/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation * Copyright(c) 2020 Arm Limited */ #include #include #include #include #include #include #include #include #include #include /* for definition of RTE_CACHE_LINE_SIZE */ #include #include #include #include #include #include #include #include #include #include "rte_lpm.h" TAILQ_HEAD(rte_lpm_list, rte_tailq_entry); static struct rte_tailq_elem rte_lpm_tailq = { .name = "RTE_LPM", }; EAL_REGISTER_TAILQ(rte_lpm_tailq) #define MAX_DEPTH_TBL24 24 enum valid_flag { INVALID = 0, VALID }; /** @internal Rule structure. */ struct rte_lpm_rule { uint32_t ip; /**< Rule IP address. */ uint32_t next_hop; /**< Rule next hop. */ }; /** @internal Contains metadata about the rules table. */ struct rte_lpm_rule_info { uint32_t used_rules; /**< Used rules so far. */ uint32_t first_rule; /**< Indexes the first rule of a given depth. */ }; /** @internal LPM structure. */ struct __rte_lpm { /* Exposed LPM data. */ struct rte_lpm lpm; /* LPM metadata. */ char name[RTE_LPM_NAMESIZE]; /**< Name of the lpm. */ uint32_t max_rules; /**< Max. balanced rules per lpm. */ uint32_t number_tbl8s; /**< Number of tbl8s. */ /**< Rule info table. */ struct rte_lpm_rule_info rule_info[RTE_LPM_MAX_DEPTH]; struct rte_lpm_rule *rules_tbl; /**< LPM rules. */ /* RCU config. */ struct rte_rcu_qsbr *v; /* RCU QSBR variable. */ enum rte_lpm_qsbr_mode rcu_mode;/* Blocking, defer queue. */ struct rte_rcu_qsbr_dq *dq; /* RCU QSBR defer queue. */ }; /* Macro to enable/disable run-time checks. */ #if defined(RTE_LIBRTE_LPM_DEBUG) #include #define VERIFY_DEPTH(depth) do { \ if ((depth == 0) || (depth > RTE_LPM_MAX_DEPTH)) \ rte_panic("LPM: Invalid depth (%u) at line %d", \ (unsigned)(depth), __LINE__); \ } while (0) #else #define VERIFY_DEPTH(depth) #endif /* * Converts a given depth value to its corresponding mask value. * * depth (IN) : range = 1 - 32 * mask (OUT) : 32bit mask */ static uint32_t __attribute__((pure)) depth_to_mask(uint8_t depth) { VERIFY_DEPTH(depth); /* To calculate a mask start with a 1 on the left hand side and right * shift while populating the left hand side with 1's */ return (int)0x80000000 >> (depth - 1); } /* * Converts given depth value to its corresponding range value. */ static uint32_t __attribute__((pure)) depth_to_range(uint8_t depth) { VERIFY_DEPTH(depth); /* * Calculate tbl24 range. (Note: 2^depth = 1 << depth) */ if (depth <= MAX_DEPTH_TBL24) return 1 << (MAX_DEPTH_TBL24 - depth); /* Else if depth is greater than 24 */ return 1 << (RTE_LPM_MAX_DEPTH - depth); } /* * Find an existing lpm table and return a pointer to it. */ struct rte_lpm * rte_lpm_find_existing(const char *name) { struct __rte_lpm *i_lpm = NULL; struct rte_tailq_entry *te; struct rte_lpm_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_mcfg_tailq_read_lock(); TAILQ_FOREACH(te, lpm_list, next) { i_lpm = te->data; if (strncmp(name, i_lpm->name, RTE_LPM_NAMESIZE) == 0) break; } rte_mcfg_tailq_read_unlock(); if (te == NULL) { rte_errno = ENOENT; return NULL; } return &i_lpm->lpm; } /* * Allocates memory for LPM object */ struct rte_lpm * rte_lpm_create(const char *name, int socket_id, const struct rte_lpm_config *config) { char mem_name[RTE_LPM_NAMESIZE]; struct __rte_lpm *i_lpm; struct rte_lpm *lpm = NULL; struct rte_tailq_entry *te; uint32_t mem_size, rules_size, tbl8s_size; struct rte_lpm_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); RTE_BUILD_BUG_ON(sizeof(struct rte_lpm_tbl_entry) != 4); /* Check user arguments. */ if ((name == NULL) || (socket_id < -1) || (config->max_rules == 0) || config->number_tbl8s > RTE_LPM_MAX_TBL8_NUM_GROUPS) { rte_errno = EINVAL; return NULL; } snprintf(mem_name, sizeof(mem_name), "LPM_%s", name); rte_mcfg_tailq_write_lock(); /* guarantee there's no existing */ TAILQ_FOREACH(te, lpm_list, next) { i_lpm = te->data; if (strncmp(name, i_lpm->name, RTE_LPM_NAMESIZE) == 0) break; } if (te != NULL) { rte_errno = EEXIST; goto exit; } /* Determine the amount of memory to allocate. */ mem_size = sizeof(*i_lpm); rules_size = sizeof(struct rte_lpm_rule) * config->max_rules; tbl8s_size = sizeof(struct rte_lpm_tbl_entry) * RTE_LPM_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s; /* allocate tailq entry */ te = rte_zmalloc("LPM_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, LPM, "Failed to allocate tailq entry\n"); rte_errno = ENOMEM; goto exit; } /* Allocate memory to store the LPM data structures. */ i_lpm = rte_zmalloc_socket(mem_name, mem_size, RTE_CACHE_LINE_SIZE, socket_id); if (i_lpm == NULL) { RTE_LOG(ERR, LPM, "LPM memory allocation failed\n"); rte_free(te); rte_errno = ENOMEM; goto exit; } i_lpm->rules_tbl = rte_zmalloc_socket(NULL, (size_t)rules_size, RTE_CACHE_LINE_SIZE, socket_id); if (i_lpm->rules_tbl == NULL) { RTE_LOG(ERR, LPM, "LPM rules_tbl memory allocation failed\n"); rte_free(i_lpm); i_lpm = NULL; rte_free(te); rte_errno = ENOMEM; goto exit; } i_lpm->lpm.tbl8 = rte_zmalloc_socket(NULL, (size_t)tbl8s_size, RTE_CACHE_LINE_SIZE, socket_id); if (i_lpm->lpm.tbl8 == NULL) { RTE_LOG(ERR, LPM, "LPM tbl8 memory allocation failed\n"); rte_free(i_lpm->rules_tbl); rte_free(i_lpm); i_lpm = NULL; rte_free(te); rte_errno = ENOMEM; goto exit; } /* Save user arguments. */ i_lpm->max_rules = config->max_rules; i_lpm->number_tbl8s = config->number_tbl8s; strlcpy(i_lpm->name, name, sizeof(i_lpm->name)); te->data = i_lpm; lpm = &i_lpm->lpm; TAILQ_INSERT_TAIL(lpm_list, te, next); exit: rte_mcfg_tailq_write_unlock(); return lpm; } /* * Deallocates memory for given LPM table. */ void rte_lpm_free(struct rte_lpm *lpm) { struct rte_lpm_list *lpm_list; struct rte_tailq_entry *te; struct __rte_lpm *i_lpm; /* Check user arguments. */ if (lpm == NULL) return; i_lpm = container_of(lpm, struct __rte_lpm, lpm); lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_mcfg_tailq_write_lock(); /* find our tailq entry */ TAILQ_FOREACH(te, lpm_list, next) { if (te->data == (void *)i_lpm) break; } if (te != NULL) TAILQ_REMOVE(lpm_list, te, next); rte_mcfg_tailq_write_unlock(); if (i_lpm->dq != NULL) rte_rcu_qsbr_dq_delete(i_lpm->dq); rte_free(i_lpm->lpm.tbl8); rte_free(i_lpm->rules_tbl); rte_free(i_lpm); rte_free(te); } static void __lpm_rcu_qsbr_free_resource(void *p, void *data, unsigned int n) { struct rte_lpm_tbl_entry *tbl8 = ((struct __rte_lpm *)p)->lpm.tbl8; struct rte_lpm_tbl_entry zero_tbl8_entry = {0}; uint32_t tbl8_group_index = *(uint32_t *)data; RTE_SET_USED(n); /* Set tbl8 group invalid */ __atomic_store(&tbl8[tbl8_group_index], &zero_tbl8_entry, __ATOMIC_RELAXED); } /* Associate QSBR variable with an LPM object. */ int rte_lpm_rcu_qsbr_add(struct rte_lpm *lpm, struct rte_lpm_rcu_config *cfg) { struct rte_rcu_qsbr_dq_parameters params = {0}; char rcu_dq_name[RTE_RCU_QSBR_DQ_NAMESIZE]; struct __rte_lpm *i_lpm; if (lpm == NULL || cfg == NULL) { rte_errno = EINVAL; return 1; } i_lpm = container_of(lpm, struct __rte_lpm, lpm); if (i_lpm->v != NULL) { rte_errno = EEXIST; return 1; } if (cfg->mode == RTE_LPM_QSBR_MODE_SYNC) { /* No other things