/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation. * Copyright 2014 6WIND S.A. */ #ifndef _RTE_MBUF_H_ #define _RTE_MBUF_H_ /** * @file * RTE Mbuf * * The mbuf library provides the ability to create and destroy buffers * that may be used by the RTE application to store message * buffers. The message buffers are stored in a mempool, using the * RTE mempool library. * * The preferred way to create a mbuf pool is to use * rte_pktmbuf_pool_create(). However, in some situations, an * application may want to have more control (ex: populate the pool with * specific memory), in this case it is possible to use functions from * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for * details. * * This library provides an API to allocate/free packet mbufs, which are * used to carry network packets. * * To understand the concepts of packet buffers or mbufs, you * should read "TCP/IP Illustrated, Volume 2: The Implementation, * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens" * http://www.kohala.com/start/tcpipiv2.html */ #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /** * Get the name of a RX offload flag * * @param mask * The mask describing the flag. * @return * The name of this flag, or NULL if it's not a valid RX flag. */ const char *rte_get_rx_ol_flag_name(uint64_t mask); /** * Dump the list of RX offload flags in a buffer * * @param mask * The mask describing the RX flags. * @param buf * The output buffer. * @param buflen * The length of the buffer. * @return * 0 on success, (-1) on error. */ int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen); /** * Get the name of a TX offload flag * * @param mask * The mask describing the flag. Usually only one bit must be set. * Several bits can be given if they belong to the same mask. * Ex: PKT_TX_L4_MASK. * @return * The name of this flag, or NULL if it's not a valid TX flag. */ const char *rte_get_tx_ol_flag_name(uint64_t mask); /** * Dump the list of TX offload flags in a buffer * * @param mask * The mask describing the TX flags. * @param buf * The output buffer. * @param buflen * The length of the buffer. * @return * 0 on success, (-1) on error. */ int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen); /** * Prefetch the first part of the mbuf * * The first 64 bytes of the mbuf corresponds to fields that are used early * in the receive path. If the cache line of the architecture is higher than * 64B, the second part will also be prefetched. * * @param m * The pointer to the mbuf. */ static inline void rte_mbuf_prefetch_part1(struct rte_mbuf *m) { rte_prefetch0(&m->cacheline0); } /** * Prefetch the second part of the mbuf * * The next 64 bytes of the mbuf corresponds to fields that are used in the * transmit path. If the cache line of the architecture is higher than 64B, * this function does nothing as it is expected that the full mbuf is * already in cache. * * @param m * The pointer to the mbuf. */ static inline void rte_mbuf_prefetch_part2(struct rte_mbuf *m) { #if RTE_CACHE_LINE_SIZE == 64 rte_prefetch0(&m->cacheline1); #else RTE_SET_USED(m); #endif } static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp); /** * Return the IO address of the beginning of the mbuf data * * @param mb * The pointer to the mbuf. * @return * The IO address of the beginning of the mbuf data */ static inline rte_iova_t rte_mbuf_data_iova(const struct rte_mbuf *mb) { return mb->buf_iova + mb->data_off; } /** * Return the default IO address of the beginning of the mbuf data * * This function is used by drivers in their receive function, as it * returns the location where data should be written by the NIC, taking * the default headroom in account. * * @param mb * The pointer to the mbuf. * @return * The IO address of the beginning of the mbuf data */ static inline rte_iova_t rte_mbuf_data_iova_default(const struct rte_mbuf *mb) { return mb->buf_iova + RTE_PKTMBUF_HEADROOM; } /** * Return the mbuf owning the data buffer address of an indirect mbuf. * * @param mi * The pointer to the indirect mbuf. * @return * The address of the direct mbuf corresponding to buffer_addr. */ static inline struct rte_mbuf * rte_mbuf_from_indirect(struct rte_mbuf *mi) { return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size); } /** * Return address of buffer embedded in the given mbuf. * * The return value shall be same as mb->buf_addr if the mbuf is already * initialized and direct. However, this API is useful if mempool of the * mbuf is already known because it doesn't need to access mbuf contents in * order to get the mempool pointer. * * @warning * @b EXPERIMENTAL: This API may change without prior notice. * This will be used by rte_mbuf_to_baddr() which has redundant code once * experimental tag is removed. * * @param mb * The pointer to the mbuf. * @param mp * The pointer to the mempool of the mbuf. * @return * The pointer of the mbuf buffer. */ __rte_experimental static inline char * rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp) { return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp); } /** * Return the default address of the beginning of the mbuf data. * * @warning * @b EXPERIMENTAL: This API may change without prior notice. * * @param mb * The pointer to the mbuf. * @return * The pointer of the beginning of the mbuf data. */ __rte_experimental static inline char * rte_mbuf_data_addr_default(__rte_unused struct rte_mbuf *mb) { /* gcc complains about calling this experimental function even * when not using it. Hide it with ALLOW_EXPERIMENTAL_API. */ #ifdef ALLOW_EXPERIMENTAL_API return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM; #else return NULL; #endif } /** * Return address of buffer embedded in the given mbuf. * * @note: Accessing mempool pointer of a mbuf is expensive because the * pointer is stored in the 2nd cache line of mbuf. If mempool is known, it * is better not to reference the mempool pointer in mbuf but calling * rte_mbuf_buf_addr() would be more efficient. * * @param md * The pointer to the mbuf. * @return * The address of the data buffer owned by the mbuf. */ static inline char * rte_mbuf_to_baddr(struct rte_mbuf *md) { #ifdef ALLOW_EXPERIMENTAL_API return rte_mbuf_buf_addr(md, md->pool); #else char *buffer_addr; buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool); return buffer_addr; #endif } /** * Return the starting address of the private data area embedded in * the given