hns3_hw *hw) { int ret, i; for (i = 0; i < hw->dcb_info.num_tc; i++) { ret = hns3_bp_setup_hw(hw, i); if (ret) return ret; } return 0; } static int hns3_dcb_pause_setup_hw(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int ret; ret = hns3_pause_param_setup_hw(hw, pf->pause_time); if (ret) { hns3_err(hw, "Fail to set pause parameter. ret = %d", ret); return ret; } ret = hns3_mac_pause_setup_hw(hw); if (ret) { hns3_err(hw, "Fail to setup MAC pause. ret = %d", ret); return ret; } /* Only DCB-supported dev supports qset back pressure and pfc cmd */ if (!hns3_dev_dcb_supported(hw)) return 0; ret = hns3_pfc_setup_hw(hw); if (ret) { hns3_err(hw, "config pfc failed! ret = %d", ret); return ret; } return hns3_dcb_bp_setup(hw); } static uint8_t hns3_dcb_undrop_tc_map(struct hns3_hw *hw, uint8_t pfc_en) { uint8_t pfc_map = 0; uint8_t *prio_tc; uint8_t i, j; prio_tc = hw->dcb_info.prio_tc; for (i = 0; i < hw->dcb_info.num_tc; i++) { for (j = 0; j < HNS3_MAX_USER_PRIO; j++) { if (prio_tc[j] == i && pfc_en & BIT(j)) { pfc_map |= BIT(i); break; } } } return pfc_map; } static void hns3_dcb_cfg_validate(struct hns3_adapter *hns, uint8_t *tc, bool *changed) { struct rte_eth_dcb_rx_conf *dcb_rx_conf; struct hns3_hw *hw = &hns->hw; uint16_t nb_rx_q = hw->data->nb_rx_queues; uint16_t nb_tx_q = hw->data->nb_tx_queues; uint8_t max_tc = 0; uint8_t pfc_en; int i; dcb_rx_conf = &hw->data->dev_conf.rx_adv_conf.dcb_rx_conf; for (i = 0; i < HNS3_MAX_USER_PRIO; i++) { if (dcb_rx_conf->dcb_tc[i] != hw->dcb_info.prio_tc[i]) *changed = true; if (dcb_rx_conf->dcb_tc[i] > max_tc) max_tc = dcb_rx_conf->dcb_tc[i]; } *tc = max_tc + 1; if (*tc != hw->dcb_info.num_tc) *changed = true; /* * We ensure that dcb information can be reconfigured * after the hns3_priority_flow_ctrl_set function called. */ if (hw->current_mode != HNS3_FC_FULL) *changed = true; pfc_en = RTE_LEN2MASK((uint8_t)dcb_rx_conf->nb_tcs, uint8_t); if (hw->dcb_info.pfc_en != pfc_en) *changed = true; /* tx/rx queue number is reconfigured. */ if (nb_rx_q != hw->used_rx_queues || nb_tx_q != hw->used_tx_queues) *changed = true; } static void hns3_dcb_info_cfg(struct hns3_adapter *hns) { struct rte_eth_dcb_rx_conf *dcb_rx_conf; struct hns3_pf *pf = &hns->pf; struct hns3_hw *hw = &hns->hw; uint8_t tc_bw, bw_rest; uint8_t i, j; dcb_rx_conf = &hw->data->dev_conf.rx_adv_conf.dcb_rx_conf; pf->local_max_tc = (uint8_t)dcb_rx_conf->nb_tcs; pf->pfc_max = (uint8_t)dcb_rx_conf->nb_tcs; /* Config pg0 */ memset(hw->dcb_info.pg_info, 0, sizeof(struct hns3_pg_info) * HNS3_PG_NUM); hw->dcb_info.pg_dwrr[0] = BW_MAX_PERCENT; hw->dcb_info.pg_info[0].pg_id = 0; hw->dcb_info.pg_info[0].pg_sch_mode = HNS3_SCH_MODE_DWRR; hw->dcb_info.pg_info[0].bw_limit = HNS3_ETHER_MAX_RATE; hw->dcb_info.pg_info[0].tc_bit_map = hw->hw_tc_map; /* Each tc has same bw for valid tc by default */ tc_bw = BW_MAX_PERCENT / hw->dcb_info.num_tc; for (i = 0; i < hw->dcb_info.num_tc; i++) hw->dcb_info.pg_info[0].tc_dwrr[i] = tc_bw; /* To ensure the sum of tc_dwrr is equal to 100 */ bw_rest = BW_MAX_PERCENT % hw->dcb_info.num_tc; for (j = 0; j < bw_rest; j++) hw->dcb_info.pg_info[0].tc_dwrr[j]++; for (; i < dcb_rx_conf->nb_tcs; i++) hw->dcb_info.pg_info[0].tc_dwrr[i] = 0; /* All tcs map to pg0 */ memset(hw->dcb_info.tc_info, 0, sizeof(struct hns3_tc_info) * HNS3_MAX_TC_NUM); for (i = 0; i < hw->dcb_info.num_tc; i++) { hw->dcb_info.tc_info[i].tc_id = i; hw->dcb_info.tc_info[i].tc_sch_mode = HNS3_SCH_MODE_DWRR; hw->dcb_info.tc_info[i].pgid = 0; hw->dcb_info.tc_info[i].bw_limit = hw->dcb_info.pg_info[0].bw_limit; } for (i = 0; i < HNS3_MAX_USER_PRIO; i++) hw->dcb_info.prio_tc[i] = dcb_rx_conf->dcb_tc[i]; hns3_dcb_update_tc_queue_mapping(hw, hw->data->nb_rx_queues, hw->data->nb_tx_queues); } static int hns3_dcb_info_update(struct hns3_adapter *hns, uint8_t num_tc) { struct hns3_pf *pf = &hns->pf; struct hns3_hw *hw = &hns->hw; uint16_t nb_rx_q = hw->data->nb_rx_queues; uint16_t