/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015 RehiveTech. All rights reserved. */ #ifndef _RTE_MEMCPY_ARM32_H_ #define _RTE_MEMCPY_ARM32_H_ #include #include #ifdef __cplusplus extern "C" { #endif #include "generic/rte_memcpy.h" #ifdef RTE_ARCH_ARM_NEON_MEMCPY #ifndef __ARM_NEON #error "Cannot optimize memcpy by NEON as the CPU seems to not support this" #endif /* ARM NEON Intrinsics are used to copy data */ #include static inline void rte_mov16(uint8_t *dst, const uint8_t *src) { vst1q_u8(dst, vld1q_u8(src)); } static inline void rte_mov32(uint8_t *dst, const uint8_t *src) { asm volatile ( "vld1.8 {d0-d3}, [%0]\n\t" "vst1.8 {d0-d3}, [%1]\n\t" : "+r" (src), "+r" (dst) : : "memory", "d0", "d1", "d2", "d3"); } static inline void rte_mov48(uint8_t *dst, const uint8_t *src) { asm volatile ( "vld1.8 {d0-d3}, [%0]!\n\t" "vld1.8 {d4-d5}, [%0]\n\t" "vst1.8 {d0-d3}, [%1]!\n\t" "vst1.8 {d4-d5}, [%1]\n\t" : "+r" (src), "+r" (dst) : : "memory", "d0", "d1", "d2", "d3", "d4", "d5"); } static inline void rte_mov64(uint8_t *dst, const uint8_t *src) { asm volatile ( "vld1.8 {d0-d3}, [%0]!\n\t" "vld1.8 {d4-d7}, [%0]\n\t" "vst1.8 {d0-d3}, [%1]!\n\t" "vst1.8 {d4-d7}, [%1]\n\t" : "+r" (src), "+r" (dst) : : "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7"); } static inline void rte_mov128(uint8_t *dst, const uint8_t *src) { asm volatile ("pld [%0, #64]" : : "r" (src)); asm volatile ( "vld1.8 {d0-d3}, [%0]!\n\t" "vld1.8 {d4-d7}, [%0]!\n\t" "vld1.8 {d8-d11}, [%0]!\n\t" "vld1.8 {d12-d15}, [%0]\n\t" "vst1.8 {d0-d3}, [%1]!\n\t" "vst1.8 {d4-d7}, [%1]!\n\t" "vst1.8 {d8-d11}, [%1]!\n\t" "vst1.8 {d12-d15}, [%1]\n\t" : "+r" (src), "+r" (dst) : : "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15"); } static inline void rte_mov256(uint8_t *dst, const uint8_t *src) { asm volatile ("pld [%0, #64]" : : "r" (src)); asm volatile ("pld [%0, #128]" : : "r" (src)); asm volatile ("pld [%0, #192]" : : "r" (src)); asm volatile ("pld [%0, #256]" : : "r" (src)); asm volatile ("pld [%0, #320]" : : "r" (src)); asm volatile ("pld [%0, #384]" : : "r" (src)); asm volatile ("pld [%0, #448]" : : "r" (src)); asm volatile ( "vld1.8 {d0-d3}, [%0]!\n\t" "vld1.8 {d4-d7}, [%0]!\n\t" "vld1.8 {d8-d11}, [%0]!\n\t" "vld1.8 {d12-d15}, [%0]!\n\t" "vld1.8 {d16-d19}, [%0]!\n\t" "vld1.8 {d20-d23}, [%0]!\n\t" "vld1.8 {d24-d27}, [%0]!\n\t" "vld1.8 {d28-d31}, [%0]\n\t" "vst1.8 {d0-d3}, [%1]!\n\t" "vst1.8 {d4-d7}, [%1]!\n\t" "vst1.8 {d8-d11}, [%1]!\n\t" "vst1.8 {d12-d15}, [%1]!\n\t" "vst1.8 {d16-d19}, [%1]!\n\t" "vst1.8 {d20-d23}, [%1]!\n\t" "vst1.8 {d24-d27}, [%1]!\n\t" "vst1.8 {d28-d31}, [%1]!\n\t" : "+r" (src), "+r" (dst) : : "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"); } #define rte_memcpy(dst, src, n) \ __extension__ ({ \ (__builtin_constant_p(n)) ? \ memcpy((dst), (src), (n)) : \ rte_memcpy_func((dst), (src), (n)); }) static inline void * rte_memcpy_func(void *dst, const void *src, size_t n) { void *ret = dst; /* We can't copy < 16 bytes using XMM registers so do it manually. */ if (n < 16) { if (n & 0x01) { *(uint8_t *)dst = *(const uint8_t *)src; dst = (uint8_t *)dst + 1; src = (const uint8_t *)src + 1; } if (n & 0x02) { *(uint16_t *)dst = *(const uint16_t *)src; dst = (uint16_t *)dst + 1; src = (const uint16_t *)src + 1; } if (n & 0x04) { *(uint32_t *)dst = *(const uint32_t *)src; dst = (uint32_t *)dst + 1; src = (const