/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1000_logs.h" #include "base/e1000_api.h" #include "e1000_ethdev.h" #include "igb_regs.h" /* * Default values for port configuration */ #define IGB_DEFAULT_RX_FREE_THRESH 32 #define IGB_DEFAULT_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : 8) #define IGB_DEFAULT_RX_HTHRESH 8 #define IGB_DEFAULT_RX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 4) #define IGB_DEFAULT_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8) #define IGB_DEFAULT_TX_HTHRESH 1 #define IGB_DEFAULT_TX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 16) /* Bit shift and mask */ #define IGB_4_BIT_WIDTH (CHAR_BIT / 2) #define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t) #define IGB_8_BIT_WIDTH CHAR_BIT #define IGB_8_BIT_MASK UINT8_MAX /* Additional timesync values. */ #define E1000_CYCLECOUNTER_MASK 0xffffffffffffffffULL #define E1000_ETQF_FILTER_1588 3 #define IGB_82576_TSYNC_SHIFT 16 #define E1000_INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT) #define E1000_INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT) #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000 #define E1000_VTIVAR_MISC 0x01740 #define E1000_VTIVAR_MISC_MASK 0xFF #define E1000_VTIVAR_VALID 0x80 #define E1000_VTIVAR_MISC_MAILBOX 0 #define E1000_VTIVAR_MISC_INTR_MASK 0x3 /* External VLAN Enable bit mask */ #define E1000_CTRL_EXT_EXT_VLAN (1 << 26) /* External VLAN Ether Type bit mask and shift */ #define E1000_VET_VET_EXT 0xFFFF0000 #define E1000_VET_VET_EXT_SHIFT 16 /* MSI-X other interrupt vector */ #define IGB_MSIX_OTHER_INTR_VEC 0 static int eth_igb_configure(struct rte_eth_dev *dev); static int eth_igb_start(struct rte_eth_dev *dev); static int eth_igb_stop(struct rte_eth_dev *dev); static int eth_igb_dev_set_link_up(struct rte_eth_dev *dev); static int eth_igb_dev_set_link_down(struct rte_eth_dev *dev); static int eth_igb_close(struct rte_eth_dev *dev); static int eth_igb_reset(struct rte_eth_dev *dev); static int eth_igb_promiscuous_enable(struct rte_eth_dev *dev); static int eth_igb_promiscuous_disable(struct rte_eth_dev *dev); static int eth_igb_allmulticast_enable(struct rte_eth_dev *dev); static int eth_igb_allmulticast_disable(struct rte_eth_dev *dev); static int eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete); static int eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats); static int eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n); static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, uint64_t *values, unsigned int n); static int eth_igb_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int size); static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, const uint64_t *ids, unsigned int limit); static int eth_igb_stats_reset(struct rte_eth_dev *dev); static int eth_igb_xstats_reset(struct rte_eth_dev *dev); static int eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size); static int eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev); static int eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on); static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev); static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev); static int eth_igb_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *handle); static void eth_igb_interrupt_handler(void *param); static int igb_hardware_init(struct e1000_hw *hw); static void igb_hw_control_acquire(struct e1000_hw *hw); static void igb_hw_control_release(struct e1000_hw *hw); static void igb_init_manageability(struct e1000_hw *hw); static void igb_release_manageability(struct e1000_hw *hw); static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type, uint16_t tpid_id); static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask); static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev); static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev); static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev); static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev); static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev); static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev); static int eth_igb_led_on(struct rte_eth_dev *dev); static int eth_igb_led_off(struct rte_eth_dev *dev); static void igb_intr_disable(struct rte_eth_dev *dev); static int igb_get_rx_buffer_size(struct e1000_hw *hw); static int eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, uint32_t index, uint32_t pool); static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index); static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr); static void igbvf_intr_disable(struct e1000_hw *hw); static int igbvf_dev_configure(struct rte_eth_dev *dev); static int igbvf_dev_start(struct rte_eth_dev *dev); static int igbvf_dev_stop(struct rte_eth_dev *dev); static int igbvf_dev_close(struct rte_eth_dev *dev); static int igbvf_promiscuous_enable(struct rte_eth_dev *dev); static int igbvf_promiscuous_disable(struct rte_eth_dev *dev); static int igbvf_allmulticast_enable(struct rte_eth_dev *dev); static int igbvf_allmulticast_disable(struct rte_eth_dev *dev); static int eth_igbvf_link_update(struct e1000_hw *hw); static int eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats); static int eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n); static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned limit); static int eth_igbvf_stats_reset(struct rte_eth_dev *dev); static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on); static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on); static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr); static int igbvf_get_reg_length(struct rte_eth_dev *dev); static int igbvf_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs); static int eth_igb_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int eth_igb_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int igb_add_2tuple_filter(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter); static int igb_remove_2tuple_filter(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter); static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter); static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter); static