mbuf. * * Note that no check is made to ensure that a private data area * actually exists in the supplied mbuf. * * @param m * The pointer to the mbuf. * @return * The starting address of the private data area of the given mbuf. */ __rte_experimental static inline void * rte_mbuf_to_priv(struct rte_mbuf *m) { return RTE_PTR_ADD(m, sizeof(struct rte_mbuf)); } /** * Private data in case of pktmbuf pool. * * A structure that contains some pktmbuf_pool-specific data that are * appended after the mempool structure (in private data). */ struct rte_pktmbuf_pool_private { uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */ uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */ uint32_t flags; /**< reserved for future use. */ }; /** * Return the flags from private data in an mempool structure. * * @param mp * A pointer to the mempool structure. * @return * The flags from the private data structure. */ static inline uint32_t rte_pktmbuf_priv_flags(struct rte_mempool *mp) { struct rte_pktmbuf_pool_private *mbp_priv; mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp); return mbp_priv->flags; } /** * When set, pktmbuf mempool will hold only mbufs with pinned external * buffer. The external buffer will be attached to the mbuf at the * memory pool creation and will never be detached by the mbuf free calls. * mbuf should not contain any room for data after the mbuf structure. */ #define RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF (1 << 0) /** * Returns non zero if given mbuf has a pinned external buffer, or zero * otherwise. The pinned external buffer is allocated at pool creation * time and should not be freed on mbuf freeing. * * External buffer is a user-provided anonymous buffer. */ #define RTE_MBUF_HAS_PINNED_EXTBUF(mb) \ (rte_pktmbuf_priv_flags(mb->pool) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) #ifdef RTE_LIBRTE_MBUF_DEBUG /** check mbuf type in debug mode */ #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h) #else /* RTE_LIBRTE_MBUF_DEBUG */ /** check mbuf type in debug mode */ #define __rte_mbuf_sanity_check(m, is_h) do { } while (0) #endif /* RTE_LIBRTE_MBUF_DEBUG */ #ifdef RTE_MBUF_REFCNT_ATOMIC /** * Reads the value of an mbuf's refcnt. * @param m * Mbuf to read * @return * Reference count number. */ static inline uint16_t rte_mbuf_refcnt_read(const struct rte_mbuf *m) { return __atomic_load_n(&m->refcnt, __ATOMIC_RELAXED); } /** * Sets an mbuf's refcnt to a defined value. * @param m * Mbuf to update * @param new_value * Value set */ static inline void rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value) { __atomic_store_n(&m->refcnt, new_value, __ATOMIC_RELAXED); } /* internal */ static inline uint16_t __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value) { return __atomic_add_fetch(&m->refcnt, (uint16_t)value, __ATOMIC_ACQ_REL); } /** * Adds given value to an mbuf's refcnt and returns its new value. * @param m * Mbuf to update * @param value * Value to add/subtract * @return * Updated value */ static inline uint16_t rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value) { /* * The atomic_add is an expensive operation, so we don't want to * call it in the case where we know we are the unique holder of * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic * operation has to be used because concurrent accesses on the * reference counter can occur. */ if (likely(rte_mbuf_refcnt_read(m) == 1)) { ++value; rte_mbuf_refcnt_set(m, (uint16_t)value); return (uint16_t)value; } return __rte_mbuf_refcnt_update(m, value); } #else /* ! RTE_MBUF_REFCNT_ATOMIC */ /* internal */ static inline uint16_t __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value) { m->refcnt = (uint16_t)(m->refcnt + value); return m->refcnt; } /** * Adds given value to an mbuf's refcnt and returns its new value. */ static inline uint16_t rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value) { return __rte_mbuf_refcnt_update(m, value); } /** * Reads the value of an mbuf's refcnt. */ static inline uint16_t rte_mbuf_refcnt_read(const struct rte_mbuf *m) { return m->refcnt; } /** * Sets an mbuf's refcnt to the defined value. */ static inline void rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value) { m->refcnt = new_value; } #endif /* RTE_MBUF_REFCNT_ATOMIC */ /** * Reads the refcnt of an external buffer. * * @param shinfo * Shared data of the external buffer. * @return * Reference count number. */ static inline uint16_t rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo) { return __atomic_load_n(&shinfo->refcnt, __ATOMIC_RELAXED); } /** * Set refcnt of an external buffer. * * @param shinfo * Shared data of the external buffer. * @param new_value * Value set */ static inline void rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo, uint16_t new_value) { __atomic_store_n(&shinfo->refcnt, new_value, __ATOMIC_RELAXED); } /** * Add given value to refcnt of an external buffer and return its new * value. * * @param shinfo * Shared data of the external buffer. * @param value * Value to add/subtract * @return * Updated value */ static inline uint16_t rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo, int16_t value) { if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) { ++value; rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value); return (uint16_t)value; } return __atomic_add_fetch(&shinfo->refcnt, (uint16_t)value, __ATOMIC_ACQ_REL); } /** Mbuf prefetch */ #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \ if ((m) != NULL) \ rte_prefetch0(m); \ } while (0) /** * Sanity checks on an mbuf. * * Check the consistency of the given mbuf. The function will cause a * panic if corruption is detected. * * @param m * The mbuf to be checked. * @param is_header * True if the mbuf is a packet header, false if it is a sub-segment * of a packet (in this case, some fields like nb_segs are not checked) */ void rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header); /** * Sanity checks on a mbuf. * * Almost like rte_mbuf_sanity_check(), but this function gives the reason * if corruption is detected rather than panic. * * @param m * The mbuf to be checked. * @param is_header * True if the mbuf is a packet header, false if it is a sub-segment * of a packet (in this case, some fields like nb_segs are not checked) * @param reason * A reference to a string pointer where to store the reason why a mbuf is * considered invalid. * @return * - 0 if no issue has been found, reason is left untouched. * - -1 if a problem is detected, reason then points to a string describing * the reason why the mbuf is deemed invalid. */ __rte_experimental int rte_mbuf_check(const struct rte_mbuf *m, int is_header, const char **reason); /** * Sanity checks on a reinitialized mbuf in debug mode. * * Check the consistency of the given reinitialized mbuf. * The function will cause a panic if corruption is detected. * * Check that the mbuf is properly reinitialized (refcnt=1, next=NULL, * nb_segs=1), as done by rte_pktmbuf_prefree_seg(). * * @param m * The mbuf to be checked. */ static __rte_always_inline void __rte_mbuf_raw_sanity_check(__rte_unused const struct rte_mbuf *m) { RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1); RTE_ASSERT(m->next == NULL); RTE_ASSERT(m->nb_segs == 1); __rte_mbuf_sanity_check(m, 0); } /** For backwards compatibility. */ #define MBUF_RAW_ALLOC_CHECK(m) __rte_mbuf_raw_sanity_check(m) /** * Allocate an uninitialized mbuf from mempool *mp*. * * This function can be used by PMDs (especially in RX functions) to * allocate an uninitialized mbuf. The driver is responsible of * initializing all the required fields. See rte_pktmbuf_reset(). * For standard needs, prefer rte_pktmbuf_alloc(). * * The caller can expect that the following fields of the mbuf structure * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1, * next=NULL, pool, priv_size. The other fields must be initialized * by the caller. * * @param mp * The mempool from which mbuf is allocated. * @return * - The pointer to the new mbuf on success. * - NULL if allocation failed. */ static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp) { struct rte_mbuf *m; if (rte_mempool_get(mp, (void **)&m) < 0) return NULL; __rte_mbuf_raw_sanity_check(m); return m; } /** * Put mbuf back into its original mempool. * * The caller must ensure that the mbuf is direct and properly * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by * rte_pktmbuf_prefree_seg(). * * This function should be used with care, when optimization is * required. For standard needs, prefer rte_pktmbuf_free() or * rte_pktmbuf_free_seg(). * * @param m * The mbuf to be freed. */ static __rte_always_inline void rte_mbuf_raw_free(struct rte_mbuf *m) { RTE_ASSERT(!RTE_MBUF_CLONED(m) && (!RTE_MBUF_HAS_EXTBUF(m) || RTE_MBUF_HAS_PINNED_EXTBUF(m))); __rte_mbuf_raw_sanity_check(m); rte_mempool_put(m->pool, m); } /** * The packet mbuf constructor. * * This function initializes some fields in the mbuf structure that are * not modified by the user once created (origin pool, buffer start * address, and so on). This function is given as a callback function to * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time. * * @param mp * The mempool from which mbufs originate. * @param opaque_arg * A pointer that can be used by the user to retrieve useful information * for mbuf initialization. This pointer is the opaque argument passed to * rte_mempool_obj_iter() or rte_mempool_create(). * @param m * The mbuf to initialize. * @param i * The index of the mbuf in the pool table. */ void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg, void *m, unsigned i); /** * A packet mbuf pool constructor. * * This function initializes the mempool private data in the case of a * pktmbuf pool. This private data is needed by the driver. The * function must be called on the mempool before it is used, or it * can be given as a callback function to rte_mempool_create() at * pool creation. It can be extended by the user, for example, to * provide another packet size. * * @param mp * The mempool from which mbufs originate. * @param opaque_arg * A pointer that can be used by the user to retrieve useful information * for mbuf initialization. This pointer is the opaque argument passed to * rte_mempool_create(). */ void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg); /** * Create a mbuf pool. * * This function creates and initializes a packet mbuf pool. It is * a wrapper to rte_mempool functions. * * @param name * The name of the mbuf pool. * @param n * The number of elements in the mbuf pool. The optimum size (in terms * of memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param cache_size * Size of the per-core object cache. See rte_mempool_create() for * details. * @param priv_size * Size of application private are between the rte_mbuf structure * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN. * @param data_room_size * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM. * @param socket_id * The socket identifier where the memory should be allocated. The * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the * reserved zone. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - EINVAL - cache size provided is too large, or priv_size is not aligned. * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id); /** * Create a mbuf pool with a given mempool ops name * * This function creates and initializes a packet mbuf pool. It is * a wrapper to rte_mempool functions. * * @param name * The name of the mbuf pool. * @param n * The number of elements in the mbuf pool. The optimum size (in terms * of memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param cache_size * Size of the per-core object cache. See rte_mempool_create() for * details. * @param priv_size * Size of application private are between the rte_mbuf structure * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN. * @param data_room_size * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM. * @param socket_id * The socket identifier where the memory should be allocated. The * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the * reserved zone. * @param ops_name * The mempool ops name to be used for this mempool instead of * default mempool. The value can be *NULL* to use default mempool. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - EINVAL - cache size provided is too large, or priv_size is not aligned. * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ struct rte_mempool * rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n, unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id, const char *ops_name); /** A structure that describes the pinned external buffer segment. */ struct rte_pktmbuf_extmem { void *buf_ptr; /**< The virtual address of data buffer. */ rte_iova_t buf_iova; /**< The IO address of the data buffer. */ size_t buf_len; /**< External buffer length in bytes. */ uint16_t elt_size; /**< mbuf element size in bytes. */ }; /** * Create a mbuf pool with external pinned data buffers. * * This function creates and initializes a packet mbuf pool that contains * only mbufs with external buffer. It is a wrapper to rte_mempool functions. * * @param name * The name of the mbuf pool. * @param n * The number of elements in the mbuf pool. The optimum size (in terms * of memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param cache_size * Size of the per-core object cache. See rte_mempool_create() for * details. * @param priv_size * Size of application private are between the rte_mbuf structure * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN. * @param data_room_size * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM. * @param socket_id * The socket identifier where the memory should be allocated. The * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the * reserved zone. * @param ext_mem * Pointer to the array of structures describing the external memory * for data buffers. It is caller responsibility to register this memory * with rte_extmem_register() (if needed), map this memory to appropriate * physical device, etc. * @param ext_num * Number of elements in the ext_mem array. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - EINVAL - cache size provided is too large, or priv_size is not aligned. * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ __rte_experimental struct rte_mempool * rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n, unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id, const struct rte_pktmbuf_extmem *ext_mem, unsigned int ext_num); /** * Get the data room size of mbufs stored in a pktmbuf_pool * * The data room size is the amount of data that can be stored in a * mbuf including the headroom (RTE_PKTMBUF_HEADROOM). * * @param mp * The packet mbuf pool. * @return * The data room size of mbufs stored in this mempool. */ static inline uint16_t rte_pktmbuf_data_room_size(struct rte_mempool *mp) { struct rte_pktmbuf_pool_private *mbp_priv; mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp); return mbp_priv->mbuf_data_room_size; } /** * Get the application private size of mbufs stored in a pktmbuf_pool * * The private size of mbuf is a zone located between the rte_mbuf * structure and the data buffer where an application can store data * associated to a packet. * * @param mp * The packet mbuf pool. * @return * The private size of mbufs stored in this mempool. */ static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp) { struct rte_pktmbuf_pool_private *mbp_priv; mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp); return mbp_priv->mbuf_priv_size; } /** * Reset the data_off field of a packet mbuf to its default value. * * The given mbuf must have only one segment, which should be empty. * * @param m * The packet mbuf's data_off field has to be reset. */ static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m) { m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len); } /** * Reset the fields of a packet mbuf to their default values. * * The given mbuf must have only one segment. * * @param m * The packet mbuf to be reset. */ static inline void rte_pktmbuf_reset(struct rte_mbuf *m) { m->next = NULL; m->pkt_len = 0; m->tx_offload = 0; m->vlan_tci = 0; m->vlan_tci_outer = 0; m->nb_segs = 1; m->port = RTE_MBUF_PORT_INVALID; m->ol_flags &= EXT_ATTACHED_MBUF; m->packet_type = 0; rte_pktmbuf_reset_headroom(m); m->data_len = 0; __rte_mbuf_sanity_check(m, 1); } /** * Allocate a new mbuf from a mempool. * * This new mbuf contains one segment, which has a length of 0. The pointer * to data is initialized to have some bytes of headroom in the buffer * (if buffer size allows). * * @param mp * The mempool from which the mbuf is allocated. * @return * - The pointer to the new mbuf on success. * - NULL if allocation failed. */ static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp) { struct rte_mbuf *m; if ((m = rte_mbuf_raw_alloc(mp)) != NULL) rte_pktmbuf_reset(m); return m; } /** * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default * values. * * @param pool * The mempool from which mbufs are allocated. * @param mbufs * Array of pointers to mbufs * @param count * Array size * @return * - 0: Success * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved. */ static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, unsigned count) { unsigned idx = 0; int rc; rc = rte_mempool_get_bulk(pool, (void **)mbufs, count); if (unlikely(rc)) return rc; /* To understand duff's device on loop unwinding optimization, see * https://en.wikipedia.org/wiki/Duff's_device. * Here while() loop is used rather than do() while{} to avoid extra * check if count is zero. */ switch (count % 4) { case 0: while (idx != count) { __rte_mbuf_raw_sanity_check(mbufs[idx]); rte_pktmbuf_reset(mbufs[idx]); idx++; /* fall-through */ case 3: __rte_mbuf_raw_sanity_check(mbufs[idx]); rte_pktmbuf_reset(mbufs[idx]); idx++; /* fall-through */ case 2: __rte_mbuf_raw_sanity_check(mbufs[idx]); rte_pktmbuf_reset(mbufs[idx]); idx++; /* fall-through */ case 1: __rte_mbuf_raw_sanity_check(mbufs[idx]); rte_pktmbuf_reset(mbufs[idx]); idx++; /* fall-through */ } } return 0; } /** * Initialize shared data at the end of an external buffer before attaching * to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory * initialization but a helper function to simply spare a few bytes at the * end of the buffer for shared data. If shared data is allocated * separately, this should not be called but application has to properly * initialize the shared data according to its need. * * Free callback and its argument is saved and the refcnt is set to 1. * * @warning * The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr) * after this initialization. This shall be used for * ``rte_pktmbuf_attach_extbuf()`` * * @param buf_addr * The pointer to the external buffer. * @param [in,out] buf_len * The pointer to length of the external buffer. Input value must be * larger than the size of ``struct rte_mbuf_ext_shared_info`` and * padding for alignment. If not enough, this function will return NULL. * Adjusted buffer length will be returned through this pointer. * @param free_cb * Free callback function to call when the external buffer needs to be * freed. * @param