/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iavf.h" #include "iavf_rxtx.h" #include "iavf_generic_flow.h" #include "rte_pmd_iavf.h" /* devargs */ #define IAVF_PROTO_XTR_ARG "proto_xtr" static const char * const iavf_valid_args[] = { IAVF_PROTO_XTR_ARG, NULL }; static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = { .name = "intel_pmd_dynfield_proto_xtr_metadata", .size = sizeof(uint32_t), .align = __alignof__(uint32_t), .flags = 0, }; struct iavf_proto_xtr_ol { const struct rte_mbuf_dynflag param; uint64_t *ol_flag; bool required; }; static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = { [IAVF_PROTO_XTR_VLAN] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" }, .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask }, [IAVF_PROTO_XTR_IPV4] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" }, .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask }, [IAVF_PROTO_XTR_IPV6] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" }, .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask }, [IAVF_PROTO_XTR_IPV6_FLOW] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" }, .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask }, [IAVF_PROTO_XTR_TCP] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" }, .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask }, [IAVF_PROTO_XTR_IP_OFFSET] = { .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" }, .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask }, }; static int iavf_dev_configure(struct rte_eth_dev *dev); static int iavf_dev_start(struct rte_eth_dev *dev); static int iavf_dev_stop(struct rte_eth_dev *dev); static int iavf_dev_close(struct rte_eth_dev *dev); static int iavf_dev_reset(struct rte_eth_dev *dev); static int iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev); static int iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static int iavf_dev_stats_reset(struct rte_eth_dev *dev); static int iavf_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n); static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int limit); static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev); static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev); static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev); static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev); static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr, uint32_t index, uint32_t pool); static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index); static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask); static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr); static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); static int iavf_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg); static int iavf_set_mc_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr *mc_addrs, uint32_t mc_addrs_num); static const struct rte_pci_id pci_id_iavf_map[] = { { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) }, { .vendor_id = 0, /* sentinel */ }, }; struct rte_iavf_xstats_name_off { char name[RTE_ETH_XSTATS_NAME_SIZE]; unsigned int offset; }; static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = { {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)}, {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)}, {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)}, {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)}, {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)}, {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats, rx_unknown_protocol)}, {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)}, {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)}, {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)}, {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)}, {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)}, {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)}, }; #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \ sizeof(rte_iavf_stats_strings[0])) static const struct eth_dev_ops iavf_eth_dev_ops = { .dev_configure = iavf_dev_configure, .dev_start = iavf_dev_start, .dev_stop = iavf_dev_stop, .dev_close = iavf_dev_close, .dev_reset = iavf_dev_reset, .dev_infos_get = iavf_dev_info_get, .dev_supported_ptypes_get = iavf_dev_supported_ptypes_get, .link_update = iavf_dev_link_update, .stats_get = iavf_dev_stats_get, .stats_reset = iavf_dev_stats_reset, .xstats_get = iavf_dev_xstats_get, .xstats_get_names = iavf_dev_xstats_get_names, .xstats_reset = iavf_dev_stats_reset, .promiscuous_enable = iavf_dev_promiscuous_enable, .promiscuous_disable = iavf_dev_promiscuous_disable, .allmulticast_enable = iavf_dev_allmulticast_enable, .allmulticast_disable = iavf_dev_allmulticast_disable, .mac_addr_add = iavf_dev_add_mac_addr, .mac_addr_remove = iavf_dev_del_mac_addr, .set_mc_addr_list = iavf_set_mc_addr_list, .vlan_filter_set = iavf_dev_vlan_filter_set, .vlan_offload_set = iavf_dev_vlan_offload_set, .rx_queue_start = iavf_dev_rx_queue_start, .rx_queue_stop = iavf_dev_rx_queue_stop, .tx_queue_start = iavf_dev_tx_queue_start, .tx_queue_stop = iavf_dev_tx_queue_stop, .rx_queue_setup = iavf_dev_rx_queue_setup, .rx_queue_release = iavf_dev_rx_queue_release, .tx_queue_setup = iavf_dev_tx_queue_setup, .tx_queue_release = iavf_dev_tx_queue_release, .mac_addr_set = iavf_dev_set_default_mac_addr, .reta_update = iavf_dev_rss_reta_update, .reta_query = iavf_dev_rss_reta_query, .rss_hash_update = iavf_dev_rss_hash_update, .rss_hash_conf_get = iavf_dev_rss_hash_conf_get, .rxq_info_get = iavf_dev_rxq_info_get, .txq_info_get = iavf_dev_txq_info_get, .mtu_set = iavf_dev_mtu_set, .rx_queue_intr_enable = iavf_dev_rx_queue_intr_enable, .rx_queue_intr_disable = iavf_dev_rx_queue_intr_disable, .filter_ctrl = iavf_dev_filter_ctrl, .tx_done_cleanup = iavf_dev_tx_done_cleanup, }; static int