/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2008-2017 Cisco Systems, Inc. All rights reserved. * Copyright 2007 Nuova Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include "vnic_intr.h" #include "vnic_cq.h" #include "vnic_wq.h" #include "vnic_rq.h" #include "vnic_enet.h" #include "enic.h" /* * The set of PCI devices this driver supports */ #define CISCO_PCI_VENDOR_ID 0x1137 static const struct rte_pci_id pci_id_enic_map[] = { {RTE_PCI_DEVICE(CISCO_PCI_VENDOR_ID, PCI_DEVICE_ID_CISCO_VIC_ENET)}, {RTE_PCI_DEVICE(CISCO_PCI_VENDOR_ID, PCI_DEVICE_ID_CISCO_VIC_ENET_VF)}, {RTE_PCI_DEVICE(CISCO_PCI_VENDOR_ID, PCI_DEVICE_ID_CISCO_VIC_ENET_SN)}, {.vendor_id = 0, /* sentinel */}, }; /* Supported link speeds of production VIC models */ static const struct vic_speed_capa { uint16_t sub_devid; uint32_t capa; } vic_speed_capa_map[] = { { 0x0043, ETH_LINK_SPEED_10G }, /* VIC */ { 0x0047, ETH_LINK_SPEED_10G }, /* P81E PCIe */ { 0x0048, ETH_LINK_SPEED_10G }, /* M81KR Mezz */ { 0x004f, ETH_LINK_SPEED_10G }, /* 1280 Mezz */ { 0x0084, ETH_LINK_SPEED_10G }, /* 1240 MLOM */ { 0x0085, ETH_LINK_SPEED_10G }, /* 1225 PCIe */ { 0x00cd, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1285 PCIe */ { 0x00ce, ETH_LINK_SPEED_10G }, /* 1225T PCIe */ { 0x012a, ETH_LINK_SPEED_40G }, /* M4308 */ { 0x012c, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1340 MLOM */ { 0x012e, ETH_LINK_SPEED_10G }, /* 1227 PCIe */ { 0x0137, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1380 Mezz */ { 0x014d, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1385 PCIe */ { 0x015d, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1387 MLOM */ { 0x0215, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G }, /* 1440 Mezz */ { 0x0216, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G }, /* 1480 MLOM */ { 0x0217, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G }, /* 1455 PCIe */ { 0x0218, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G }, /* 1457 MLOM */ { 0x0219, ETH_LINK_SPEED_40G }, /* 1485 PCIe */ { 0x021a, ETH_LINK_SPEED_40G }, /* 1487 MLOM */ { 0x024a, ETH_LINK_SPEED_40G | ETH_LINK_SPEED_100G }, /* 1495 PCIe */ { 0x024b, ETH_LINK_SPEED_40G | ETH_LINK_SPEED_100G }, /* 1497 MLOM */ { 0, 0 }, /* End marker */ }; #define ENIC_DEVARG_DISABLE_OVERLAY "disable-overlay" #define ENIC_DEVARG_ENABLE_AVX2_RX "enable-avx2-rx" #define ENIC_DEVARG_GENEVE_OPT "geneve-opt" #define ENIC_DEVARG_IG_VLAN_REWRITE "ig-vlan-rewrite" #define ENIC_DEVARG_REPRESENTOR "representor" RTE_LOG_REGISTER(enic_pmd_logtype, pmd.net.enic, INFO); static int enicpmd_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { struct enic *enic = pmd_priv(dev); int ret = 0; ENICPMD_FUNC_TRACE(); /* * Currently, when Geneve with options offload is enabled, host * cannot insert match-action rules. */ if (enic->geneve_opt_enabled) return -ENOTSUP; switch (filter_type) { case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; if (enic->flow_filter_mode == FILTER_FLOWMAN) *(const void **)arg = &enic_fm_flow_ops; else *(const void **)arg = &enic_flow_ops; break; default: dev_warning(enic, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } return ret; } static void enicpmd_dev_tx_queue_release(void *txq) { ENICPMD_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return; enic_free_wq(txq); } static int enicpmd_dev_setup_intr(struct enic *enic) { int ret; unsigned int index; ENICPMD_FUNC_TRACE(); /* Are we done with the init of all the queues? */ for (index = 0; index < enic->cq_count; index++) { if (!enic->cq[index].ctrl) break; } if (enic->cq_count != index) return 0; for (index = 0; index < enic->wq_count; index++) { if (!enic->wq[index].ctrl) break; } if (enic->wq_count != index) return 0; /* check start of packet (SOP) RQs only in case scatter is disabled. */ for (index = 0; index < enic->rq_count; index++) { if (!enic->rq[enic_rte_rq_idx_to_sop_idx(index)].ctrl) break; } if (enic->rq_count != index) return 0; ret = enic_alloc_intr_resources(enic); if (ret) { dev_err(enic, "alloc intr failed\n"); return ret; } enic_init_vnic_resources(enic); ret = enic_setup_finish(enic); if (ret) dev_err(enic, "setup could not be finished\n"); return ret; } static