to do. */ } else if (cfg->mode == RTE_LPM_QSBR_MODE_DQ) { /* Init QSBR defer queue. */ snprintf(rcu_dq_name, sizeof(rcu_dq_name), "LPM_RCU_%s", i_lpm->name); params.name = rcu_dq_name; params.size = cfg->dq_size; if (params.size == 0) params.size = i_lpm->number_tbl8s; params.trigger_reclaim_limit = cfg->reclaim_thd; params.max_reclaim_size = cfg->reclaim_max; if (params.max_reclaim_size == 0) params.max_reclaim_size = RTE_LPM_RCU_DQ_RECLAIM_MAX; params.esize = sizeof(uint32_t); /* tbl8 group index */ params.free_fn = __lpm_rcu_qsbr_free_resource; params.p = i_lpm; params.v = cfg->v; i_lpm->dq = rte_rcu_qsbr_dq_create(¶ms); if (i_lpm->dq == NULL) { RTE_LOG(ERR, LPM, "LPM defer queue creation failed\n"); return 1; } } else { rte_errno = EINVAL; return 1; } i_lpm->rcu_mode = cfg->mode; i_lpm->v = cfg->v; return 0; } /* * Adds a rule to the rule table. * * NOTE: The rule table is split into 32 groups. Each group contains rules that * apply to a specific prefix depth (i.e. group 1 contains rules that apply to * prefixes with a depth of 1 etc.). In the following code (depth - 1) is used * to refer to depth 1 because even though the depth range is 1 - 32, depths * are stored in the rule table from 0 - 31. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static int32_t rule_add(struct __rte_lpm *i_lpm, uint32_t ip_masked, uint8_t depth, uint32_t next_hop) { uint32_t rule_gindex, rule_index, last_rule; int i; VERIFY_DEPTH(depth); /* Scan through rule group to see if rule already exists. */ if (i_lpm->rule_info[depth - 1].used_rules > 0) { /* rule_gindex stands for rule group index. */ rule_gindex = i_lpm->rule_info[depth - 1].first_rule; /* Initialise rule_index to point to start of rule group. */ rule_index = rule_gindex; /* Last rule = Last used rule in this rule group. */ last_rule = rule_gindex + i_lpm->rule_info[depth - 1].used_rules; for (; rule_index < last_rule; rule_index++) { /* If rule already exists update next hop and return. */ if (i_lpm->rules_tbl[rule_index].ip == ip_masked) { if (i_lpm->rules_tbl[rule_index].next_hop == next_hop) return -EEXIST; i_lpm->rules_tbl[rule_index].next_hop = next_hop; return rule_index; } } if (rule_index == i_lpm->max_rules) return -ENOSPC; } else { /* Calculate the position in which the rule will be stored. */ rule_index = 0; for (i = depth - 1; i > 0; i--) { if (i_lpm->rule_info[i - 1].used_rules > 0) { rule_index = i_lpm->rule_info[i - 1].first_rule + i_lpm->rule_info[i - 1].used_rules; break; } } if (rule_index == i_lpm->max_rules) return -ENOSPC; i_lpm->rule_info[depth - 1].first_rule = rule_index; } /* Make room for the new rule in the array. */ for (i = RTE_LPM_MAX_DEPTH; i > depth; i--) { if (i_lpm->rule_info[i - 1].first_rule + i_lpm->rule_info[i - 1].used_rules == i_lpm->max_rules) return -ENOSPC; if (i_lpm->rule_info[i - 1].used_rules > 0) { i_lpm->rules_tbl[i_lpm->rule_info[i - 1].first_rule + i_lpm->rule_info[i - 1].used_rules] = i_lpm->rules_tbl[i_lpm->rule_info[i - 1].first_rule]; i_lpm->rule_info[i - 1].first_rule++; } } /* Add the new rule. */ i_lpm->rules_tbl[rule_index].ip = ip_masked; i_lpm->rules_tbl[rule_index].next_hop = next_hop; /* Increment the used rules counter for this rule group. */ i_lpm->rule_info[depth - 1].used_rules++; return rule_index; } /* * Delete a rule from the rule table. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static void rule_delete(struct __rte_lpm *i_lpm, int32_t rule_index, uint8_t depth) { int i; VERIFY_DEPTH(depth); i_lpm->rules_tbl[rule_index] = i_lpm->rules_tbl[i_lpm->rule_info[depth - 1].first_rule + i_lpm->rule_info[depth - 1].used_rules - 1]; for (i = depth; i < RTE_LPM_MAX_DEPTH; i++) { if (i_lpm->rule_info[i].used_rules > 0) { i_lpm->rules_tbl[i_lpm->rule_info[i].first_rule - 1] = i_lpm->rules_tbl[i_lpm->rule_info[i].first_rule + i_lpm->rule_info[i].used_rules - 1]; i_lpm->rule_info[i].first_rule--; } } i_lpm->rule_info[depth - 1].used_rules--; } /* * Finds a rule in rule table. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static int32_t rule_find(struct __rte_lpm *i_lpm, uint32_t ip_masked, uint8_t depth) { uint32_t rule_gindex, last_rule, rule_index; VERIFY_DEPTH(depth); rule_gindex = i_lpm->rule_info[depth - 1].first_rule; last_rule = rule_gindex + i_lpm->rule_info[depth - 1].used_rules; /* Scan used rules at given depth to find rule. */ for (rule_index = rule_gindex; rule_index < last_rule; rule_index++) { /* If rule is found return the rule index. */ if (i_lpm->rules_tbl[rule_index].ip == ip_masked) return rule_index; } /* If rule is not found return -EINVAL. */ return -EINVAL; } /* * Find, clean and allocate a tbl8. */ static int32_t _tbl8_alloc(struct __rte_lpm *i_lpm) { uint32_t group_idx; /* tbl8 group index. */ struct rte_lpm_tbl_entry *tbl8_entry; /* Scan through tbl8 to find a free (i.e. INVALID) tbl8 group. */ for (group_idx = 0; group_idx < i_lpm->number_tbl8s; group_idx++) { tbl8_entry = &i_lpm->lpm.tbl8[group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES]; /* If a free tbl8 group is found clean it and set as VALID. */ if (!tbl8_entry->valid_group) { struct rte_lpm_tbl_entry new_tbl8_entry = { .next_hop = 0, .valid = INVALID, .depth = 0, .valid_group = VALID, }; memset(&tbl8_entry[0], 0, RTE_LPM_TBL8_GROUP_NUM_ENTRIES * sizeof(tbl8_entry[0])); __atomic_store(tbl8_entry, &new_tbl8_entry, __ATOMIC_RELAXED); /* Return group index for allocated tbl8 group. */ return group_idx; } } /* If there are no tbl8 groups free then return error. */ return -ENOSPC; } static int32_t tbl8_alloc(struct __rte_lpm *i_lpm) { int32_t group_idx; /* tbl8 group index. */ group_idx = _tbl8_alloc(i_lpm); if (group_idx == -ENOSPC && i_lpm->dq != NULL) { /* If there are no tbl8 groups try to reclaim one. */ if (rte_rcu_qsbr_dq_reclaim(i_lpm->dq, 1, NULL, NULL, NULL) == 0) group_idx = _tbl8_alloc(i_lpm); } return group_idx; } static int32_t tbl8_free(struct __rte_lpm *i_lpm, uint32_t tbl8_group_start) { struct rte_lpm_tbl_entry zero_tbl8_entry = {0}; int status; if (i_lpm->v == NULL) { /* Set tbl8 group invalid*/ __atomic_store(&i_lpm->lpm.tbl8[tbl8_group_start], &zero_tbl8_entry, __ATOMIC_RELAXED); } else if (i_lpm->rcu_mode == RTE_LPM_QSBR_MODE_SYNC) { /* Wait for quiescent state change. */ rte_rcu_qsbr_synchronize(i_lpm->v, RTE_QSBR_THRID_INVALID); /* Set tbl8 group invalid*/ __atomic_store(&i_lpm->lpm.tbl8[tbl8_group_start], &zero_tbl8_entry, __ATOMIC_RELAXED); } else if (i_lpm->rcu_mode == RTE_LPM_QSBR_MODE_DQ) { /* Push into QSBR defer queue. */ status = rte_rcu_qsbr_dq_enqueue(i_lpm->dq, (void *)&tbl8_group_start); if (status == 1) { RTE_LOG(ERR, LPM, "Failed to push QSBR FIFO\n"); return -rte_errno; } } return 0; } static __rte_noinline int32_t add_depth_small(struct __rte_lpm *i_lpm, uint32_t ip, uint8_t depth, uint32_t next_hop) { #define group_idx next_hop uint32_t tbl24_index, tbl24_range, tbl8_index, tbl8_group_end, i, j; /* Calculate the index into Table24. */ tbl24_index = ip >> 8; tbl24_range = depth_to_range(depth); for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { /* * For invalid OR valid and non-extended tbl 24 entries set * entry. */ if (!i_lpm->lpm.tbl24[i].valid || (i_lpm->lpm.tbl24[i].valid_group == 0 && i_lpm->lpm.tbl24[i].depth <= depth)) { struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = next_hop, .valid = VALID, .valid_group = 0, .depth = depth, }; /* Setting tbl24 entry in one go to avoid race * conditions */ __atomic_store(&i_lpm->lpm.tbl24[i], &new_tbl24_entry, __ATOMIC_RELEASE); continue; } if (i_lpm->lpm.tbl24[i].valid_group == 1) { /* If tbl24 entry is valid and extended calculate the * index into tbl8. */ tbl8_index = i_lpm->lpm.tbl24[i].group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < tbl8_group_end; j++) { if (!i_lpm->lpm.tbl8[j].valid || i_lpm->lpm.tbl8[j].depth <= depth) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = depth, .next_hop = next_hop, }; /* * Setting tbl8 entry in one go to avoid * race conditions */ __atomic_store(&i_lpm->lpm.tbl8[j], &new_tbl8_entry, __ATOMIC_RELAXED); continue; } } } } #undef group_idx return 0; } static __rte_noinline int32_t add_depth_big(struct __rte_lpm *i_lpm, uint32_t ip_masked, uint8_t depth, uint32_t next_hop) { #define group_idx next_hop uint32_t tbl24_index; int32_t tbl8_group_index, tbl8_group_start, tbl8_group_end, tbl8_index, tbl8_range, i; tbl24_index = (ip_masked >> 8); tbl8_range = depth_to_range(depth); if (!i_lpm->lpm.tbl24[tbl24_index].valid) { /* Search for a free tbl8 group. */ tbl8_group_index = tbl8_alloc(i_lpm); /* Check tbl8 allocation was successful. */ if (tbl8_group_index < 0) { return tbl8_group_index; } /* Find index into tbl8 and range. */ tbl8_index = (tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES) + (ip_masked & 0xFF); /* Set tbl8 entry. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = depth, .valid_group = i_lpm->lpm.tbl8[i].valid_group, .next_hop = next_hop, }; __atomic_store(&i_lpm->lpm.tbl8[i], &new_tbl8_entry, __ATOMIC_RELAXED); } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go */ struct rte_lpm_tbl_entry new_tbl24_entry = { .group_idx = tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; /* The tbl24 entry must be written only after the * tbl8 entries are written. */ __atomic_store(&i_lpm->lpm.tbl24[tbl24_index], &new_tbl24_entry, __ATOMIC_RELEASE); } /* If valid entry but not extended calculate the index into Table8. */ else if (i_lpm->lpm.tbl24[tbl24_index].valid_group == 0) { /* Search for free tbl8 group. */ tbl8_group_index = tbl8_alloc(i_lpm); if (tbl8_group_index < 0) { return tbl8_group_index; } tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* Populate new tbl8 with tbl24 value. */ for (i = tbl8_group_start; i < tbl8_group_end; i++) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = i_lpm->lpm.tbl24[tbl24_index].depth, .valid_group = i_lpm->lpm.tbl8[i].valid_group, .next_hop = i_lpm->lpm.tbl24[tbl24_index].next_hop, }; __atomic_store(&i_lpm->lpm.tbl8[i], &new_tbl8_entry, __ATOMIC_RELAXED); } tbl8_index = tbl8_group_start + (ip_masked & 0xFF); /* Insert new rule into the tbl8 entry. */ for (i = tbl8_index; i < tbl8_index + tbl8_range; i++) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = depth, .valid_group = i_lpm->lpm.tbl8[i].valid_group, .next_hop = next_hop, }; __atomic_store(&i_lpm->lpm.tbl8[i], &new_tbl8_entry, __ATOMIC_RELAXED); } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .group_idx = tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; /* The tbl24 entry must be written only after the * tbl8 entries