iavf_set_mc_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr *mc_addrs, uint32_t mc_addrs_num) { struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); int err, ret; if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) { PMD_DRV_LOG(ERR, "can't add more than a limited number (%u) of addresses.", (uint32_t)IAVF_NUM_MACADDR_MAX); return -EINVAL; } /* flush previous addresses */ err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num, false); if (err) return err; /* add new ones */ err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true); if (err) { /* if adding mac address list fails, should add the previous * addresses back. */ ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num, true); if (ret) return ret; } else { vf->mc_addrs_num = mc_addrs_num; memcpy(vf->mc_addrs, mc_addrs, mc_addrs_num * sizeof(*mc_addrs)); } return err; } static int iavf_init_rss(struct iavf_adapter *adapter) { struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); struct rte_eth_rss_conf *rss_conf; uint16_t i, j, nb_q; int ret; rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf; nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues, vf->max_rss_qregion); if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) { PMD_DRV_LOG(DEBUG, "RSS is not supported"); return -ENOTSUP; } if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) { PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default"); /* set all lut items to default queue */ for (i = 0; i < vf->vf_res->rss_lut_size; i++) vf->rss_lut[i] = 0; ret = iavf_configure_rss_lut(adapter); return ret; } /* In IAVF, RSS enablement is set by PF driver. It is not supported * to set based on rss_conf->rss_hf. */ /* configure RSS key */ if (!rss_conf->rss_key) { /* Calculate the default hash key */ for (i = 0; i <= vf->vf_res->rss_key_size; i++) vf->rss_key[i] = (uint8_t)rte_rand(); } else rte_memcpy(vf->rss_key, rss_conf->rss_key, RTE_MIN(rss_conf->rss_key_len, vf->vf_res->rss_key_size)); /* init RSS LUT table */ for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) { if (j >= nb_q) j = 0; vf->rss_lut[i] = j; } /* send virtchnnl ops to configure rss*/ ret = iavf_configure_rss_lut(adapter); if (ret) return ret; ret = iavf_configure_rss_key(adapter); if (ret) return ret; return 0; } static int iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num) { struct iavf_adapter *ad = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad); int ret; ret = iavf_request_queues(ad, num); if (ret) { PMD_DRV_LOG(ERR, "request queues from PF failed"); return ret; } PMD_DRV_LOG(INFO, "change queue pairs from %u to %u", vf->vsi_res->num_queue_pairs, num); ret = iavf_dev_reset(dev); if (ret) { PMD_DRV_LOG(ERR, "vf reset failed"); return ret; } return 0; } static int iavf_dev_configure(struct rte_eth_dev *dev) { struct iavf_adapter *ad = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad); struct rte_eth_conf *dev_conf = &dev->data->dev_conf; uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues, dev->data->nb_tx_queues); int ret; ad->rx_bulk_alloc_allowed = true; /* Initialize to TRUE. If any of Rx queues doesn't meet the * vector Rx/Tx preconditions, it will be reset. */ ad->rx_vec_allowed = true; ad->tx_vec_allowed = true; if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH; /* Large VF setting */ if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) { if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_LARGE_NUM_QPAIRS)) { PMD_DRV_LOG(ERR, "large VF is not supported"); return -1; } if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) { PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u", IAVF_MAX_NUM_QUEUES_LV); return -1; } ret = iavf_queues_req_reset(dev, num_queue_pairs); if (ret) return ret; ret = iavf_get_max_rss_queue_region(ad); if (ret) { PMD_INIT_LOG(ERR, "get max rss queue region failed"); return ret; } vf->lv_enabled = true; } else { /* Check if large VF is already enabled. If so, disable and * release redundant queue resource. */ if (vf->lv_enabled) { ret = iavf_queues_req_reset(dev, num_queue_pairs); if (ret) return ret; vf->lv_enabled = false; } /* if large VF is not required, use default rss queue region */ vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT; } /* Vlan stripping setting */ if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) { if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP) iavf_enable_vlan_strip(ad); else iavf_disable_vlan_strip(ad); } if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { if (iavf_init_rss(ad) != 0) { PMD_DRV_LOG(ERR, "configure rss failed"); return -1; } } return 0; } static int iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq) { struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_dev_data *dev_data = dev->data; uint16_t buf_size, max_pkt_len, len; buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM; /* Calculate the maximum packet length allowed */ len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS; max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len); /* Check if the jumbo frame and maximum packet length are set * correctly. */ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { if (max_pkt_len <= RTE_ETHER_MAX_LEN || max_pkt_len > IAVF_FRAME_SIZE_MAX) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, " "as jumbo frame is enabled", (uint32_t)RTE_ETHER_MAX_LEN, (uint32_t)IAVF_FRAME_SIZE_MAX); return -EINVAL; } } else { if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > RTE_ETHER_MAX_LEN) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, " "as jumbo frame is disabled", (uint32_t)RTE_ETHER_MIN_LEN, (uint32_t)RTE_ETHER_MAX_LEN); return -EINVAL; } } rxq->max_pkt_len = max_pkt_len; if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) || rxq->max_pkt_len > buf_size) { dev_data->scattered_rx = 1; } IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); IAVF_WRITE_FLUSH(hw); return 