int enicpmd_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { int ret; struct enic *enic = pmd_priv(eth_dev); struct vnic_wq *wq; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); RTE_ASSERT(queue_idx < enic->conf_wq_count); wq = &enic->wq[queue_idx]; wq->offloads = tx_conf->offloads | eth_dev->data->dev_conf.txmode.offloads; eth_dev->data->tx_queues[queue_idx] = (void *)wq; ret = enic_alloc_wq(enic, queue_idx, socket_id, nb_desc); if (ret) { dev_err(enic, "error in allocating wq\n"); return ret; } return enicpmd_dev_setup_intr(enic); } static int enicpmd_dev_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t queue_idx) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); enic_start_wq(enic, queue_idx); return 0; } static int enicpmd_dev_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t queue_idx) { int ret; struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); ret = enic_stop_wq(enic, queue_idx); if (ret) dev_err(enic, "error in stopping wq %d\n", queue_idx); return ret; } static int enicpmd_dev_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t queue_idx) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); enic_start_rq(enic, queue_idx); return 0; } static int enicpmd_dev_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t queue_idx) { int ret; struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); ret = enic_stop_rq(enic, queue_idx); if (ret) dev_err(enic, "error in stopping rq %d\n", queue_idx); return ret; } static void enicpmd_dev_rx_queue_release(void *rxq) { ENICPMD_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return; enic_free_rq(rxq); } static uint32_t enicpmd_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct enic *enic = pmd_priv(dev); uint32_t queue_count = 0; struct vnic_cq *cq; uint32_t cq_tail; uint16_t cq_idx; int rq_num; rq_num = enic_rte_rq_idx_to_sop_idx(rx_queue_id); cq = &enic->cq[enic_cq_rq(enic, rq_num)]; cq_idx = cq->to_clean; cq_tail = ioread32(&cq->ctrl->cq_tail); if (cq_tail < cq_idx) cq_tail += cq->ring.desc_count; queue_count = cq_tail - cq_idx; return queue_count; } static int enicpmd_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { int ret; struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; RTE_ASSERT(enic_rte_rq_idx_to_sop_idx(queue_idx) < enic->conf_rq_count); eth_dev->data->rx_queues[queue_idx] = (void *)&enic->rq[enic_rte_rq_idx_to_sop_idx(queue_idx)]; ret = enic_alloc_rq(enic, queue_idx, socket_id, mp, nb_desc, rx_conf->rx_free_thresh); if (ret) { dev_err(enic, "error in allocating rq\n"); return ret; } return enicpmd_dev_setup_intr(enic); } static int enicpmd_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) { struct enic *enic = pmd_priv(eth_dev); uint64_t offloads; ENICPMD_FUNC_TRACE(); offloads = eth_dev->data->dev_conf.rxmode.offloads; if (mask & ETH_VLAN_STRIP_MASK) { if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP) enic->ig_vlan_strip_en = 1; else enic->ig_vlan_strip_en = 0; } return enic_set_vlan_strip(enic); } static int enicpmd_dev_configure(struct rte_eth_dev *eth_dev) { int ret; int mask; struct enic *enic = pmd_priv(eth_dev); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); ret = enic_set_vnic_res(enic); if (ret) { dev_err(enic, "Set vNIC resource num failed, aborting\n"); return ret; } if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH; enic->mc_count = 0; enic->hw_ip_checksum = !!(eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_CHECKSUM); /* All vlan offload masks to apply the current settings */ mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | ETH_VLAN_EXTEND_MASK; ret = enicpmd_vlan_offload_set(eth_dev, mask); if (ret) { dev_err(enic, "Failed to configure VLAN offloads\n"); return ret; } /* * Initialize RSS with the default reta and key. If the user key is * given (rx_adv_conf.rss_conf.rss_key), will use that instead of the * default key. */ return enic_init_rss_nic_cfg(enic); } /* Start the device. * It returns 0 on success. */ static int enicpmd_dev_start(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); return enic_enable(enic); } /* * Stop device: disable rx and tx functions to allow for reconfiguring. */ static int enicpmd_dev_stop(struct