fcb_opaque * Argument for the free callback function. * * @return * A pointer to the initialized shared data on success, return NULL * otherwise. */ static inline struct rte_mbuf_ext_shared_info * rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len, rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque) { struct rte_mbuf_ext_shared_info *shinfo; void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len); void *addr; addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)), sizeof(uintptr_t)); if (addr <= buf_addr) return NULL; shinfo = (struct rte_mbuf_ext_shared_info *)addr; shinfo->free_cb = free_cb; shinfo->fcb_opaque = fcb_opaque; rte_mbuf_ext_refcnt_set(shinfo, 1); *buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr); return shinfo; } /** * Attach an external buffer to a mbuf. * * User-managed anonymous buffer can be attached to an mbuf. When attaching * it, corresponding free callback function and its argument should be * provided via shinfo. This callback function will be called once all the * mbufs are detached from the buffer (refcnt becomes zero). * * The headroom length of the attaching mbuf will be set to zero and this * can be properly adjusted after attachment. For example, ``rte_pktmbuf_adj()`` * or ``rte_pktmbuf_reset_headroom()`` might be used. * * Similarly, the packet length is initialized to 0. If the buffer contains * data, the user has to adjust ``data_len`` and the ``pkt_len`` field of * the mbuf accordingly. * * More mbufs can be attached to the same external buffer by * ``rte_pktmbuf_attach()`` once the external buffer has been attached by * this API. * * Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or * ``rte_pktmbuf_detach()``. * * Memory for shared data must be provided and user must initialize all of * the content properly, especially free callback and refcnt. The pointer * of shared data will be stored in m->shinfo. * ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few * bytes at the end of buffer for the shared data, store free callback and * its argument and set the refcnt to 1. The following is an example: * * struct rte_mbuf_ext_shared_info *shinfo = * rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len, * free_cb, fcb_arg); * rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo); * rte_pktmbuf_reset_headroom(m); * rte_pktmbuf_adj(m, data_len); * * Attaching an external buffer is quite similar to mbuf indirection in * replacing buffer addresses and length of a mbuf, but a few differences: * - When an indirect mbuf is attached, refcnt of the direct mbuf would be * 2 as long as the direct mbuf itself isn't freed after the attachment. * In such cases, the buffer area of a direct mbuf must be read-only. But * external buffer has its own refcnt and it starts from 1. Unless * multiple mbufs are attached to a mbuf having an external buffer, the * external buffer is writable. * - There's no need to allocate buffer from a mempool. Any buffer can be * attached with appropriate free callback and its IO address. * - Smaller metadata is required to maintain shared data such as refcnt. * * @param m * The pointer to the mbuf. * @param buf_addr * The pointer to the external buffer. * @param buf_iova * IO address of the external buffer. * @param buf_len * The size of the external buffer. * @param shinfo * User-provided memory for shared data of the external buffer. */ static inline void rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo) { /* mbuf should not be read-only */ RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1); RTE_ASSERT(shinfo->free_cb != NULL); m->buf_addr = buf_addr; m->buf_iova = buf_iova; m->buf_len = buf_len; m->data_len = 0; m->data_off = 0; m->ol_flags |= EXT_ATTACHED_MBUF; m->shinfo = shinfo; } /** * Detach the external buffer attached to a mbuf, same as * ``rte_pktmbuf_detach()`` * * @param m * The mbuf having external buffer. */ #define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m) /** * Copy dynamic fields from msrc to mdst. * * @param mdst * The destination mbuf. * @param msrc * The source mbuf. */ static inline void rte_mbuf_dynfield_copy(struct rte_mbuf *mdst, const struct rte_mbuf *msrc) { memcpy(&mdst->dynfield1, msrc->dynfield1, sizeof(mdst->dynfield1)); } /* internal */ static inline void __rte_pktmbuf_copy_hdr(struct rte_mbuf *mdst, const struct rte_mbuf *msrc) { mdst->port = msrc->port; mdst->vlan_tci = msrc->vlan_tci; mdst->vlan_tci_outer = msrc->vlan_tci_outer; mdst->tx_offload = msrc->tx_offload; mdst->hash = msrc->hash; mdst->packet_type = msrc->packet_type; rte_mbuf_dynfield_copy(mdst, msrc); } /** * Attach packet mbuf to another packet mbuf. * * If the mbuf we are attaching to isn't a direct buffer and is attached to * an external buffer, the mbuf being attached will be attached to the * external buffer instead of mbuf indirection. * * Otherwise, the mbuf will be indirectly attached. After attachment we * refer the mbuf we attached as 'indirect', while mbuf we attached to as * 'direct'. The direct mbuf's reference counter is incremented. * * Right now, not supported: * - attachment for already indirect mbuf (e.g. - mi has to be direct). * - mbuf we trying to attach (mi) is used by someone else * e.g. it's reference counter is greater then 1. * * @param mi * The indirect packet mbuf. * @param m * The packet mbuf we're attaching to. */ static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m) { RTE_ASSERT(RTE_MBUF_DIRECT(mi) && rte_mbuf_refcnt_read(mi) == 1); if (RTE_MBUF_HAS_EXTBUF(m)) { rte_mbuf_ext_refcnt_update(m->shinfo, 1); mi->ol_flags = m->ol_flags; mi->shinfo = m->shinfo; } else { /* if m is not direct, get the mbuf that embeds the data */ rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1); mi->priv_size = m->priv_size; mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF; } __rte_pktmbuf_copy_hdr(mi, m); mi->data_off = m->data_off; mi->data_len = m->data_len; mi->buf_iova = m->buf_iova; mi->buf_addr = m->buf_addr; mi->buf_len = m->buf_len; mi->next = NULL; mi->pkt_len = mi->data_len; mi->nb_segs = 1; __rte_mbuf_sanity_check(mi, 1); __rte_mbuf_sanity_check(m, 0); } /** * @internal used by rte_pktmbuf_detach(). * * Decrement the reference counter of the external buffer. When the * reference counter becomes 0, the buffer is freed by pre-registered * callback. */ static inline void __rte_pktmbuf_free_extbuf(struct rte_mbuf *m) { RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m)); RTE_ASSERT(m->shinfo != NULL); if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0) m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque); } /** * @internal used by rte_pktmbuf_detach(). * * Decrement the direct mbuf's reference counter. When the reference * counter becomes 0, the direct mbuf is freed. */ static inline void __rte_pktmbuf_free_direct(struct rte_mbuf *m) { struct rte_mbuf *md; RTE_ASSERT(RTE_MBUF_CLONED(m)); md = rte_mbuf_from_indirect(m); if (rte_mbuf_refcnt_update(md, -1) == 0) { md->next = NULL; md->nb_segs = 1; rte_mbuf_refcnt_set(md, 1); rte_mbuf_raw_free(md); } } /** * Detach a packet mbuf from external buffer or direct buffer. * * - decrement refcnt and free the external/direct buffer if refcnt * becomes zero. * - restore original mbuf address and length values. * - reset pktmbuf data and data_len to their default values. * * All other fields of the given packet mbuf will be left intact. * * If the packet mbuf was allocated from the pool with pinned * external buffers the rte_pktmbuf_detach does nothing with the * mbuf of this kind, because the pinned buffers are not supposed * to be detached. * * @param m * The indirect attached packet mbuf. */ static inline void rte_pktmbuf_detach(struct rte_mbuf *m) { struct rte_mempool *mp = m->pool; uint32_t mbuf_size, buf_len; uint16_t priv_size; if (RTE_MBUF_HAS_EXTBUF(m)) { /* * The mbuf has the external attached buffer, * we should check the type of the memory pool where * the mbuf was allocated from to detect the pinned * external buffer. */ uint32_t flags = rte_pktmbuf_priv_flags(mp); if (flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) { /* * The pinned external buffer should not be * detached from its backing mbuf, just exit. */ return; } __rte_pktmbuf_free_extbuf(m); } else { __rte_pktmbuf_free_direct(m); } priv_size = rte_pktmbuf_priv_size(mp); mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size); buf_len = rte_pktmbuf_data_room_size(mp); m->priv_size = priv_size; m->buf_addr = (char *)m + mbuf_size; m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size; m->buf_len = (uint16_t)buf_len; rte_pktmbuf_reset_headroom(m); m->data_len = 0; m->ol_flags = 0; } /** * @internal Handle the packet mbufs with attached pinned external buffer * on the mbuf freeing: * * - return zero if reference counter in shinfo is one. It means there is * no more reference to this pinned buffer and mbuf can be returned to * the pool * * - otherwise (if reference counter is not one), decrement reference * counter and return non-zero value to prevent freeing the backing mbuf. * * Returns non zero if mbuf should not be freed. */ static inline int __rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf *m) { struct rte_mbuf_ext_shared_info *shinfo; /* Clear flags, mbuf is being freed. */ m->ol_flags = EXT_ATTACHED_MBUF; shinfo = m->shinfo; /* Optimize for performance - do not dec/reinit */ if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) return 0; /* * Direct usage of add primitive to avoid * duplication of comparing with one. */ if (likely(__atomic_add_fetch(&shinfo->refcnt, (uint16_t)-1, __ATOMIC_ACQ_REL))) return 1; /* Reinitialize counter before mbuf freeing. */ rte_mbuf_ext_refcnt_set(shinfo, 1); return 0; } /** * Decrease reference counter and unlink a mbuf segment * * This function does the same than a free, except that it does not * return the segment to its pool. * It decreases the reference counter, and if it reaches 0, it is * detached from its parent for an indirect mbuf. * * @param m * The mbuf to be unlinked * @return * - (m) if it is the last reference. It can be recycled or freed. * - (NULL) if the mbuf still has remaining references on it. */ static __rte_always_inline struct rte_mbuf * rte_pktmbuf_prefree_seg(struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 0); if (likely(rte_mbuf_refcnt_read(m) == 1)) { if (!RTE_MBUF_DIRECT(m)) { rte_pktmbuf_detach(m); if (RTE_MBUF_HAS_EXTBUF(m) && RTE_MBUF_HAS_PINNED_EXTBUF(m) && __rte_pktmbuf_pinned_extbuf_decref(m)) return NULL; } if (m->next != NULL) { m->next = NULL; m->nb_segs = 1; } return m; } else if (__rte_mbuf_refcnt_update(m, -1) == 0) { if (!RTE_MBUF_DIRECT(m)) { rte_pktmbuf_detach(m); if (RTE_MBUF_HAS_EXTBUF(m) && RTE_MBUF_HAS_PINNED_EXTBUF(m) && __rte_pktmbuf_pinned_extbuf_decref(m)) return NULL; } if (m->next != NULL) { m->next = NULL; m->nb_segs = 1; } rte_mbuf_refcnt_set(m, 1); return m; } return NULL; } /** * Free a segment of a packet mbuf into its original mempool. * * Free an mbuf, without parsing other segments in case of chained * buffers. * * @param m * The packet mbuf segment to be freed. */ static __rte_always_inline void rte_pktmbuf_free_seg(struct rte_mbuf *m) { m = rte_pktmbuf_prefree_seg(m); if (likely(m != NULL)) rte_mbuf_raw_free(m); } /** * Free a packet mbuf back into its original mempool. * * Free an mbuf, and all its segments in case of chained buffers. Each * segment is added back into its original mempool. * * @param m * The packet mbuf to be freed. If NULL, the function does nothing. */ static inline void rte_pktmbuf_free(struct rte_mbuf *m) { struct rte_mbuf *m_next; if (m != NULL) __rte_mbuf_sanity_check(m, 1); while (m != NULL) { m_next = m->next; rte_pktmbuf_free_seg(m); m = m_next; } } /** * Free a bulk of packet mbufs back into their original mempools. * * Free a bulk of mbufs, and all their segments in case of chained buffers. * Each segment is added back into its original mempool. * * @param mbufs * Array of pointers to packet mbufs. * The array may contain NULL pointers. * @param count * Array size. */ __rte_experimental void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count); /** * Create a "clone" of the given packet mbuf. * * Walks through all segments of the given packet mbuf, and for each of them: * - Creates a new packet mbuf from the given pool. * - Attaches newly created mbuf to the segment. * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values * from the original packet mbuf. * * @param md * The packet mbuf to be cloned. * @param mp * The mempool from which the "clone" mbufs are allocated. * @return * - The pointer to the new "clone" mbuf on success. * - NULL if allocation fails. */ struct rte_mbuf * rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp); /** * Create a full copy of a given packet mbuf. * * Copies all the