0; } static int iavf_init_queues(struct rte_eth_dev *dev) { struct iavf_rx_queue **rxq = (struct iavf_rx_queue **)dev->data->rx_queues; int i, ret = IAVF_SUCCESS; for (i = 0; i < dev->data->nb_rx_queues; i++) { if (!rxq[i] || !rxq[i]->q_set) continue; ret = iavf_init_rxq(dev, rxq[i]); if (ret != IAVF_SUCCESS) break; } /* set rx/tx function to vector/scatter/single-segment * according to parameters */ iavf_set_rx_function(dev); iavf_set_tx_function(dev); return ret; } static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter); struct iavf_qv_map *qv_map; uint16_t interval, i; int vec; if (rte_intr_cap_multiple(intr_handle) && dev->data->dev_conf.intr_conf.rxq) { if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues)) return -1; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (!intr_handle->intr_vec) { PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec", dev->data->nb_rx_queues); return -1; } } qv_map = rte_zmalloc("qv_map", dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0); if (!qv_map) { PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map", dev->data->nb_rx_queues); return -1; } if (!dev->data->dev_conf.intr_conf.rxq || !rte_intr_dp_is_en(intr_handle)) { /* Rx interrupt disabled, Map interrupt only for writeback */ vf->nb_msix = 1; if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) { /* If WB_ON_ITR supports, enable it */ vf->msix_base = IAVF_RX_VEC_START; /* Set the ITR for index zero, to 2us to make sure that * we leave time for aggregation to occur, but don't * increase latency dramatically. */ IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1), (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT)); /* debug - check for success! the return value * should be 2, offset is 0x2800 */ /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */ } else { /* If no WB_ON_ITR offload flags, need to set * interrupt for descriptor write back. */ vf->msix_base = IAVF_MISC_VEC_ID; /* set ITR to max */ interval = iavf_calc_itr_interval( IAVF_QUEUE_ITR_INTERVAL_MAX); IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | (IAVF_ITR_INDEX_DEFAULT << IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) | (interval << IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT)); } IAVF_WRITE_FLUSH(hw); /* map all queues to the same interrupt */ for (i = 0; i < dev->data->nb_rx_queues; i++) { qv_map[i].queue_id = i; qv_map[i].vector_id = vf->msix_base; } vf->qv_map = qv_map; } else { if (!rte_intr_allow_others(intr_handle)) { vf->nb_msix = 1; vf->msix_base = IAVF_MISC_VEC_ID; for (i = 0; i < dev->data->nb_rx_queues; i++) { qv_map[i].queue_id = i; qv_map[i].vector_id = vf->msix_base; intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID; } vf->qv_map = qv_map; PMD_DRV_LOG(DEBUG, "vector %u are mapping to all Rx queues", vf->msix_base); } else { /* If Rx interrupt is reuquired, and we can use * multi interrupts, then the vec is from 1 */ vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors, intr_handle->nb_efd); vf->msix_base = IAVF_RX_VEC_START; vec = IAVF_RX_VEC_START; for (i = 0; i < dev->data->nb_rx_queues; i++) { qv_map[i].queue_id = i; qv_map[i].vector_id = vec; intr_handle->intr_vec[i] = vec++; if (vec >= vf->nb_msix) vec = IAVF_RX_VEC_START; } vf->qv_map = qv_map; PMD_DRV_LOG(DEBUG, "%u vectors are mapping to %u Rx queues", vf->nb_msix, dev->data->nb_rx_queues); } } if (!vf->lv_enabled) { if (iavf_config_irq_map(adapter)) { PMD_DRV_LOG(ERR, "config interrupt mapping failed"); return -1; } } else { uint16_t num_qv_maps = dev->data->nb_rx_queues; uint16_t index = 0; while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) { if (iavf_config_irq_map_lv(adapter, IAVF_IRQ_MAP_NUM_PER_BUF, index)) { PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed"); return -1; } num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF; index += IAVF_IRQ_MAP_NUM_PER_BUF; } if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) { PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed"); return -1; } } return 0; } static int iavf_start_queues(struct rte_eth_dev *dev) { struct iavf_rx_queue *rxq; struct iavf_tx_queue *txq; int i; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq->tx_deferred_start) continue; if (iavf_dev_tx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", i); return -1; } } for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (rxq->rx_deferred_start) continue; if (iavf_dev_rx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", i); return -1; } } return 0; } static int iavf_dev_start(struct rte_eth_dev *dev) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct rte_intr_handle *intr_handle = dev->intr_handle; uint16_t num_queue_pairs; uint16_t index = 0; PMD_INIT_FUNC_TRACE(); adapter->stopped = 0; vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len; vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues, dev->data->nb_tx_queues); num_queue_pairs = vf->num_queue_pairs; if (iavf_init_queues(dev) != 0) { PMD_DRV_LOG(ERR, "failed to do Queue init"); return -1; } /* If needed, send configure queues msg multiple times to make the * adminq buffer length smaller than the 4K limitation. */ while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) { if (iavf_configure_queues(adapter, IAVF_CFG_Q_NUM_PER_BUF, index) != 0) { PMD_DRV_LOG(ERR, "configure queues failed"); goto err_queue; } num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF; index += IAVF_CFG_Q_NUM_PER_BUF; } if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) { PMD_DRV_LOG(ERR, "configure queues failed"); goto err_queue; } if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) { PMD_DRV_LOG(ERR, "configure irq failed"); goto err_queue; } /* re-enable intr again, because efd assign may change */ if (dev->data->dev_conf.intr_conf.rxq != 0) { rte_intr_disable(intr_handle); rte_intr_enable(intr_handle); } /* Set