rte_eth_dev *eth_dev) { struct rte_eth_link link; struct enic *enic = pmd_priv(eth_dev); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; ENICPMD_FUNC_TRACE(); enic_disable(enic); memset(&link, 0, sizeof(link)); rte_eth_linkstatus_set(eth_dev, &link); return 0; } /* * Stop device. */ static int enicpmd_dev_close(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; enic_remove(enic); return 0; } static int enicpmd_dev_link_update(struct rte_eth_dev *eth_dev, __rte_unused int wait_to_complete) { ENICPMD_FUNC_TRACE(); return enic_link_update(eth_dev); } static int enicpmd_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); return enic_dev_stats_get(enic, stats); } static int enicpmd_dev_stats_reset(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); return enic_dev_stats_clear(enic); } static uint32_t speed_capa_from_pci_id(struct rte_eth_dev *eth_dev) { const struct vic_speed_capa *m; struct rte_pci_device *pdev; uint16_t id; pdev = RTE_ETH_DEV_TO_PCI(eth_dev); id = pdev->id.subsystem_device_id; for (m = vic_speed_capa_map; m->sub_devid != 0; m++) { if (m->sub_devid == id) return m->capa; } /* 1300 and later models are at least 40G */ if (id >= 0x0100) return ETH_LINK_SPEED_40G; /* VFs have subsystem id 0, check device id */ if (id == 0) { /* Newer VF implies at least 40G model */ if (pdev->id.device_id == PCI_DEVICE_ID_CISCO_VIC_ENET_SN) return ETH_LINK_SPEED_40G; } return ETH_LINK_SPEED_10G; } static int enicpmd_dev_info_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *device_info) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); /* Scattered Rx uses two receive queues per rx queue exposed to dpdk */ device_info->max_rx_queues = enic->conf_rq_count / 2; device_info->max_tx_queues = enic->conf_wq_count; device_info->min_rx_bufsize = ENIC_MIN_MTU; /* "Max" mtu is not a typo. HW receives packet sizes up to the * max mtu regardless of the current mtu (vNIC's mtu). vNIC mtu is * a hint to the driver to size receive buffers accordingly so that * larger-than-vnic-mtu packets get truncated.. For DPDK, we let * the user decide the buffer size via rxmode.max_rx_pkt_len, basically * ignoring vNIC mtu. */ device_info->max_rx_pktlen = enic_mtu_to_max_rx_pktlen(enic->max_mtu); device_info->max_mac_addrs = ENIC_UNICAST_PERFECT_FILTERS; device_info->min_mtu = ENIC_MIN_MTU; device_info->max_mtu = enic->max_mtu; device_info->rx_offload_capa = enic->rx_offload_capa; device_info->tx_offload_capa = enic->tx_offload_capa; device_info->tx_queue_offload_capa = enic->tx_queue_offload_capa; device_info->default_rxconf = (struct rte_eth_rxconf) { .rx_free_thresh = ENIC_DEFAULT_RX_FREE_THRESH }; device_info->reta_size = enic->reta_size; device_info->hash_key_size = enic->hash_key_size; device_info->flow_type_rss_offloads = enic->flow_type_rss_offloads; device_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = enic->config.rq_desc_count, .nb_min = ENIC_MIN_RQ_DESCS, .nb_align = ENIC_ALIGN_DESCS, }; device_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = enic->config.wq_desc_count, .nb_min = ENIC_MIN_WQ_DESCS, .nb_align = ENIC_ALIGN_DESCS, .nb_seg_max = ENIC_TX_XMIT_MAX, .nb_mtu_seg_max = ENIC_NON_TSO_MAX_DESC, }; device_info->default_rxportconf = (struct rte_eth_dev_portconf) { .burst_size = ENIC_DEFAULT_RX_BURST, .ring_size = RTE_MIN(device_info->rx_desc_lim.nb_max, ENIC_DEFAULT_RX_RING_SIZE), .nb_queues = ENIC_DEFAULT_RX_RINGS, }; device_info->default_txportconf = (struct rte_eth_dev_portconf) { .burst_size = ENIC_DEFAULT_TX_BURST, .ring_size = RTE_MIN(device_info->tx_desc_lim.nb_max, ENIC_DEFAULT_TX_RING_SIZE), .nb_queues = ENIC_DEFAULT_TX_RINGS, }; device_info->speed_capa = speed_capa_from_pci_id(eth_dev); return 0; } static const uint32_t *enicpmd_dev_supported_ptypes_get(struct rte_eth_dev *dev) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_NONFRAG, RTE_PTYPE_UNKNOWN }; static const uint32_t ptypes_overlay[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_NONFRAG, RTE_PTYPE_TUNNEL_GRENAT, RTE_PTYPE_INNER_L2_ETHER, RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_INNER_L4_FRAG, RTE_PTYPE_INNER_L4_NONFRAG, RTE_PTYPE_UNKNOWN }; if (dev->rx_pkt_burst != enic_dummy_recv_pkts && dev->rx_pkt_burst != NULL) { struct enic *enic = pmd_priv(dev); if (enic->overlay_offload) return ptypes_overlay; else return ptypes; } return NULL; } static int enicpmd_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); enic->promisc = 1; ret = enic_add_packet_filter(enic); if (ret != 0) enic->promisc = 0; return ret; } static int enicpmd_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); enic->promisc = 0; ret = enic_add_packet_filter(enic); if (ret != 0) enic->promisc = 1; return ret; } static int enicpmd_dev_allmulticast_enable(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); enic->allmulti = 1; ret = enic_add_packet_filter(enic); if (ret != 0) enic->allmulti = 0; return ret; } static int enicpmd_dev_allmulticast_disable(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); enic->allmulti = 0; ret = enic_add_packet_filter(enic); if (ret != 0) enic->allmulti = 1; return ret; } static int enicpmd_add_mac_addr(struct rte_eth_dev *eth_dev, struct rte_ether_addr *mac_addr, __rte_unused uint32_t index, __rte_unused uint32_t pool) { struct enic *enic = pmd_priv(eth_dev); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); return enic_set_mac_address(enic, mac_addr->addr_bytes); } static void enicpmd_remove_mac_addr(struct rte_eth_dev *eth_dev, uint32_t index) { struct enic *enic = pmd_priv(eth_dev); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return; ENICPMD_FUNC_TRACE(); if (enic_del_mac_address(enic, index)) dev_err(enic, "del mac addr failed\n"); } static int enicpmd_set_mac_addr(struct rte_eth_dev *eth_dev, struct rte_ether_addr *addr) { struct enic *enic = pmd_priv(eth_dev); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -E_RTE_SECONDARY; ENICPMD_FUNC_TRACE(); ret = enic_del_mac_address(enic, 0); if (ret) return ret; return enic_set_mac_address(enic, addr->addr_bytes); } static void debug_log_add_del_addr(struct rte_ether_addr *addr, bool add) { char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); ENICPMD_LOG(DEBUG, " %s address %s\n", add ? "add" : "remove", mac_str); } static int enicpmd_set_mc_addr_list(struct rte_eth_dev *eth_dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct enic *enic = pmd_priv(eth_dev); char mac_str[RTE_ETHER_ADDR_FMT_SIZE]; struct rte_ether_addr *addr; uint32_t i, j; int ret; ENICPMD_FUNC_TRACE(); /* Validate the given addresses first */ for (i = 0; i < nb_mc_addr && mc_addr_set != NULL; i++) { addr = &mc_addr_set[i]; if (!rte_is_multicast_ether_addr(addr) || rte_is_broadcast_ether_addr(addr)) { rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr); ENICPMD_LOG(ERR, " invalid multicast address %s\n", mac_str); return -EINVAL; } } /* Flush all if requested */ if (nb_mc_addr == 0 || mc_addr_set == NULL) { ENICPMD_LOG(DEBUG, " flush multicast addresses\n"); for (i = 0; i < enic->mc_count; i++) { addr = &enic->mc_addrs[i]; debug_log_add_del_addr(addr, false); ret = vnic_dev_del_addr(enic->vdev, addr->addr_bytes); if (ret) return ret; } enic->mc_count = 0; return 0; } if (nb_mc_addr > ENIC_MULTICAST_PERFECT_FILTERS) { ENICPMD_LOG(ERR, " too many multicast addresses: max=%d\n", ENIC_MULTICAST_PERFECT_FILTERS); return -ENOSPC; } /* * devcmd is slow, so apply the difference instead of flushing and * adding everything. * 1. Delete addresses on the NIC but not on the host */ for (i = 0; i < enic->mc_count; i++) { addr = &enic->mc_addrs[i]; for (j = 0; j < nb_mc_addr; j++) { if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) break; } if (j < nb_mc_addr) continue; debug_log_add_del_addr(addr, false); ret = vnic_dev_del_addr(enic->vdev, addr->addr_bytes); if (ret) return ret; } /* 2. Add addresses on the host but not on the NIC */ for (i = 0; i < nb_mc_addr; i++) { addr = &mc_addr_set[i]; for (j = 0; j < enic->mc_count; j++) { if (rte_is_same_ether_addr(addr, &enic->mc_addrs[j])) break; } if (j < enic->mc_count) continue; debug_log_add_del_addr(addr, true); ret = vnic_dev_add_addr(enic->vdev, addr->addr_bytes); if (ret) return ret; } /* Keep a copy so we can flush/apply later on.. */ memcpy(enic->mc_addrs, mc_addr_set, nb_mc_addr * sizeof(struct rte_ether_addr)); enic->mc_count = nb_mc_addr; return 0; } static int enicpmd_mtu_set(struct