data from a given packet mbuf to a newly allocated * set of mbufs. The private data are is not copied. * * @param m * The packet mbuf to be copiedd. * @param mp * The mempool from which the "clone" mbufs are allocated. * @param offset * The number of bytes to skip before copying. * If the mbuf does not have that many bytes, it is an error * and NULL is returned. * @param length * The upper limit on bytes to copy. Passing UINT32_MAX * means all data (after offset). * @return * - The pointer to the new "clone" mbuf on success. * - NULL if allocation fails. */ __rte_experimental struct rte_mbuf * rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp, uint32_t offset, uint32_t length); /** * Adds given value to the refcnt of all packet mbuf segments. * * Walks through all segments of given packet mbuf and for each of them * invokes rte_mbuf_refcnt_update(). * * @param m * The packet mbuf whose refcnt to be updated. * @param v * The value to add to the mbuf's segments refcnt. */ static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v) { __rte_mbuf_sanity_check(m, 1); do { rte_mbuf_refcnt_update(m, v); } while ((m = m->next) != NULL); } /** * Get the headroom in a packet mbuf. * * @param m * The packet mbuf. * @return * The length of the headroom. */ static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 0); return m->data_off; } /** * Get the tailroom of a packet mbuf. * * @param m * The packet mbuf. * @return * The length of the tailroom. */ static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 0); return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) - m->data_len); } /** * Get the last segment of the packet. * * @param m * The packet mbuf. * @return * The last segment of the given mbuf. */ static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 1); while (m->next != NULL) m = m->next; return m; } /** * A macro that returns the length of the packet. * * The value can be read or assigned. * * @param m * The packet mbuf. */ #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len) /** * A macro that returns the length of the segment. * * The value can be read or assigned. * * @param m * The packet mbuf. */ #define rte_pktmbuf_data_len(m) ((m)->data_len) /** * Prepend len bytes to an mbuf data area. * * Returns a pointer to the new * data start address. If there is not enough headroom in the first * segment, the function will return NULL, without modifying the mbuf. * * @param m * The pkt mbuf. * @param len * The amount of data to prepend (in bytes). * @return * A pointer to the start of the newly prepended data, or * NULL if there is not enough headroom space in the first segment */ static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m, uint16_t len) { __rte_mbuf_sanity_check(m, 1); if (unlikely(len > rte_pktmbuf_headroom(m))) return NULL; /* NB: elaborating the subtraction like this instead of using * -= allows us to ensure the result type is uint16_t * avoiding compiler warnings on gcc 8.1 at least */ m->data_off = (uint16_t)(m->data_off - len); m->data_len = (uint16_t)(m->data_len + len); m->pkt_len = (m->pkt_len + len); return (char *)m->buf_addr + m->data_off; } /** * Append len bytes to an mbuf. * * Append len bytes to an mbuf and return a pointer to the start address * of the added data. If there is not enough tailroom in the last * segment, the function will return NULL, without modifying the mbuf. * * @param m * The packet mbuf. * @param len * The amount of data to append (in bytes). * @return * A pointer to the start of the newly appended data, or * NULL if there is not enough tailroom space in the last segment */ static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) { void *tail; struct rte_mbuf *m_last; __rte_mbuf_sanity_check(m, 1); m_last = rte_pktmbuf_lastseg(m); if (unlikely(len > rte_pktmbuf_tailroom(m_last))) return NULL; tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len; m_last->data_len = (uint16_t)(m_last->data_len + len); m->pkt_len = (m->pkt_len + len); return (char*) tail; } /** * Remove len bytes at the beginning of an mbuf. * * Returns a pointer to the start address of the new data area. If the * length is greater than the length of the first segment, then the * function will fail and return NULL, without modifying the mbuf. * * @param m * The packet mbuf. * @param len * The amount of data to remove (in bytes). * @return * A pointer to the new start of the data. */ static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len) { __rte_mbuf_sanity_check(m, 1); if (unlikely(len > m->data_len)) return NULL; /* NB: elaborating the addition like this instead of using * += allows us to ensure the result type is uint16_t * avoiding compiler warnings on gcc 8.1 at least */ m->data_len = (uint16_t)(m->data_len - len); m->data_off = (uint16_t)(m->data_off + len); m->pkt_len = (m->pkt_len - len); return (char *)m->buf_addr + m->data_off; } /** * Remove len bytes of data at the end of the mbuf. * * If the length is greater than the length of the last segment, the * function will fail and return -1 without modifying the mbuf. * * @param m * The packet mbuf. * @param len * The amount of data to remove (in bytes). * @return * - 0: On success. * - -1: On error. */ static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len) { struct rte_mbuf *m_last; __rte_mbuf_sanity_check(m, 1); m_last = rte_pktmbuf_lastseg(m); if (unlikely(len > m_last->data_len)) return -1; m_last->data_len = (uint16_t)(m_last->data_len - len); m->pkt_len = (m->pkt_len - len); return 0; } /** * Test if mbuf data is contiguous. * * @param m * The packet mbuf. * @return * - 1, if all data is contiguous (one segment). * - 0, if there is several segments. */ static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 1); return m->nb_segs == 1; } /** * @internal used by rte_pktmbuf_read(). */ const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off, uint32_t len, void *buf); /** * Read len data bytes in a mbuf at specified offset. * * If the data is contiguous, return the pointer in the mbuf data, else * copy the data in the buffer provided by the user and return its * pointer. * * @param m * The pointer to the mbuf. * @param off * The offset of the data in the mbuf. * @param len * The amount of bytes to read. * @param buf * The buffer where data is copied if it is not contiguous in mbuf * data. Its length should be at least equal to the len