all mac addrs */ iavf_add_del_all_mac_addr(adapter, true); /* Set all multicast addresses */ iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num, true); if (iavf_start_queues(dev) != 0) { PMD_DRV_LOG(ERR, "enable queues failed"); goto err_mac; } return 0; err_mac: iavf_add_del_all_mac_addr(adapter, false); err_queue: return -1; } static int iavf_dev_stop(struct rte_eth_dev *dev) { struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct rte_intr_handle *intr_handle = dev->intr_handle; PMD_INIT_FUNC_TRACE(); if (adapter->stopped == 1) return 0; iavf_stop_queues(dev); /* Disable the interrupt for Rx */ rte_intr_efd_disable(intr_handle); /* Rx interrupt vector mapping free */ if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } /* remove all mac addrs */ iavf_add_del_all_mac_addr(adapter, false); /* remove all multicast addresses */ iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num, false); adapter->stopped = 1; dev->data->dev_started = 0; return 0; } static int iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV; dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV; dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN; dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX; dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD; dev_info->min_mtu = RTE_ETHER_MIN_MTU; dev_info->hash_key_size = vf->vf_res->rss_key_size; dev_info->reta_size = vf->vf_res->rss_lut_size; dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL; dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_VLAN_FILTER | DEV_RX_OFFLOAD_RSS_HASH; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_QINQ_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_IPIP_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO | DEV_TX_OFFLOAD_MULTI_SEGS | DEV_TX_OFFLOAD_MBUF_FAST_FREE; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, .offloads = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH, .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH, .offloads = 0, }; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = IAVF_MAX_RING_DESC, .nb_min = IAVF_MIN_RING_DESC, .nb_align = IAVF_ALIGN_RING_DESC, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = IAVF_MAX_RING_DESC, .nb_min = IAVF_MIN_RING_DESC, .nb_align = IAVF_ALIGN_RING_DESC, }; return 0; } static const uint32_t * iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_ICMP, RTE_PTYPE_L4_NONFRAG, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_UNKNOWN }; return ptypes; } int iavf_dev_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete) { struct rte_eth_link new_link; struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); memset(&new_link, 0, sizeof(new_link)); /* Only read status info stored in VF, and the info is updated * when receive LINK_CHANGE evnet from PF by Virtchnnl. */ switch (vf->link_speed) { case 10: new_link.link_speed = ETH_SPEED_NUM_10M; break; case 100: new_link.link_speed = ETH_SPEED_NUM_100M; break; case 1000: new_link.link_speed = ETH_SPEED_NUM_1G; break; case 10000: new_link.link_speed = ETH_SPEED_NUM_10G; break; case 20000: new_link.link_speed = ETH_SPEED_NUM_20G; break; case 25000: new_link.link_speed = ETH_SPEED_NUM_25G; break; case 40000: new_link.link_speed = ETH_SPEED_NUM_40G; break; case 50000: new_link.link_speed = ETH_SPEED_NUM_50G; break; case 100000: new_link.link_speed = ETH_SPEED_NUM_100G; break; default: new_link.link_speed = ETH_SPEED_NUM_NONE; break; } new_link.link_duplex = ETH_LINK_FULL_DUPLEX; new_link.link_status = vf->link_up ? ETH_LINK_UP : ETH_LINK_DOWN; new_link.link_autoneg = !(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED); return rte_eth_linkstatus_set(dev, &new_link); } static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); return iavf_config_promisc(adapter, true, vf->promisc_multicast_enabled); } static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); return iavf_config_promisc(adapter, false, vf->promisc_multicast_enabled); } static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); return iavf_config_promisc(adapter, vf->promisc_unicast_enabled, true); } static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); return iavf_config_promisc(adapter, vf->promisc_unicast_enabled, false); } static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr, __rte_unused uint32_t index, __rte_unused uint32_t pool) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); int err; if (rte_is_zero_ether_addr(addr)) { PMD_DRV_LOG(ERR, "Invalid Ethernet Address"); return -EINVAL; } err = iavf_add_del_eth_addr(adapter, addr, true); if (err) { PMD_DRV_LOG(ERR, "fail to add MAC address"); return -EIO; } vf->mac_num++; return 0; } static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); struct rte_ether_addr *addr; int err; addr = &dev->data->mac_addrs[index]; err = iavf_add_del_eth_addr(adapter, addr, false); if (err) PMD_DRV_LOG(ERR, "fail to delete MAC address"); vf->mac_num--; } static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); int err; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) return -ENOTSUP; err = iavf_add_del_vlan(adapter, vlan_id, on); if (err) return -EIO; return 0; } static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); struct rte_eth_conf *dev_conf = &dev->data->dev_conf; int err; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) return -ENOTSUP; /* Vlan stripping setting */ if (mask & ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP) err = iavf_enable_vlan_strip(adapter); else err = iavf_disable_vlan_strip(adapter); if (err) return -EIO; } return 0; } static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); uint8_t *lut; uint16_t i, idx, shift; int ret; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; if (reta_size != vf->vf_res->rss_lut_size) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, vf->vf_res->rss_lut_size); return -EINVAL; } lut = rte_zmalloc("rss_lut", reta_size, 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } /* store the old lut table temporarily */ rte_memcpy(lut, vf->rss_lut, reta_size); for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) lut[i] = reta_conf[idx].reta[shift]; } rte_memcpy(vf->rss_lut, lut, reta_size); /* send virtchnnl ops to configure rss*/ ret = iavf_configure_rss_lut(adapter); if (ret) /* revert back */ rte_memcpy(vf->rss_lut, lut, reta_size); rte_free(lut); return ret; } static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); uint16_t i, idx, shift; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; if (reta_size != vf->vf_res->rss_lut_size) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, vf->vf_res->rss_lut_size); return -EINVAL; } for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) reta_conf[idx].reta[shift] = vf->rss_lut[i]; } return 0; } static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; /* HENA setting, it is enabled by default, no change */ if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) { PMD_DRV_LOG(DEBUG, "No key to be configured"); return 0; } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) { PMD_DRV_LOG(ERR, "The size of hash key configured " "(%d) doesn't match the size of hardware can " "support (%d)", rss_conf->rss_key_len, vf->vf_res->rss_key_size); return -EINVAL; } rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len); return iavf_configure_rss_key(adapter); } static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter); if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; /* Just set it to default value now. */ rss_conf->rss_hf = IAVF_RSS_OFFLOAD_ALL; if (!rss_conf->rss_key) return 0; rss_conf->rss_key_len = vf->vf_res->rss_key_size; rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len); return 0; } static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD; int ret = 0; if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX) return -EINVAL; /* mtu setting is forbidden if port is start */ if (dev->data->dev_started) { PMD_DRV_LOG(ERR, "port must be stopped before configuration"); return -EBUSY; } if (frame_size > RTE_ETHER_MAX_LEN) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; else dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; return ret; } static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter); struct rte_ether_addr *perm_addr, *old_addr; int ret; old_addr = (struct rte_ether_addr *)hw->mac.addr; perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr; /* If the MAC address is configured by host, skip the setting */ if (rte_is_valid_assigned_ether_addr(perm_addr)) return -EPERM; ret = iavf_add_del_eth_addr(adapter, old_addr, false); if (ret) PMD_DRV_LOG(ERR, "Fail to delete old MAC:" " %02X:%02X:%02X:%02X:%02X:%02X", old_addr->addr_bytes[0], old_addr->addr_bytes[1], old_addr->addr_bytes[2], old_addr->addr_bytes[3], old_addr->addr_bytes[4], old_addr->addr_bytes[5]); ret = iavf_add_del_eth_addr(adapter, mac_addr, true); if (ret) PMD_DRV_LOG(ERR, "Fail to add new MAC:" " %02X:%02X:%02X:%02X:%02X:%02X", mac_addr->addr_bytes[0], mac_addr->addr_bytes[1], mac_addr->addr_bytes[2], mac_addr->addr_bytes[3], mac_addr->addr_bytes[4], mac_addr->addr_bytes[5]); if (ret) return -EIO; rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr); return 0; } static void iavf_stat_update_48(uint64_t *offset, uint64_t *stat) { if (*stat >= *offset) *stat = *stat - *offset; else *stat = (uint64_t)((*stat + ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset); *stat &= IAVF_48_BIT_MASK; } static void iavf_stat_update_32(uint64_t *offset, uint64_t *stat) { if (*stat >= *offset) *stat = (uint64_t)(*stat - *offset); else *stat = (uint64_t)((*stat + ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset); } static void iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes) { struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset; iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes); iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast); iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast); iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast); iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards); iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes); iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast); iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast); iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast); iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors); iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards); } static int iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct iavf_vsi *vsi = &vf->vsi; struct virtchnl_eth_stats *pstats = NULL; int ret; ret = iavf_query_stats(adapter, &pstats); if (ret == 0) { iavf_update_stats(vsi, pstats); stats->ipackets = pstats->rx_unicast + pstats->rx_multicast + pstats->rx_broadcast - pstats->rx_discards; stats->opackets = pstats->tx_broadcast + pstats->tx_multicast + pstats->tx_unicast; stats->imissed = pstats->rx_discards; stats->oerrors = pstats->tx_errors + pstats->tx_discards; stats->ibytes = pstats->rx_bytes; stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN; stats->obytes = pstats->tx_bytes; } else { PMD_DRV_LOG(ERR, "Get statistics failed"); } return ret; } static int iavf_dev_stats_reset(struct rte_eth_dev *dev) { int ret; struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct iavf_vsi *vsi = &vf->vsi; struct virtchnl_eth_stats *pstats = NULL; /* read stat values to clear hardware registers */ ret = iavf_query_stats(adapter, &pstats); if (ret != 0) return ret; /* set stats offset base on current values */ vsi->eth_stats_offset = *pstats; return 0; } static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned int limit) { unsigned int i; if (xstats_names != NULL) for (i = 0; i < IAVF_NB_XSTATS; i++) { snprintf(xstats_names[i].name, sizeof(xstats_names[i].name), "%s", rte_iavf_stats_strings[i].name); } return IAVF_NB_XSTATS; } static int iavf_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n) { int ret; unsigned int i; struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct iavf_vsi *vsi = &vf->vsi; struct virtchnl_eth_stats *pstats = NULL; if (n < IAVF_NB_XSTATS) return IAVF_NB_XSTATS; ret = iavf_query_stats(adapter, &pstats); if (ret != 0) return 0; if (!xstats) return 0; iavf_update_stats(vsi, pstats); /* loop over xstats array and values from pstats */ for (i = 0; i < IAVF_NB_XSTATS; i++) { xstats[i].id = i; xstats[i].value = *(uint64_t *)(((char *)pstats) + rte_iavf_stats_strings[i].offset); } return IAVF_NB_XSTATS; } static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter); uint16_t msix_intr; msix_intr = pci_dev->intr_handle.intr_vec[queue_id]; if (msix_intr == IAVF_MISC_VEC_ID) { PMD_DRV_LOG(INFO, "MISC is also enabled for control"); IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK | IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); } else { IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTLN1 (msix_intr - IAVF_RX_VEC_START), IAVF_VFINT_DYN_CTLN1_INTENA_MASK | IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK | IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); } IAVF_WRITE_FLUSH(hw); rte_intr_ack(&pci_dev->intr_handle); return 0; } static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t msix_intr; msix_intr = pci_dev->intr_handle.intr_vec[queue_id]; if (msix_intr == IAVF_MISC_VEC_ID) { PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it"); return -EIO; } IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START), 0); IAVF_WRITE_FLUSH(hw); return 0; } static int iavf_check_vf_reset_done(struct iavf_hw *hw) { int i, reset; for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) { reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) & IAVF_VFGEN_RSTAT_VFR_STATE_MASK; reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT; if (reset == VIRTCHNL_VFR_VFACTIVE || reset == VIRTCHNL_VFR_COMPLETED) break; rte_delay_ms(20); } if (i >= IAVF_RESET_WAIT_CNT) return -1; return 0; } static int iavf_lookup_proto_xtr_type(const char *flex_name) { static struct { const char *name; enum iavf_proto_xtr_type type; } xtr_type_map[] = { { "vlan", IAVF_PROTO_XTR_VLAN }, { "ipv4", IAVF_PROTO_XTR_IPV4 }, { "ipv6", IAVF_PROTO_XTR_IPV6 }, { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW }, { "tcp", IAVF_PROTO_XTR_TCP }, { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET }, }; uint32_t i; for (i = 0; i < RTE_DIM(xtr_type_map); i++) { if (strcmp(flex_name, xtr_type_map[i].name) == 0) return xtr_type_map[i].type; } PMD_DRV_LOG(ERR, "wrong proto_xtr type, " "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset"); return -1; } /** * Parse elem, the elem could be single number/range or '(' ')' group * 1) A single number elem, it's just a simple digit. e.g. 9 * 2) A single range elem, two digits with a '-' between. e.g. 2-6 * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6) * Within group elem, '-' used for a range separator; * ',' used for a single number. */ static int iavf_parse_queue_set(const char *input, int xtr_type, struct iavf_devargs *devargs) { const char *str = input; char *end = NULL; uint32_t min, max; uint32_t idx; while (isblank(*str)) str++; if (!isdigit(*str) && *str != '(') return -1; /* process single number or single range of number */ if (*str != '(') { errno = 0; idx = strtoul(str, &end, 10); if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM) return -1; while (isblank(*end)) end++; min = idx; max = idx; /* process single - */ if (*end == '-') { end++; while (isblank(*end)) end++; if (!isdigit(*end)) return -1; errno = 0; idx = strtoul(end, &end, 10); if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM) return -1; max = idx; while (isblank(*end)) end++; } if (*end != ':') return -1; for (idx = RTE_MIN(min, max); idx <= RTE_MAX(min, max); idx++) devargs->proto_xtr[idx] = xtr_type; return 0; } /* process set within bracket */ str++; while (isblank(*str)) str++; if (*str == '\0') return -1; min = IAVF_MAX_QUEUE_NUM; do { /* go ahead to the first digit */ while (isblank(*str)) str++; if (!isdigit(*str)) return -1; /* get the digit value */ errno = 0; idx = strtoul(str, &end, 10); if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM) return -1; /* go ahead to separator '-',',' and ')' */ while (isblank(*end)) end++; if (*end == '-') { if (min == IAVF_MAX_QUEUE_NUM) min = idx; else /* avoid continuous '-' */ return -1; } else if (*end == ',' || *end == ')') { max = idx; if (min == IAVF_MAX_QUEUE_NUM) min = idx; for (idx = RTE_MIN(min, max); idx <= RTE_MAX(min, max); idx++) devargs->proto_xtr[idx] = xtr_type; min = IAVF_MAX_QUEUE_NUM; } else { return -1; } str = end + 1; } while (*end != ')' && *end != '\0'); return 0; } static int iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs) { const char *queue_start; uint32_t idx; int xtr_type; char flex_name[32]; while (isblank(*queues)) queues++; if (*queues != '[') { xtr_type = iavf_lookup_proto_xtr_type(queues); if (xtr_type < 0) return -1; devargs->proto_xtr_dflt = xtr_type; return 0; } queues++; do { while (isblank(*queues)) queues++; if (*queues == '\0') return -1; queue_start = queues; /* go across a complete bracket */ if (*queue_start == '(') { queues += strcspn(queues, ")"); if (*queues != ')') return -1; } /* scan the separator ':' */ queues += strcspn(queues, ":"); if (*queues++ != ':') return -1; while (isblank(*queues)) queues++; for (idx = 0; ; idx++) { if (isblank(queues[idx]) || queues[idx] == ',' || queues[idx] == ']' || queues[idx] == '\0') break; if (idx > sizeof(flex_name) - 2) return -1; flex_name[idx] = queues[idx]; } flex_name[idx] = '\0'; xtr_type = iavf_lookup_proto_xtr_type(flex_name); if (xtr_type < 0) return -1; queues += idx; while (isblank(*queues) || *queues == ',' || *queues == ']') queues++; if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0) return -1; } while (*queues != '\0'); return 0; } static int iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value, void *extra_args) { struct iavf_devargs *devargs = extra_args; if (!value || !extra_args) return -EINVAL; if (iavf_parse_queue_proto_xtr(value, devargs) < 0) { PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'", value); return -1; } return 0; } static int iavf_parse_devargs(struct rte_eth_dev *dev) { struct iavf_adapter *ad = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct rte_devargs *devargs = dev->device->devargs; struct rte_kvargs *kvlist; int ret; if (!devargs) return 0; kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args); if (!kvlist) { PMD_INIT_LOG(ERR, "invalid kvargs key\n"); return -EINVAL; } ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE; memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE, sizeof(ad->devargs.proto_xtr)); ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG, &iavf_handle_proto_xtr_arg, &ad->devargs); if (ret) goto bail; bail: rte_kvargs_free(kvlist); return ret; } static void iavf_init_proto_xtr(struct rte_eth_dev *dev) { struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct iavf_adapter *ad = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); const struct iavf_proto_xtr_ol *xtr_ol; bool proto_xtr_enable = false; int offset; uint16_t i; vf->proto_xtr = rte_zmalloc("vf proto xtr", vf->vsi_res->num_queue_pairs, 0); if (unlikely(!(vf->proto_xtr))) { PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table"); return; } for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) { vf->proto_xtr[i] = ad->devargs.proto_xtr[i] != IAVF_PROTO_XTR_NONE ? ad->devargs.proto_xtr[i] : ad->devargs.proto_xtr_dflt; if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) { uint8_t type = vf->proto_xtr[i]; iavf_proto_xtr_params[type].required = true; proto_xtr_enable = true; } } if (likely(!proto_xtr_enable)) return; offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param); if (unlikely(offset == -1)) { PMD_DRV_LOG(ERR, "failed to extract protocol metadata, error %d", -rte_errno); return; } PMD_DRV_LOG(DEBUG, "proto_xtr metadata offset in mbuf is : %d", offset); rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset; for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) { xtr_ol = &iavf_proto_xtr_params[i]; uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i); if (!xtr_ol->required) continue; if (!(vf->supported_rxdid & BIT(rxdid))) { PMD_DRV_LOG(ERR, "rxdid[%u] is not supported in hardware", rxdid); rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1; break; } offset = rte_mbuf_dynflag_register(&xtr_ol->param); if (unlikely(offset == -1)) { PMD_DRV_LOG(ERR, "failed to register proto_xtr offload '%s', error %d", xtr_ol->param.name, -rte_errno); rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1; break; } PMD_DRV_LOG(DEBUG, "proto_xtr offload '%s' offset in mbuf is : %d", xtr_ol->param.name, offset); *xtr_ol->ol_flag = 1ULL << offset; } } static int iavf_init_vf(struct rte_eth_dev *dev) { int err, bufsz; struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); err = iavf_parse_devargs(dev); if (err) { PMD_INIT_LOG(ERR, "Failed to parse devargs"); goto err; } err = iavf_set_mac_type(hw); if (err) { PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err); goto err; } err = iavf_check_vf_reset_done(hw); if (err) { PMD_INIT_LOG(ERR, "VF is still resetting"); goto err; } iavf_init_adminq_parameter(hw); err = iavf_init_adminq(hw); if (err) { PMD_INIT_LOG(ERR, "init_adminq failed: %d", err); goto err; } vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0); if (!vf->aq_resp) { PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory"); goto err_aq; } if (iavf_check_api_version(adapter) != 0) { PMD_INIT_LOG(ERR, "check_api version failed"); goto err_api; } bufsz = sizeof(struct virtchnl_vf_resource) + (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource)); vf->vf_res = rte_zmalloc("vf_res", bufsz, 0); if (!vf->vf_res) { PMD_INIT_LOG(ERR, "unable to allocate vf_res memory"); goto err_api; } if (iavf_get_vf_resource(adapter) != 0) { PMD_INIT_LOG(ERR, "iavf_get_vf_config failed"); goto err_alloc; } /* Allocate memort for RSS info */ if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { vf->rss_key = rte_zmalloc("rss_key", vf->vf_res->rss_key_size, 0); if (!vf->rss_key) { PMD_INIT_LOG(ERR, "unable to allocate rss_key memory"); goto err_rss; } vf->rss_lut = rte_zmalloc("rss_lut", vf->vf_res->rss_lut_size, 0); if (!vf->rss_lut) { PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory"); goto err_rss; } } if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { if (iavf_get_supported_rxdid(adapter) != 0) { PMD_INIT_LOG(ERR, "failed to do get supported rxdid"); goto err_rss; } } iavf_init_proto_xtr(dev); return 0; err_rss: rte_free(vf->rss_key); rte_free(vf->rss_lut); err_alloc: rte_free(vf->vf_res); vf->vsi_res = NULL; err_api: rte_free(vf->aq_resp); err_aq: iavf_shutdown_adminq(hw); err: return -1; } /* Enable default admin queue interrupt setting */ static inline void iavf_enable_irq0(struct iavf_hw *hw) { /* Enable admin queue interrupt trigger */ IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK | IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); IAVF_WRITE_FLUSH(hw); } static inline void iavf_disable_irq0(struct iavf_hw *hw) { /* Disable all interrupt types */ IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0); IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); IAVF_WRITE_FLUSH(hw); } static void