rte_eth_dev *eth_dev, uint16_t mtu) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); return enic_set_mtu(enic, mtu); } static int enicpmd_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct enic *enic = pmd_priv(dev); uint16_t i, idx, shift; ENICPMD_FUNC_TRACE(); if (reta_size != ENIC_RSS_RETA_SIZE) { dev_err(enic, "reta_query: wrong reta_size. given=%u expected=%u\n", reta_size, ENIC_RSS_RETA_SIZE); return -EINVAL; } for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) reta_conf[idx].reta[shift] = enic_sop_rq_idx_to_rte_idx( enic->rss_cpu.cpu[i / 4].b[i % 4]); } return 0; } static int enicpmd_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct enic *enic = pmd_priv(dev); union vnic_rss_cpu rss_cpu; uint16_t i, idx, shift; ENICPMD_FUNC_TRACE(); if (reta_size != ENIC_RSS_RETA_SIZE) { dev_err(enic, "reta_update: wrong reta_size. given=%u" " expected=%u\n", reta_size, ENIC_RSS_RETA_SIZE); return -EINVAL; } /* * Start with the current reta and modify it per reta_conf, as we * need to push the entire reta even if we only modify one entry. */ rss_cpu = enic->rss_cpu; for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) rss_cpu.cpu[i / 4].b[i % 4] = enic_rte_rq_idx_to_sop_idx( reta_conf[idx].reta[shift]); } return enic_set_rss_reta(enic, &rss_cpu); } static int enicpmd_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct enic *enic = pmd_priv(dev); ENICPMD_FUNC_TRACE(); return enic_set_rss_conf(enic, rss_conf); } static int enicpmd_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct enic *enic = pmd_priv(dev); ENICPMD_FUNC_TRACE(); if (rss_conf == NULL) return -EINVAL; if (rss_conf->rss_key != NULL && rss_conf->rss_key_len < ENIC_RSS_HASH_KEY_SIZE) { dev_err(enic, "rss_hash_conf_get: wrong rss_key_len. given=%u" " expected=%u+\n", rss_conf->rss_key_len, ENIC_RSS_HASH_KEY_SIZE); return -EINVAL; } rss_conf->rss_hf = enic->rss_hf; if (rss_conf->rss_key != NULL) { int i; for (i = 0; i < ENIC_RSS_HASH_KEY_SIZE; i++) { rss_conf->rss_key[i] = enic->rss_key.key[i / 10].b[i % 10]; } rss_conf->rss_key_len = ENIC_RSS_HASH_KEY_SIZE; } return 0; } static void enicpmd_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, struct rte_eth_rxq_info *qinfo) { struct enic *enic = pmd_priv(dev); struct vnic_rq *rq_sop; struct vnic_rq *rq_data; struct rte_eth_rxconf *conf; uint16_t sop_queue_idx; uint16_t data_queue_idx; ENICPMD_FUNC_TRACE(); sop_queue_idx = enic_rte_rq_idx_to_sop_idx(rx_queue_id); data_queue_idx = enic_rte_rq_idx_to_data_idx(rx_queue_id, enic); rq_sop = &enic->rq[sop_queue_idx]; rq_data = &enic->rq[data_queue_idx]; /* valid if data_queue_enable */ qinfo->mp = rq_sop->mp; qinfo->scattered_rx = rq_sop->data_queue_enable; qinfo->nb_desc = rq_sop->ring.desc_count; if (qinfo->scattered_rx) qinfo->nb_desc += rq_data->ring.desc_count; conf = &qinfo->conf; memset(conf, 0, sizeof(*conf)); conf->rx_free_thresh = rq_sop->rx_free_thresh; conf->rx_drop_en = 1; /* * Except VLAN stripping (port setting), all the checksum offloads * are always enabled. */ conf->offloads = enic->rx_offload_capa; if (!enic->ig_vlan_strip_en) conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP; /* rx_thresh and other fields are not applicable for enic */ } static void enicpmd_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, struct rte_eth_txq_info *qinfo) { struct enic *enic = pmd_priv(dev); struct vnic_wq *wq = &enic->wq[tx_queue_id]; ENICPMD_FUNC_TRACE(); qinfo->nb_desc = wq->ring.desc_count; memset(&qinfo->conf, 0, sizeof(qinfo->conf)); qinfo->conf.offloads = wq->offloads; /* tx_thresh, and all the other fields are not applicable for enic */ } static int enicpmd_dev_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode) { eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; struct enic *enic = pmd_priv(dev); const char *info_str = NULL; int ret = -EINVAL; ENICPMD_FUNC_TRACE(); if (enic->use_noscatter_vec_rx_handler) info_str = "Vector AVX2 No Scatter"; else if (pkt_burst == enic_noscatter_recv_pkts) info_str = "Scalar No Scatter"; else if (pkt_burst == enic_recv_pkts) info_str = "Scalar"; if (info_str) { strlcpy(mode->info, info_str, sizeof(mode->info)); ret = 0; } return ret; } static int