/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #ifndef _RTE_ATOMIC_X86_H_ #define _RTE_ATOMIC_X86_H_ #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include "generic/rte_atomic.h" #if RTE_MAX_LCORE == 1 #define MPLOCKED /**< No need to insert MP lock prefix. */ #else #define MPLOCKED "lock ; " /**< Insert MP lock prefix. */ #endif #define rte_mb() _mm_mfence() #define rte_wmb() _mm_sfence() #define rte_rmb() _mm_lfence() #define rte_smp_wmb() rte_compiler_barrier() #define rte_smp_rmb() rte_compiler_barrier() /* * From Intel Software Development Manual; Vol 3; * 8.2.2 Memory Ordering in P6 and More Recent Processor Families: * ... * . Reads are not reordered with other reads. * . Writes are not reordered with older reads. * . Writes to memory are not reordered with other writes, * with the following exceptions: * . streaming stores (writes) executed with the non-temporal move * instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and * . string operations (see Section 8.2.4.1). * ... * . Reads may be reordered with older writes to different locations but not * with older writes to the same location. * . Reads or writes cannot be reordered with I/O instructions, * locked instructions, or serializing instructions. * . Reads cannot pass earlier LFENCE and MFENCE instructions. * . Writes ... cannot pass earlier LFENCE, SFENCE, and MFENCE instructions. * . LFENCE instructions cannot pass earlier reads. * . SFENCE instructions cannot pass earlier writes ... * . MFENCE instructions cannot pass earlier reads, writes ... * * As pointed by Java guys, that makes possible to use lock-prefixed * instructions to get the same effect as mfence and on most modern HW * that gives a better performance then using mfence: * https://shipilev.net/blog/2014/on-the-fence-with-dependencies/ * Basic idea is to use lock prefixed add with some dummy memory location * as the destination. From their experiments 128B(2 cache lines) below * current stack pointer looks like a good candidate. * So below we use that techinque for rte_smp_mb() implementation. */ static __rte_always_inline void rte_smp_mb(void) { #ifdef RTE_ARCH_I686 asm volatile("lock addl $0, -128(%%esp); " ::: "memory"); #else asm volatile("lock addl $0, -128(%%rsp); " ::: "memory"); #endif } #define rte_io_mb() rte_mb() #define rte_io_wmb() rte_compiler_barrier() #define rte_io_rmb() rte_compiler_barrier() /** * Synchronization fence between threads based on the specified memory order. * * On x86 the __atomic_thread_fence(__ATOMIC_SEQ_CST) generates full 'mfence' * which is quite expensive. The optimized implementation of rte_smp_mb is * used instead. */ static __rte_always_inline void rte_atomic_thread_fence(int memorder) { if (memorder == __ATOMIC_SEQ_CST) rte_smp_mb(); else __atomic_thread_fence(memorder); } /*------------------------- 16 bit atomic operations -------------------------*/ #ifndef RTE_FORCE_INTRINSICS static inline int rte_atomic16_cmpset(volatile uint16_t *dst, uint16_t exp, uint16_t src) { uint8_t res; asm volatile( MPLOCKED "cmpxchgw %[src], %[dst];" "sete %[res];" : [res] "=a" (res), /* output */ [dst] "=m" (*dst) : [src] "r" (src), /* input */ "a" (exp), "m" (*dst) : "memory"); /* no-clobber list */ return res; } static inline uint16_t rte_atomic16_exchange(volatile uint16_t *dst, uint16_t val) { asm volatile( MPLOCKED "xchgw %0, %1;" : "=r" (val), "=m" (*dst) : "0" (val), "m" (*dst) : "memory"); /* no-clobber list */ return val; } static inline int rte_atomic16_test_and_set(rte_atomic16_t *v) { return rte_atomic16_cmpset((volatile uint16_t *)&v->cnt, 0, 1); } static inline void rte_atomic16_inc(rte_atomic16_t *v) { asm volatile( MPLOCKED "incw %[cnt]" : [cnt] "=m" (v->cnt) /* output */ : "m" (v->cnt) /* input */ ); } static inline void rte_atomic16_dec(rte_atomic16_t *v) { asm volatile( MPLOCKED "decw %[cnt]" : [cnt] "=m" (v->cnt) /* output */ : "m" (v->cnt) /* input */ ); } static inline int rte_atomic16_inc_and_test(rte_atomic16_t *v) { uint8_t ret; asm volatile( MPLOCKED "incw %[cnt] ; " "sete %[ret]" : [cnt] "+m" (v->cnt), /* output */ [ret] "=qm" (ret) ); return ret != 0; } static inline int rte_atomic16_dec_and_test(rte_atomic16_t *v) { uint8_t ret; asm volatile(MPLOCKED "decw %[cnt] ; " "sete %[ret]" : [cnt] "+m" (v->cnt), /* output */ [ret] "=qm" (ret) ); return ret != 0; } /*------------------------- 32 bit atomic operations -------------------------*/ static inline int rte_atomic32_cmpset(volatile uint32_t *dst, uint32_t exp, uint32_t src) { uint8_t res; asm volatile( MPLOCKED "cmpxchgl %[src], %[dst];" "sete %[res];" : [res] "=a" (res), /* output */ [dst] "=m" (*dst) : [src] "r" (src), /* input */ "a" (exp), "m" (*dst) : "memory"); /* no-clobber list */ return res; } static inline uint32_t rte_atomic32_exchange(volatile uint32_t *dst, uint32_t val) { asm volatile( MPLOCKED "xchgl %0, %1;" : "=r" (val), "=m" (*dst) : "0" (val), "m" (*dst) : "memory"); /* no-clobber list */ return val; } static inline int rte_atomic32_test_and_set(rte_atomic32_t *v) { return rte_atomic32_cmpset((volatile uint32_t *)&v->cnt, 0, 1); } static inline void rte_atomic32_inc(rte_atomic32_t *v) { asm volatile( MPLOCKED "incl %[cnt]" : [cnt] "=m" (v->cnt) /* output */ : "m" (v->cnt) /* input */ ); } static inline void rte_atomic32_dec(rte_atomic32_t *v) { asm volatile( MPLOCKED "decl %[cnt]" : [cnt] "=m" (v->cnt) /* output */ : "m" (v->cnt) /* input */ ); } static inline int rte_atomic32_inc_and_test(rte_atomic32_t *v) { uint8_t ret; asm volatile( MPLOCKED "incl %[cnt] ; " "sete %[ret]" : [cnt] "+m" (v->cnt), /* output */ [ret] "=qm" (ret) ); return ret != 0; } static inline int rte_atomic32_dec_and_test(rte_atomic32_t *v) { uint8_t ret; asm volatile(MPLOCKED "decl %[cnt] ; " "sete %[ret]" : [cnt] "+m" (v->cnt), /* output */ [ret] "=qm" (ret) ); return ret != 0; } #endif #ifdef RTE_ARCH_I686 #include "rte_atomic_32.h" #else #include "rte_atomic_64.h" #endif #ifdef __cplusplus } #endif #endif /* _RTE_ATOMIC_X86_H_ */