are written. */ __atomic_store(&i_lpm->lpm.tbl24[tbl24_index], &new_tbl24_entry, __ATOMIC_RELEASE); } else { /* * If it is valid, extended entry calculate the index into tbl8. */ tbl8_group_index = i_lpm->lpm.tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (!i_lpm->lpm.tbl8[i].valid || i_lpm->lpm.tbl8[i].depth <= depth) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = depth, .next_hop = next_hop, .valid_group = i_lpm->lpm.tbl8[i].valid_group, }; /* * Setting tbl8 entry in one go to avoid race * condition */ __atomic_store(&i_lpm->lpm.tbl8[i], &new_tbl8_entry, __ATOMIC_RELAXED); continue; } } } #undef group_idx return 0; } /* * Add a route */ int rte_lpm_add(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop) { int32_t rule_index, status = 0; struct __rte_lpm *i_lpm; uint32_t ip_masked; /* Check user arguments. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; i_lpm = container_of(lpm, struct __rte_lpm, lpm); ip_masked = ip & depth_to_mask(depth); /* Add the rule to the rule table. */ rule_index = rule_add(i_lpm, ip_masked, depth, next_hop); /* Skip table entries update if The rule is the same as * the rule in the rules table. */ if (rule_index == -EEXIST) return 0; /* If the is no space available for new rule return error. */ if (rule_index < 0) { return rule_index; } if (depth <= MAX_DEPTH_TBL24) { status = add_depth_small(i_lpm, ip_masked, depth, next_hop); } else { /* If depth > RTE_LPM_MAX_DEPTH_TBL24 */ status = add_depth_big(i_lpm, ip_masked, depth, next_hop); /* * If add fails due to exhaustion of tbl8 extensions delete * rule that was added to rule table. */ if (status < 0) { rule_delete(i_lpm, rule_index, depth); return status; } } return 0; } /* * Look for a rule in the high-level rules table */ int rte_lpm_is_rule_present(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t *next_hop) { struct __rte_lpm *i_lpm; uint32_t ip_masked; int32_t rule_index; /* Check user arguments. */ if ((lpm == NULL) || (next_hop == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; /* Look for the rule using rule_find. */ i_lpm = container_of(lpm, struct __rte_lpm, lpm); ip_masked = ip & depth_to_mask(depth); rule_index = rule_find(i_lpm, ip_masked, depth); if (rule_index >= 0) { *next_hop = i_lpm->rules_tbl[rule_index].next_hop; return 1; } /* If rule is not found return 0. */ return 0; } static int32_t find_previous_rule(struct __rte_lpm *i_lpm, uint32_t ip, uint8_t depth, uint8_t *sub_rule_depth) { int32_t rule_index; uint32_t ip_masked; uint8_t prev_depth; for (prev_depth = (uint8_t)(depth - 1); prev_depth > 0; prev_depth--) { ip_masked = ip & depth_to_mask(prev_depth); rule_index = rule_find(i_lpm, ip_masked, prev_depth); if (rule_index >= 0) { *sub_rule_depth = prev_depth; return rule_index; } } return -1; } static int32_t delete_depth_small(struct __rte_lpm *i_lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { #define group_idx next_hop uint32_t tbl24_range, tbl24_index, tbl8_group_index, tbl8_index, i, j; /* Calculate the range and index into Table24. */ tbl24_range = depth_to_range(depth); tbl24_index = (ip_masked >> 8); struct rte_lpm_tbl_entry zero_tbl24_entry = {0}; /* * Firstly check the sub_rule_index. A -1 indicates no replacement rule * and a positive number indicates a sub_rule_index. */ if (sub_rule_index < 0) { /* * If no replacement rule exists then invalidate entries * associated with this rule. */ for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (i_lpm->lpm.tbl24[i].valid_group == 0 && i_lpm->lpm.tbl24[i].depth <= depth) { __atomic_store(&i_lpm->lpm.tbl24[i], &zero_tbl24_entry, __ATOMIC_RELEASE); } else if (i_lpm->lpm.tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = i_lpm->lpm.tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (i_lpm->lpm.tbl8[j].depth <= depth) i_lpm->lpm.tbl8[j].valid = INVALID; } } } } else { /* * If a replacement rule exists then modify entries * associated with this rule. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = i_lpm->rules_tbl[sub_rule_index].next_hop, .valid = VALID, .valid_group = 0, .depth = sub_rule_depth, }; struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = sub_rule_depth, .next_hop = i_lpm->rules_tbl [sub_rule_index].next_hop, }; for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (i_lpm->lpm.tbl24[i].valid_group == 0 && i_lpm->lpm.tbl24[i].depth <= depth) { __atomic_store(&i_lpm->lpm.tbl24[i], &new_tbl24_entry, __ATOMIC_RELEASE); } else if (i_lpm->lpm.tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = i_lpm->lpm.tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (i_lpm->lpm.tbl8[j].depth <= depth) __atomic_store(&i_lpm->lpm.tbl8[j], &new_tbl8_entry, __ATOMIC_RELAXED); } } } } #undef group_idx return 0; } /* * Checks if table 8 group can be recycled. * * Return of -EEXIST means tbl8 is in use and thus can not be recycled. * Return of -EINVAL means tbl8 is empty and thus can be recycled * Return of value > -1 means tbl8 is in use but has all the same values and * thus can be recycled */ static int32_t tbl8_recycle_check(struct rte_lpm_tbl_entry *tbl8, uint32_t tbl8_group_start) { uint32_t tbl8_group_end, i; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* * Check the first entry of the given tbl8. If it is invalid we know * this tbl8 does not contain any rule with a depth < RTE_LPM_MAX_DEPTH * (As they would affect all entries in a tbl8) and thus this table * can not be recycled. */ if (tbl8[tbl8_group_start].valid) { /* * If first entry is valid check if the depth is less than 24 * and if so check the rest of the entries to verify that they * are all of this depth. */ if (tbl8[tbl8_group_start].depth <= MAX_DEPTH_TBL24) { for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].depth != tbl8[tbl8_group_start].depth) { return -EEXIST; } } /* If all entries are the same return the tb8 index */ return tbl8_group_start; } return -EEXIST; } /* * If the first entry is invalid check if the rest of the entries in * the tbl8 are invalid. */ for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].valid) return -EEXIST; } /* If no valid entries are found then return -EINVAL. */ return -EINVAL; } static int32_t delete_depth_big(struct __rte_lpm *i_lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { #define group_idx next_hop uint32_t tbl24_index, tbl8_group_index, tbl8_group_start, tbl8_index, tbl8_range, i; int32_t tbl8_recycle_index, status = 0; /* * Calculate the index into tbl24 and range. Note: All depths larger * than MAX_DEPTH_TBL24 are associated with only one tbl24 entry. */ tbl24_index = ip_masked >> 8; /* Calculate the index into tbl8 and range. */ tbl8_group_index = i_lpm->lpm.tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); tbl8_range = depth_to_range(depth); if (sub_rule_index < 0) { /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be removed or modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (i_lpm->lpm.tbl8[i].depth <= depth) i_lpm->lpm.tbl8[i].valid = INVALID; } } else { /* Set new tbl8 entry. */ struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = sub_rule_depth, .valid_group = i_lpm->lpm.tbl8[tbl8_group_start].valid_group, .next_hop = i_lpm->rules_tbl[sub_rule_index].next_hop, }; /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (i_lpm->lpm.tbl8[i].depth <= depth) __atomic_store(&i_lpm->lpm.tbl8[i], &new_tbl8_entry, __ATOMIC_RELAXED); } } /* * Check if there are any valid entries in this tbl8 group. If all * tbl8 entries are invalid we can free the tbl8 and invalidate the * associated tbl24 entry. */ tbl8_recycle_index = tbl8_recycle_check(i_lpm->lpm.tbl8, tbl8_group_start); if (tbl8_recycle_index == -EINVAL) { /* Set tbl24 before freeing tbl8 to avoid race condition. * Prevent the free of the tbl8 group from hoisting. */ i_lpm->lpm.tbl24[tbl24_index].valid = 0; __atomic_thread_fence(__ATOMIC_RELEASE); status = tbl8_free(i_lpm, tbl8_group_start); } else if (tbl8_recycle_index > -1) { /* Update tbl24 entry. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = i_lpm->lpm.tbl8[tbl8_recycle_index].next_hop, .valid = VALID, .valid_group = 0, .depth = i_lpm->lpm.tbl8[tbl8_recycle_index].depth, }; /* Set tbl24 before freeing tbl8 to avoid race condition. * Prevent the free of the tbl8 group from hoisting. */ __atomic_store(&i_lpm->lpm.tbl24[tbl24_index], &new_tbl24_entry, __ATOMIC_RELAXED); __atomic_thread_fence(__ATOMIC_RELEASE); status = tbl8_free(i_lpm, tbl8_group_start); } #undef group_idx return status; } /* * Deletes a rule */ int rte_lpm_delete(struct rte_lpm *lpm, uint32_t ip, uint8_t depth) { int32_t rule_to_delete_index, sub_rule_index; struct __rte_lpm *i_lpm; uint32_t ip_masked; uint8_t sub_rule_depth; /* * Check input arguments. Note: IP must be a positive integer of 32 * bits in length therefore it need not be checked. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) { return -EINVAL; } i_lpm = container_of(lpm, struct __rte_lpm, lpm); ip_masked = ip & depth_to_mask(depth); /* * Find the index of the input rule, that needs to be deleted, in the * rule table. */ rule_to_delete_index = rule_find(i_lpm, ip_masked, depth); /* * Check if rule_to_delete_index was found. If no rule was found the * function rule_find returns -EINVAL. */ if (rule_to_delete_index < 0) return -EINVAL; /* Delete the rule from the rule table. */ rule_delete(i_lpm, rule_to_delete_index, depth); /* * Find rule to replace the rule_to_delete. If there is no rule to * replace the rule_to_delete we return -1 and invalidate the table * entries associated with this rule. */ sub_rule_depth = 0; sub_rule_index = find_previous_rule(i_lpm, ip, depth, &sub_rule_depth); /* * If the input depth value is less than 25 use function * delete_depth_small otherwise use delete_depth_big. */ if (depth <= MAX_DEPTH_TBL24) { return delete_depth_small(i_lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } else { /* If depth > MAX_DEPTH_TBL24 */ return delete_depth_big(i_lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } } /* * Delete all rules from the LPM table. */ void rte_lpm_delete_all(struct rte_lpm *lpm) { struct __rte_lpm *i_lpm; i_lpm = container_of(lpm, struct __rte_lpm, lpm); /* Zero rule information. */ memset(i_lpm->rule_info, 0, sizeof(i_lpm->rule_info)); /* Zero tbl24. */ memset(i_lpm->lpm.tbl24, 0, sizeof(i_lpm->lpm.tbl24)); /* Zero tbl8. */ memset(i_lpm->lpm.tbl8, 0, sizeof(i_lpm->lpm.tbl8[0]) * RTE_LPM_TBL8_GROUP_NUM_ENTRIES * i_lpm->number_tbl8s); /* Delete all rules form the rules table. */ memset(i_lpm->rules_tbl, 0, sizeof(i_lpm->rules_tbl[0]) * i_lpm->max_rules); }