enicpmd_dev_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode) { eth_tx_burst_t pkt_burst = dev->tx_pkt_burst; const char *info_str = NULL; int ret = -EINVAL; ENICPMD_FUNC_TRACE(); if (pkt_burst == enic_simple_xmit_pkts) info_str = "Scalar Simplified"; else if (pkt_burst == enic_xmit_pkts) info_str = "Scalar"; if (info_str) { strlcpy(mode->info, info_str, sizeof(mode->info)); ret = 0; } return ret; } static int enicpmd_dev_rx_queue_intr_enable(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); vnic_intr_unmask(&enic->intr[rx_queue_id + ENICPMD_RXQ_INTR_OFFSET]); return 0; } static int enicpmd_dev_rx_queue_intr_disable(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) { struct enic *enic = pmd_priv(eth_dev); ENICPMD_FUNC_TRACE(); vnic_intr_mask(&enic->intr[rx_queue_id + ENICPMD_RXQ_INTR_OFFSET]); return 0; } static int udp_tunnel_common_check(struct enic *enic, struct rte_eth_udp_tunnel *tnl) { if (tnl->prot_type != RTE_TUNNEL_TYPE_VXLAN) return -ENOTSUP; if (!enic->overlay_offload) { ENICPMD_LOG(DEBUG, " vxlan (overlay offload) is not " "supported\n"); return -ENOTSUP; } return 0; } static int update_vxlan_port(struct enic *enic, uint16_t port) { if (vnic_dev_overlay_offload_cfg(enic->vdev, OVERLAY_CFG_VXLAN_PORT_UPDATE, port)) { ENICPMD_LOG(DEBUG, " failed to update vxlan port\n"); return -EINVAL; } ENICPMD_LOG(DEBUG, " updated vxlan port to %u\n", port); enic->vxlan_port = port; return 0; } static int enicpmd_dev_udp_tunnel_port_add(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *tnl) { struct enic *enic = pmd_priv(eth_dev); int ret; ENICPMD_FUNC_TRACE(); ret = udp_tunnel_common_check(enic, tnl); if (ret) return ret; /* * The NIC has 1 configurable VXLAN port number. "Adding" a new port * number replaces it. */ if (tnl->udp_port == enic->vxlan_port || tnl->udp_port == 0) { ENICPMD_LOG(DEBUG, " %u is already configured or invalid\n", tnl->udp_port); return -EINVAL; } return update_vxlan_port(enic, tnl->udp_port); } static int enicpmd_dev_udp_tunnel_port_del(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *tnl) { struct enic *enic = pmd_priv(eth_dev); int ret; ENICPMD_FUNC_TRACE(); ret = udp_tunnel_common_check(enic, tnl); if (ret) return ret; /* * Clear the previously set port number and restore the * hardware default port number. Some drivers disable VXLAN * offloads when there are no configured port numbers. But * enic does not do that as VXLAN is part of overlay offload, * which is tied to inner RSS and TSO. */ if (tnl->udp_port != enic->vxlan_port) { ENICPMD_LOG(DEBUG, " %u is not a configured vxlan port\n", tnl->udp_port); return -EINVAL; } return update_vxlan_port(enic, RTE_VXLAN_DEFAULT_PORT); } static int enicpmd_dev_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version, size_t fw_size) { struct vnic_devcmd_fw_info *info; struct enic *enic; int ret; ENICPMD_FUNC_TRACE(); if (fw_version == NULL || fw_size <= 0) return -EINVAL; enic = pmd_priv(eth_dev); ret = vnic_dev_fw_info(enic->vdev, &info); if (ret) return ret; snprintf(fw_version, fw_size, "%s %s", info->fw_version, info->fw_build); fw_version[fw_size - 1] = '\0'; return 0; } static const struct eth_dev_ops enicpmd_eth_dev_ops = { .dev_configure = enicpmd_dev_configure, .dev_start = enicpmd_dev_start, .dev_stop = enicpmd_dev_stop, .dev_set_link_up = NULL, .dev_set_link_down = NULL, .dev_close = enicpmd_dev_close, .promiscuous_enable = enicpmd_dev_promiscuous_enable, .promiscuous_disable = enicpmd_dev_promiscuous_disable, .allmulticast_enable = enicpmd_dev_allmulticast_enable, .allmulticast_disable = enicpmd_dev_allmulticast_disable, .link_update = enicpmd_dev_link_update, .stats_get = enicpmd_dev_stats_get, .stats_reset = enicpmd_dev_stats_reset, .queue_stats_mapping_set = NULL, .dev_infos_get = enicpmd_dev_info_get, .dev_supported_ptypes_get = enicpmd_dev_supported_ptypes_get, .mtu_set = enicpmd_mtu_set, .vlan_filter_set = NULL, .vlan_tpid_set = NULL, .vlan_offload_set = enicpmd_vlan_offload_set, .vlan_strip_queue_set = NULL, .rx_queue_start = enicpmd_dev_rx_queue_start, .rx_queue_stop = enicpmd_dev_rx_queue_stop, .tx_queue_start = enicpmd_dev_tx_queue_start, .tx_queue_stop = enicpmd_dev_tx_queue_stop, .rx_queue_setup = enicpmd_dev_rx_queue_setup, .rx_queue_release = enicpmd_dev_rx_queue_release, .tx_queue_setup = enicpmd_dev_tx_queue_setup, .tx_queue_release = enicpmd_dev_tx_queue_release, .rx_queue_intr_enable = enicpmd_dev_rx_queue_intr_enable, .rx_queue_intr_disable = enicpmd_dev_rx_queue_intr_disable, .rxq_info_get = enicpmd_dev_rxq_info_get, .txq_info_get = enicpmd_dev_txq_info_get, .rx_burst_mode_get = enicpmd_dev_rx_burst_mode_get, .tx_burst_mode_get = enicpmd_dev_tx_burst_mode_get, .dev_led_on = NULL, .dev_led_off = NULL, .flow_ctrl_get = NULL, .flow_ctrl_set = NULL, .priority_flow_ctrl_set = NULL, .mac_addr_add = enicpmd_add_mac_addr, .mac_addr_remove = enicpmd_remove_mac_addr, .mac_addr_set = enicpmd_set_mac_addr, .set_mc_addr_list = enicpmd_set_mc_addr_list, .filter_ctrl = enicpmd_dev_filter_ctrl, .reta_query = enicpmd_dev_rss_reta_query, .reta_update = enicpmd_dev_rss_reta_update, .rss_hash_conf_get = enicpmd_dev_rss_hash_conf_get, .rss_hash_update = enicpmd_dev_rss_hash_update, .udp_tunnel_port_add = enicpmd_dev_udp_tunnel_port_add, .udp_tunnel_port_del = enicpmd_dev_udp_tunnel_port_del, .fw_version_get = enicpmd_dev_fw_version_get, }; static int enic_parse_zero_one(const char *key, const char *value, void *opaque) { struct enic *enic; bool b; enic = (struct enic *)opaque; if (strcmp(value, "0") == 0) { b = false; } else if (strcmp(value, "1") == 0) { b = true; } else { dev_err(enic, "Invalid value for %s" ": expected=0|1 given=%s\n", key, value); return -EINVAL; } if (strcmp(key, ENIC_DEVARG_DISABLE_OVERLAY) == 0) enic->disable_overlay = b; if (strcmp(key, ENIC_DEVARG_ENABLE_AVX2_RX) == 0) enic->enable_avx2_rx = b; if (strcmp(key, ENIC_DEVARG_GENEVE_OPT) == 0) enic->geneve_opt_request = b; return 0; } static int enic_parse_ig_vlan_rewrite(__rte_unused const char *key, const char *value, void *opaque) { struct enic *enic; enic = (struct enic *)opaque; if (strcmp(value, "trunk") == 0) { /* Trunk mode: always tag */ enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_DEFAULT_TRUNK; } else if (strcmp(value, "untag") == 0) { /* Untag default VLAN mode: untag if VLAN = default VLAN */ enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_UNTAG_DEFAULT_VLAN; } else if (strcmp(value, "priority") == 0) { /* * Priority-tag default VLAN mode: priority tag (VLAN header * with ID=0) if VLAN = default */ enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_PRIORITY_TAG_DEFAULT_VLAN; } else if (strcmp(value, "pass") == 0) { /* Pass through mode: do not touch tags */ enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_PASS_THRU; } else { dev_err(enic, "Invalid value for " ENIC_DEVARG_IG_VLAN_REWRITE ": expected=trunk|untag|priority|pass given=%s\n", value); return -EINVAL; } return 0; } static int enic_check_devargs(struct rte_eth_dev *dev) { static const char *const valid_keys[] = { ENIC_DEVARG_DISABLE_OVERLAY, ENIC_DEVARG_ENABLE_AVX2_RX, ENIC_DEVARG_GENEVE_OPT, ENIC_DEVARG_IG_VLAN_REWRITE, ENIC_DEVARG_REPRESENTOR, NULL}; struct enic *enic = pmd_priv(dev); struct rte_kvargs *kvlist; ENICPMD_FUNC_TRACE(); enic->disable_overlay = false; enic->enable_avx2_rx = false; enic->geneve_opt_request = false; enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_PASS_THRU; if (!dev->device->devargs) return 0; kvlist = rte_kvargs_parse(dev->device->devargs->args, valid_keys); if (!kvlist) return -EINVAL; if (rte_kvargs_process(kvlist, ENIC_DEVARG_DISABLE_OVERLAY, enic_parse_zero_one, enic) < 0 || rte_kvargs_process(kvlist, ENIC_DEVARG_ENABLE_AVX2_RX, enic_parse_zero_one, enic) < 0 || rte_kvargs_process(kvlist, ENIC_DEVARG_GENEVE_OPT, enic_parse_zero_one, enic) < 0 || rte_kvargs_process(kvlist, ENIC_DEVARG_IG_VLAN_REWRITE, enic_parse_ig_vlan_rewrite, enic) < 0) { rte_kvargs_free(kvlist); return -EINVAL; } rte_kvargs_free(kvlist); return 0; } /* Initialize the driver for PF */ static int eth_enic_dev_init(struct rte_eth_dev *eth_dev, void *init_params __rte_unused) { struct rte_pci_device *pdev; struct rte_pci_addr *addr; struct enic *enic = pmd_priv(eth_dev); int err; ENICPMD_FUNC_TRACE(); eth_dev->dev_ops = &enicpmd_eth_dev_ops; eth_dev->rx_queue_count = enicpmd_dev_rx_queue_count; eth_dev->rx_pkt_burst = &enic_recv_pkts; eth_dev->tx_pkt_burst = &enic_xmit_pkts; eth_dev->tx_pkt_prepare = &enic_prep_pkts; if (rte_eal_process_type() != RTE_PROC_PRIMARY) { enic_pick_tx_handler(eth_dev); enic_pick_rx_handler(eth_dev); return 0; } /* Only the primary sets up adapter and other data in shared memory */ enic->port_id = eth_dev->data->port_id; enic->rte_dev = eth_dev; enic->dev_data = eth_dev->data; pdev = RTE_ETH_DEV_TO_PCI(eth_dev); rte_eth_copy_pci_info(eth_dev, pdev); eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; enic->pdev = pdev; addr = &pdev->addr; snprintf(enic->bdf_name, ENICPMD_BDF_LENGTH, "%04x:%02x:%02x.