parameter. * @return * The pointer to the data, either in the mbuf if it is contiguous, * or in the user buffer. If mbuf is too small, NULL is returned. */ static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off, uint32_t len, void *buf) { if (likely(off + len <= rte_pktmbuf_data_len(m))) return rte_pktmbuf_mtod_offset(m, char *, off); else return __rte_pktmbuf_read(m, off, len, buf); } /** * Chain an mbuf to another, thereby creating a segmented packet. * * Note: The implementation will do a linear walk over the segments to find * the tail entry. For cases when there are many segments, it's better to * chain the entries manually. * * @param head * The head of the mbuf chain (the first packet) * @param tail * The mbuf to put last in the chain * * @return * - 0, on success. * - -EOVERFLOW, if the chain segment limit exceeded */ static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) { struct rte_mbuf *cur_tail; /* Check for number-of-segments-overflow */ if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS) return -EOVERFLOW; /* Chain 'tail' onto the old tail */ cur_tail = rte_pktmbuf_lastseg(head); cur_tail->next = tail; /* accumulate number of segments and total length. * NB: elaborating the addition like this instead of using * -= allows us to ensure the result type is uint16_t * avoiding compiler warnings on gcc 8.1 at least */ head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs); head->pkt_len += tail->pkt_len; /* pkt_len is only set in the head */ tail->pkt_len = tail->data_len; return 0; } /* * @warning * @b EXPERIMENTAL: This API may change without prior notice. * * For given input values generate raw tx_offload value. * Note that it is caller responsibility to make sure that input parameters * don't exceed maximum bit-field values. * @param il2 * l2_len value. * @param il3 * l3_len value. * @param il4 * l4_len value. * @param tso * tso_segsz value. * @param ol3 * outer_l3_len value. * @param ol2 * outer_l2_len value. * @param unused * unused value. * @return * raw tx_offload value. */ static __rte_always_inline uint64_t rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso, uint64_t ol3, uint64_t ol2, uint64_t unused) { return il2 << RTE_MBUF_L2_LEN_OFS | il3 << RTE_MBUF_L3_LEN_OFS | il4 << RTE_MBUF_L4_LEN_OFS | tso << RTE_MBUF_TSO_SEGSZ_OFS | ol3 << RTE_MBUF_OUTL3_LEN_OFS | ol2 << RTE_MBUF_OUTL2_LEN_OFS | unused << RTE_MBUF_TXOFLD_UNUSED_OFS; } /** * Validate general requirements for Tx offload in mbuf. * * This function checks correctness and completeness of Tx offload settings. * * @param m * The packet mbuf to be validated. * @return * 0 if packet is valid */ static inline int rte_validate_tx_offload(const struct rte_mbuf *m) { uint64_t ol_flags = m->ol_flags; /* Does packet set any of available offloads? */ if (!(ol_flags & PKT_TX_OFFLOAD_MASK)) return 0; /* IP checksum can be counted only for IPv4 packet */ if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6)) return -EINVAL; /* IP type not set when required */ if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6))) return -EINVAL; /* Check requirements for TSO packet */ if (ol_flags & PKT_TX_TCP_SEG) if ((m->tso_segsz == 0) || ((ol_flags & PKT_TX_IPV4) && !(ol_flags & PKT_TX_IP_CKSUM))) return -EINVAL; /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */ if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) && !(ol_flags & PKT_TX_OUTER_IPV4)) return -EINVAL; return 0; } /** * @internal used by rte_pktmbuf_linearize(). */ int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf); /** * Linearize data in mbuf. * * This function moves the mbuf data in the first segment if there is enough * tailroom. The subsequent segments are unchained and freed. * * @param mbuf * mbuf to linearize * @return * - 0, on success * - -1, on error */ static inline int rte_pktmbuf_linearize(struct rte_mbuf *mbuf) { if (rte_pktmbuf_is_contiguous(mbuf)) return 0; return __rte_pktmbuf_linearize(mbuf); } /** * Dump an mbuf structure to a file. * * Dump all fields for the given packet mbuf and all its associated * segments (in the case of a chained buffer). * * @param f * A pointer to a file for output * @param m * The packet mbuf. * @param dump_len * If dump_len != 0, also dump the "dump_len" first data bytes of * the packet. */ void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len); /** * Get the value of mbuf sched queue_id field. */ static inline uint32_t rte_mbuf_sched_queue_get(const struct rte_mbuf *m) { return m->hash.sched.queue_id; } /** * Get the value of mbuf sched traffic_class field. */ static inline uint8_t rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m) { return m->hash.sched.traffic_class; } /** * Get the value of mbuf sched color field. */ static inline uint8_t rte_mbuf_sched_color_get(const struct rte_mbuf *m) { return m->hash.sched.color; } /** * Get the values of mbuf sched queue_id, traffic_class and color. * * @param m * Mbuf to read * @param queue_id * Returns the queue id * @param traffic_class * Returns the traffic class id * @param color * Returns the colour id */ static inline void rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id, uint8_t *traffic_class, uint8_t *color) { struct rte_mbuf_sched sched = m->hash.sched; *queue_id = sched.queue_id; *traffic_class = sched.traffic_class; *color = sched.color; } /** * Set the mbuf sched queue_id to the defined value. */ static inline void rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id) { m->hash.sched.queue_id = queue_id; } /** * Set the mbuf sched traffic_class id to the defined value. */ static inline void rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class) { m->hash.sched.traffic_class = traffic_class; } /** * Set the mbuf sched color id to the defined value. */ static inline void rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color) { m->hash.sched.color = color; } /** * Set the mbuf sched queue_id, traffic_class and color. * * @param m * Mbuf to set * @param queue_id * Queue id value to be set * @param traffic_class * Traffic class id value to be set * @param color * Color id to be set */ static inline void rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id, uint8_t traffic_class, uint8_t color) { m->hash.sched = (struct rte_mbuf_sched){ .queue_id = queue_id, .traffic_class = traffic_class, .color = color, .reserved = 0, }; } #ifdef __cplusplus } #endif #endif /* _RTE_MBUF_H_ */