uint32_t *)src + 1; } if (n & 0x08) { /* ARMv7 can not handle unaligned access to long long * (uint64_t). Therefore two uint32_t operations are * used. */ *(uint32_t *)dst = *(const uint32_t *)src; dst = (uint32_t *)dst + 1; src = (const uint32_t *)src + 1; *(uint32_t *)dst = *(const uint32_t *)src; } return ret; } /* Special fast cases for <= 128 bytes */ if (n <= 32) { rte_mov16((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n <= 64) { rte_mov32((uint8_t *)dst, (const uint8_t *)src); rte_mov32((uint8_t *)dst - 32 + n, (const uint8_t *)src - 32 + n); return ret; } if (n <= 128) { rte_mov64((uint8_t *)dst, (const uint8_t *)src); rte_mov64((uint8_t *)dst - 64 + n, (const uint8_t *)src - 64 + n); return ret; } /* * For large copies > 128 bytes. This combination of 256, 64 and 16 byte * copies was found to be faster than doing 128 and 32 byte copies as * well. */ for ( ; n >= 256; n -= 256) { rte_mov256((uint8_t *)dst, (const uint8_t *)src); dst = (uint8_t *)dst + 256; src = (const uint8_t *)src + 256; } /* * We split the remaining bytes (which will be less than 256) into * 64byte (2^6) chunks. * Using incrementing integers in the case labels of a switch statement * encourages the compiler to use a jump table. To get incrementing * integers, we shift the 2 relevant bits to the LSB position to first * get decrementing integers, and then subtract. */ switch (3 - (n >> 6)) { case 0x00: rte_mov64((uint8_t *)dst, (const uint8_t *)src); n -= 64; dst = (uint8_t *)dst + 64; src = (const uint8_t *)src + 64; /* fallthrough */ case 0x01: rte_mov64((uint8_t *)dst, (const uint8_t *)src); n -= 64; dst = (uint8_t *)dst + 64; src = (const uint8_t *)src + 64; /* fallthrough */ case 0x02: rte_mov64((uint8_t *)dst, (const uint8_t *)src); n -= 64; dst = (uint8_t *)dst + 64; src = (const uint8_t *)src + 64; /* fallthrough */ default: break; } /* * We split the remaining bytes (which will be less than 64) into * 16byte (2^4) chunks, using the same switch structure as above. */ switch (3 - (n >> 4)) { case 0x00: rte_mov16((uint8_t *)dst, (const uint8_t *)src); n -= 16; dst = (uint8_t *)dst + 16; src = (const uint8_t *)src + 16; /* fallthrough */ case 0x01: rte_mov16((uint8_t *)dst, (const uint8_t *)src); n -= 16; dst = (uint8_t *)dst + 16; src = (const uint8_t *)src + 16; /* fallthrough */ case 0x02: rte_mov16((uint8_t *)dst, (const uint8_t *)src); n -= 16; dst = (uint8_t *)dst + 16; src = (const uint8_t *)src + 16; /* fallthrough */ default: break; } /* Copy any remaining bytes, without going beyond end of buffers */ if (n != 0) rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } #else static inline void rte_mov16(uint8_t *dst, const uint8_t *src) { memcpy(dst, src, 16); } static inline void rte_mov32(uint8_t *dst, const uint8_t *src) { memcpy(dst, src, 32); } static inline void rte_mov48(uint8_t *dst, const uint8_t *src) { memcpy(dst, src, 48); } static inline void rte_mov64(uint8_t *dst, const uint8_t *src) { memcpy(dst, src, 64); } static inline void rte_mov128(uint8_t *dst, const uint8_t *src) { memcpy(dst, src, 128); } static inline void rte_mov256(uint8_t *dst, const uint8_t *src) { memcpy(dst, src, 256); } static inline void * rte_memcpy(void *dst, const void *src, size_t n) { return memcpy(dst, src, n); } #endif /* RTE_ARCH_ARM_NEON_MEMCPY */ #ifdef __cplusplus } #endif #endif /* _RTE_MEMCPY_ARM32_H_ */