%x", addr->domain, addr->bus, addr->devid, addr->function); err = enic_check_devargs(eth_dev); if (err) return err; err = enic_probe(enic); if (!err && enic->fm) { err = enic_fm_allocate_switch_domain(enic); if (err) ENICPMD_LOG(ERR, "failed to allocate switch domain id"); } return err; } static int eth_enic_dev_uninit(struct rte_eth_dev *eth_dev) { struct enic *enic = pmd_priv(eth_dev); int err; ENICPMD_FUNC_TRACE(); eth_dev->device = NULL; eth_dev->intr_handle = NULL; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; err = rte_eth_switch_domain_free(enic->switch_domain_id); if (err) ENICPMD_LOG(WARNING, "failed to free switch domain: %d", err); return 0; } static int eth_enic_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { char name[RTE_ETH_NAME_MAX_LEN]; struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 }; struct rte_eth_dev *pf_ethdev; struct enic *pf_enic; int i, retval; ENICPMD_FUNC_TRACE(); if (pci_dev->device.devargs) { retval = rte_eth_devargs_parse(pci_dev->device.devargs->args, ð_da); if (retval) return retval; } retval = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name, sizeof(struct enic), eth_dev_pci_specific_init, pci_dev, eth_enic_dev_init, NULL); if (retval || eth_da.nb_representor_ports < 1) return retval; /* Probe VF representor */ pf_ethdev = rte_eth_dev_allocated(pci_dev->device.name); if (pf_ethdev == NULL) return -ENODEV; /* Representors require flowman */ pf_enic = pmd_priv(pf_ethdev); if (pf_enic->fm == NULL) { ENICPMD_LOG(ERR, "VF representors require flowman"); return -ENOTSUP; } /* * For now representors imply switchdev, as firmware does not support * legacy mode SR-IOV */ pf_enic->switchdev_mode = 1; /* Calculate max VF ID before initializing representor*/ pf_enic->max_vf_id = 0; for (i = 0; i < eth_da.nb_representor_ports; i++) { pf_enic->max_vf_id = RTE_MAX(pf_enic->max_vf_id, eth_da.representor_ports[i]); } for (i = 0; i < eth_da.nb_representor_ports; i++) { struct enic_vf_representor representor; representor.vf_id = eth_da.representor_ports[i]; representor.switch_domain_id = pmd_priv(pf_ethdev)->switch_domain_id; representor.pf = pmd_priv(pf_ethdev); snprintf(name, sizeof(name), "net_%s_representor_%d", pci_dev->device.name, eth_da.representor_ports[i]); retval = rte_eth_dev_create(&pci_dev->device, name, sizeof(struct enic_vf_representor), NULL, NULL, enic_vf_representor_init, &representor); if (retval) { ENICPMD_LOG(ERR, "failed to create enic vf representor %s", name); return retval; } } return 0; } static int eth_enic_pci_remove(struct rte_pci_device *pci_dev) { struct rte_eth_dev *ethdev; ENICPMD_FUNC_TRACE(); ethdev = rte_eth_dev_allocated(pci_dev->device.name); if (!ethdev) return -ENODEV; if (ethdev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR) return rte_eth_dev_destroy(ethdev, enic_vf_representor_uninit); else return rte_eth_dev_destroy(ethdev, eth_enic_dev_uninit); } static struct rte_pci_driver rte_enic_pmd = { .id_table = pci_id_enic_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, .probe = eth_enic_pci_probe, .remove = eth_enic_pci_remove, }; int dev_is_enic(struct rte_eth_dev *dev) { return dev->device->driver == &rte_enic_pmd.driver; } RTE_PMD_REGISTER_PCI(net_enic, rte_enic_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_enic, pci_id_enic_map); RTE_PMD_REGISTER_KMOD_DEP(net_enic, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_enic, ENIC_DEVARG_DISABLE_OVERLAY "=0|1 " ENIC_DEVARG_ENABLE_AVX2_RX "=0|1 " ENIC_DEVARG_GENEVE_OPT "=0|1 " ENIC_DEVARG_IG_VLAN_REWRITE "=trunk|untag|priority|pass");