nb_tx_q = hw->data->nb_tx_queues; uint8_t bit_map = 0; uint8_t i; if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE && hw->dcb_info.num_pg != 1) return -EINVAL; if (nb_rx_q < num_tc) { hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).", nb_rx_q, num_tc); return -EINVAL; } if (nb_tx_q < num_tc) { hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).", nb_tx_q, num_tc); return -EINVAL; } /* Currently not support uncontinuous tc */ hw->dcb_info.num_tc = num_tc; for (i = 0; i < hw->dcb_info.num_tc; i++) bit_map |= BIT(i); if (!bit_map) { bit_map = 1; hw->dcb_info.num_tc = 1; } hw->hw_tc_map = bit_map; hns3_dcb_info_cfg(hns); return 0; } static int hns3_dcb_hw_configure(struct hns3_adapter *hns) { struct rte_eth_dcb_rx_conf *dcb_rx_conf; struct hns3_pf *pf = &hns->pf; struct hns3_hw *hw = &hns->hw; enum hns3_fc_status fc_status = hw->current_fc_status; enum hns3_fc_mode current_mode = hw->current_mode; uint8_t hw_pfc_map = hw->dcb_info.hw_pfc_map; int ret, status; if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE && pf->tx_sch_mode != HNS3_FLAG_VNET_BASE_SCH_MODE) return -ENOTSUP; ret = hns3_dcb_schd_setup_hw(hw); if (ret) { hns3_err(hw, "dcb schdule configure failed! ret = %d", ret); return ret; } if (hw->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) { dcb_rx_conf = &hw->data->dev_conf.rx_adv_conf.dcb_rx_conf; if (dcb_rx_conf->nb_tcs == 0) hw->dcb_info.pfc_en = 1; /* tc0 only */ else hw->dcb_info.pfc_en = RTE_LEN2MASK((uint8_t)dcb_rx_conf->nb_tcs, uint8_t); hw->dcb_info.hw_pfc_map = hns3_dcb_undrop_tc_map(hw, hw->dcb_info.pfc_en); ret = hns3_buffer_alloc(hw); if (ret) return ret; hw->current_fc_status = HNS3_FC_STATUS_PFC; hw->current_mode = HNS3_FC_FULL; ret = hns3_dcb_pause_setup_hw(hw); if (ret) { hns3_err(hw, "setup pfc failed! ret = %d", ret); goto pfc_setup_fail; } } else { /* * Although dcb_capability_en is lack of ETH_DCB_PFC_SUPPORT * flag, the DCB information is configured, such as tc numbers. * Therefore, refreshing the allocation of packet buffer is * necessary. */ ret = hns3_buffer_alloc(hw); if (ret) return ret; } return 0; pfc_setup_fail: hw->current_mode = current_mode; hw->current_fc_status = fc_status; hw->dcb_info.hw_pfc_map = hw_pfc_map; status = hns3_buffer_alloc(hw); if (status) hns3_err(hw, "recover packet buffer fail! status = %d", status); return ret; } /* * hns3_dcb_configure - setup dcb related config * @hns: pointer to hns3 adapter * Returns 0 on success, negative value on failure. */ int hns3_dcb_configure(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; bool map_changed = false; uint8_t num_tc = 0; int ret; hns3_dcb_cfg_validate(hns, &num_tc, &map_changed); if (map_changed || rte_atomic16_read(&hw->reset.resetting)) { ret = hns3_dcb_info_update(hns, num_tc); if (ret) { hns3_err(hw, "dcb info update failed: %d", ret); return ret; } ret = hns3_dcb_hw_configure(hns); if (ret) { hns3_err(hw, "dcb sw configure failed: %d", ret); return ret; } } return 0; } int hns3_dcb_init_hw(struct hns3_hw *hw) { int ret; ret = hns3_dcb_schd_setup_hw(hw); if (ret) { hns3_err(hw, "dcb schedule setup failed: %d", ret); return ret; } ret = hns3_dcb_pause_setup_hw(hw); if (ret) hns3_err(hw, "PAUSE setup failed: %d", ret); return ret; } int hns3_dcb_init(struct hns3_hw *hw) { struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); struct hns3_pf *pf = &hns->pf; int ret; PMD_INIT_FUNC_TRACE(); /* * According to the 'adapter_state' identifier, the following branch * is only executed to initialize default configurations of dcb during * the initializing driver process. Due to driver saving dcb-related * information before reset triggered, the reinit dev stage of the * reset process can not access to the branch, or those information * will be changed. */ if (hw->adapter_state == HNS3_NIC_UNINITIALIZED) { hw->requested_mode = HNS3_FC_NONE; hw->current_mode = hw->requested_mode; pf->pause_time = HNS3_DEFAULT_PAUSE_TRANS_TIME; hw->current_fc_status = HNS3_FC_STATUS_NONE; ret = hns3_dcb_info_init(hw); if (ret) { hns3_err(hw, "dcb info init failed: %d", ret); return ret; } hns3_dcb_update_tc_queue_mapping(hw, hw->tqps_num, hw->tqps_num); } /* * DCB hardware will be configured by following the function during * the initializing driver process and the reset process. However, * driver will restore directly configurations of dcb hardware based * on dcb-related information soft maintained when driver * initialization has finished and reset is coming. */ ret = hns3_dcb_init_hw(hw); if (ret) { hns3_err(hw, "dcb init hardware failed: %d", ret); return ret; } return 0; } static int hns3_update_queue_map_configure(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; uint16_t nb_rx_q = hw->data->nb_rx_queues; uint16_t nb_tx_q = hw->data->nb_tx_queues; int ret; hns3_dcb_update_tc_queue_mapping(hw, nb_rx_q, nb_tx_q); ret = hns3_q_to_qs_map(hw); if (ret) { hns3_err(hw, "failed to map nq to qs! ret = %d", ret); return ret; } return 0; } int hns3_dcb_cfg_update(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; enum rte_eth_rx_mq_mode mq_mode = hw->data->dev_conf.rxmode.mq_mode; int ret; if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) { ret = hns3_dcb_configure(hns); if (ret) { hns3_err(hw, "Failed to config dcb: %d", ret); return ret; } } else { /* * Update queue map without PFC configuration, * due to queues reconfigured by user. */ ret = hns3_update_queue_map_configure(hns); if (ret) hns3_err(hw, "Failed to update queue mapping configure: %d", ret); } return ret; } /* * hns3_dcb_pfc_enable - Enable priority flow control * @dev: pointer to ethernet device * * Configures the pfc settings for one porority. */ int hns3_dcb_pfc_enable(struct rte_eth_dev *dev, struct rte_eth_pfc_conf *pfc_conf) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum hns3_fc_status fc_status = hw->current_fc_status; enum hns3_fc_mode current_mode = hw->current_mode; uint8_t hw_pfc_map = hw->dcb_info.hw_pfc_map; uint8_t pfc_en = hw->dcb_info.pfc_en; uint8_t priority = pfc_conf->priority; uint16_t pause_time = pf->pause_time; int ret, status; pf->pause_time = pfc_conf->fc.pause_time; hw->current_mode = hw->requested_mode; hw->current_fc_status = HNS3_FC_STATUS_PFC; hw->dcb_info.pfc_en |= BIT(priority); hw->dcb_info.hw_pfc_map = hns3_dcb_undrop_tc_map(hw, hw->dcb_info.pfc_en); ret = hns3_buffer_alloc(hw); if (ret) goto pfc_setup_fail; /* * The flow control mode of all UPs will be changed based on * current_mode coming from user. */ ret = hns3_dcb_pause_setup_hw(hw); if (ret) { hns3_err(hw, "enable pfc failed! ret = %d", ret); goto pfc_setup_fail; } return 0; pfc_setup_fail: hw->current_mode = current_mode; hw->current_fc_status = fc_status; pf->pause_time = pause_time; hw->dcb_info.pfc_en = pfc_en; hw->dcb_info.hw_pfc_map = hw_pfc_map; status = hns3_buffer_alloc(hw); if (status) hns3_err(hw, "recover packet buffer fail: %d", status); return ret; } /* * hns3_fc_enable - Enable MAC pause * @dev: pointer to ethernet device * * Configures the MAC pause settings. */ int hns3_fc_enable(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private); enum hns3_fc_status fc_status = hw->current_fc_status; enum hns3_fc_mode current_mode = hw->current_mode; uint16_t pause_time = pf->pause_time; int ret; pf->pause_time = fc_conf->pause_time; hw->current_mode = hw->requested_mode; /* * In fact, current_fc_status is HNS3_FC_STATUS_NONE when mode * of flow control is configured to be HNS3_FC_NONE. */ if (hw->current_mode == HNS3_FC_NONE) hw->current_fc_status = HNS3_FC_STATUS_NONE; else hw->current_fc_status = HNS3_FC_STATUS_MAC_PAUSE; ret = hns3_dcb_pause_setup_hw(hw); if (ret) { hns3_err(hw, "enable MAC Pause failed! ret = %d", ret); goto setup_fc_fail; } return 0; setup_fc_fail: hw->current_mode = current_mode; hw->current_fc_status = fc_status; pf->pause_time = pause_time; return ret; }