iavf_dev_interrupt_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); iavf_disable_irq0(hw); iavf_handle_virtchnl_msg(dev); iavf_enable_irq0(hw); } static int iavf_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { int ret = 0; if (!dev) return -EINVAL; switch (filter_type) { case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; *(const void **)arg = &iavf_flow_ops; break; default: PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } return ret; } static int iavf_dev_init(struct rte_eth_dev *eth_dev) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private); struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); int ret = 0; PMD_INIT_FUNC_TRACE(); /* assign ops func pointer */ eth_dev->dev_ops = &iavf_eth_dev_ops; eth_dev->rx_queue_count = iavf_dev_rxq_count; eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status; eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status; eth_dev->rx_pkt_burst = &iavf_recv_pkts; eth_dev->tx_pkt_burst = &iavf_xmit_pkts; eth_dev->tx_pkt_prepare = &iavf_prep_pkts; /* For secondary processes, we don't initialise any further as primary * has already done this work. Only check if we need a different RX * and TX function. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { iavf_set_rx_function(eth_dev); iavf_set_tx_function(eth_dev); return 0; } rte_eth_copy_pci_info(eth_dev, pci_dev); eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = pci_dev->id.subsystem_device_id; hw->bus.bus_id = pci_dev->addr.bus; hw->bus.device = pci_dev->addr.devid; hw->bus.func = pci_dev->addr.function; hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private); adapter->eth_dev = eth_dev; adapter->stopped = 1; if (iavf_init_vf(eth_dev) != 0) { PMD_INIT_LOG(ERR, "Init vf failed"); return -1; } /* set default ptype table */ adapter->ptype_tbl = iavf_get_default_ptype_table(); /* copy mac addr */ eth_dev->data->mac_addrs = rte_zmalloc( "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0); if (!eth_dev->data->mac_addrs) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to" " store MAC addresses", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX); return -ENOMEM; } /* If the MAC address is not configured by host, * generate a random one. */ if (!rte_is_valid_assigned_ether_addr( (struct rte_ether_addr *)hw->mac.addr)) rte_eth_random_addr(hw->mac.addr); rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); /* register callback func to eal lib */ rte_intr_callback_register(&pci_dev->intr_handle, iavf_dev_interrupt_handler, (void *)eth_dev); /* enable uio intr after callback register */ rte_intr_enable(&pci_dev->intr_handle); /* configure and enable device interrupt */ iavf_enable_irq0(hw); ret = iavf_flow_init(adapter); if (ret) { PMD_INIT_LOG(ERR, "Failed to initialize flow"); return ret; } return 0; } static int iavf_dev_close(struct rte_eth_dev *dev) { struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; ret = iavf_dev_stop(dev); iavf_flow_flush(dev, NULL); iavf_flow_uninit(adapter); /* * disable promiscuous mode before reset vf * it is a workaround solution when work with kernel driver * and it is not the normal way */ if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled) iavf_config_promisc(adapter, false, false); iavf_shutdown_adminq(hw); /* disable uio intr before callback unregister */ rte_intr_disable(intr_handle); /* unregister callback func from eal lib */ rte_intr_callback_unregister(intr_handle, iavf_dev_interrupt_handler, dev); iavf_disable_irq0(hw); if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { if (vf->rss_lut) { rte_free(vf->rss_lut); vf->rss_lut = NULL; } if (vf->rss_key) { rte_free(vf->rss_key); vf->rss_key = NULL; } } rte_free(vf->vf_res); vf->vsi_res = NULL; vf->vf_res = NULL; rte_free(vf->aq_resp); vf->aq_resp = NULL; vf->vf_reset = false; return ret; } static int iavf_dev_uninit(struct rte_eth_dev *dev) { if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; iavf_dev_close(dev); return 0; } /* * Reset VF device only to re-initialize resources in PMD layer */ static int iavf_dev_reset(struct rte_eth_dev *dev) { int ret; ret = iavf_dev_uninit(dev); if (ret) return ret; return iavf_dev_init(dev); } static int iavf_dcf_cap_check_handler(__rte_unused const char *key, const char *value, __rte_unused void *opaque) { if (strcmp(value, "dcf")) return -1; return 0; } static int iavf_dcf_cap_selected(struct rte_devargs *devargs) { struct rte_kvargs *kvlist; const char *key = "cap"; int ret = 0; if (devargs == NULL) return 0; kvlist = rte_kvargs_parse(devargs->args, NULL); if (kvlist == NULL) return 0; if (!rte_kvargs_count(kvlist, key)) goto exit; /* dcf capability selected when there's a key-value pair: cap=dcf */ if (rte_kvargs_process(kvlist, key, iavf_dcf_cap_check_handler, NULL) < 0) goto exit; ret = 1; exit: rte_kvargs_free(kvlist); return ret; } static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { if (iavf_dcf_cap_selected(pci_dev->device.devargs)) return 1; return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct iavf_adapter), iavf_dev_init); } static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit); } /* Adaptive virtual function driver struct */ static struct rte_pci_driver rte_iavf_pmd = { .id_table = pci_id_iavf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, .probe = eth_iavf_pci_probe, .remove = eth_iavf_pci_remove, }; RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map); RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf"); RTE_LOG_REGISTER(iavf_logtype_init, pmd.net.iavf.init, NOTICE); RTE_LOG_REGISTER(iavf_logtype_driver, pmd.net.iavf.driver, NOTICE); #ifdef RTE_LIBRTE_IAVF_DEBUG_RX RTE_LOG_REGISTER(iavf_logtype_rx, pmd.net.iavf.rx, DEBUG); #endif #ifdef RTE_LIBRTE_IAVF_DEBUG_TX RTE_LOG_REGISTER(iavf_logtype_tx, pmd.net.iavf.tx, DEBUG); #endif #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE RTE_LOG_REGISTER(iavf_logtype_tx_free, pmd.net.iavf.tx_free, DEBUG); #endif