int eth_igb_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg); static int eth_igb_get_reg_length(struct rte_eth_dev *dev); static int eth_igb_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs); static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev); static int eth_igb_get_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *eeprom); static int eth_igb_set_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *eeprom); static int eth_igb_get_module_info(struct rte_eth_dev *dev, struct rte_eth_dev_module_info *modinfo); static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *info); static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr); static int igb_timesync_enable(struct rte_eth_dev *dev); static int igb_timesync_disable(struct rte_eth_dev *dev); static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp, uint32_t flags); static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp); static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta); static int igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *timestamp); static int igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *timestamp); static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction, uint8_t queue, uint8_t msix_vector); static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector, uint8_t index, uint8_t offset); static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev); static void eth_igbvf_interrupt_handler(void *param); static void igbvf_mbx_process(struct rte_eth_dev *dev); static int igb_filter_restore(struct rte_eth_dev *dev); /* * Define VF Stats MACRO for Non "cleared on read" register */ #define UPDATE_VF_STAT(reg, last, cur) \ { \ u32 latest = E1000_READ_REG(hw, reg); \ cur += (latest - last) & UINT_MAX; \ last = latest; \ } #define IGB_FC_PAUSE_TIME 0x0680 #define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */ #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */ #define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */ static enum e1000_fc_mode igb_fc_setting = e1000_fc_full; /* * The set of PCI devices this driver supports */ static const struct rte_pci_id pci_id_igb_map[] = { { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) }, { .vendor_id = 0, /* sentinel */ }, }; /* * The set of PCI devices this driver supports (for 82576&I350 VF) */ static const struct rte_pci_id pci_id_igbvf_map[] = { { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) }, { .vendor_id = 0, /* sentinel */ }, }; static const struct rte_eth_desc_lim rx_desc_lim = { .nb_max = E1000_MAX_RING_DESC, .nb_min = E1000_MIN_RING_DESC, .nb_align = IGB_RXD_ALIGN, }; static const struct rte_eth_desc_lim tx_desc_lim = { .nb_max = E1000_MAX_RING_DESC, .nb_min = E1000_MIN_RING_DESC, .nb_align = IGB_RXD_ALIGN, .nb_seg_max = IGB_TX_MAX_SEG, .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG, }; static const struct eth_dev_ops eth_igb_ops = { .dev_configure = eth_igb_configure, .dev_start = eth_igb_start, .dev_stop = eth_igb_stop, .dev_set_link_up = eth_igb_dev_set_link_up, .dev_set_link_down = eth_igb_dev_set_link_down, .dev_close = eth_igb_close, .dev_reset = eth_igb_reset, .promiscuous_enable = eth_igb_promiscuous_enable, .promiscuous_disable = eth_igb_promiscuous_disable, .allmulticast_enable = eth_igb_allmulticast_enable, .allmulticast_disable = eth_igb_allmulticast_disable, .link_update = eth_igb_link_update, .stats_get = eth_igb_stats_get, .xstats_get = eth_igb_xstats_get, .xstats_get_by_id = eth_igb_xstats_get_by_id, .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id, .xstats_get_names = eth_igb_xstats_get_names, .stats_reset = eth_igb_stats_reset, .xstats_reset = eth_igb_xstats_reset, .fw_version_get = eth_igb_fw_version_get, .dev_infos_get = eth_igb_infos_get, .dev_supported_ptypes_get = eth_igb_supported_ptypes_get, .mtu_set = eth_igb_mtu_set, .vlan_filter_set = eth_igb_vlan_filter_set, .vlan_tpid_set = eth_igb_vlan_tpid_set, .vlan_offload_set = eth_igb_vlan_offload_set, .rx_queue_setup = eth_igb_rx_queue_setup, .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable, .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable, .rx_queue_release = eth_igb_rx_queue_release, .tx_queue_setup = eth_igb_tx_queue_setup, .tx_queue_release = eth_igb_tx_queue_release, .tx_done_cleanup = eth_igb_tx_done_cleanup, .dev_led_on = eth_igb_led_on, .dev_led_off = eth_igb_led_off, .flow_ctrl_get = eth_igb_flow_ctrl_get, .flow_ctrl_set = eth_igb_flow_ctrl_set, .mac_addr_add = eth_igb_rar_set, .mac_addr_remove = eth_igb_rar_clear, .mac_addr_set = eth_igb_default_mac_addr_set, .reta_update = eth_igb_rss_reta_update, .reta_query = eth_igb_rss_reta_query, .rss_hash_update = eth_igb_rss_hash_update, .rss_hash_conf_get = eth_igb_rss_hash_conf_get, .filter_ctrl = eth_igb_filter_ctrl, .set_mc_addr_list = eth_igb_set_mc_addr_list, .rxq_info_get = igb_rxq_info_get, .txq_info_get = igb_txq_info_get, .timesync_enable = igb_timesync_enable, .timesync_disable = igb_timesync_disable, .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp, .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp, .get_reg = eth_igb_get_regs, .get_eeprom_length = eth_igb_get_eeprom_length, .get_eeprom = eth_igb_get_eeprom, .set_eeprom = eth_igb_set_eeprom, .get_module_info = eth_igb_get_module_info, .get_module_eeprom = eth_igb_get_module_eeprom, .timesync_adjust_time = igb_timesync_adjust_time, .timesync_read_time = igb_timesync_read_time, .timesync_write_time = igb_timesync_write_time, }; /* * dev_ops for virtual function, bare necessities for basic vf * operation have been implemented */ static const struct eth_dev_ops igbvf_eth_dev_ops = { .dev_configure = igbvf_dev_configure, .dev_start = igbvf_dev_start, .dev_stop = igbvf_dev_stop, .dev_close = igbvf_dev_close, .promiscuous_enable = igbvf_promiscuous_enable, .promiscuous_disable = igbvf_promiscuous_disable, .allmulticast_enable = igbvf_allmulticast_enable, .allmulticast_disable = igbvf_allmulticast_disable, .link_update = eth_igb_link_update, .stats_get = eth_igbvf_stats_get, .xstats_get = eth_igbvf_xstats_get, .xstats_get_names = eth_igbvf_xstats_get_names, .stats_reset = eth_igbvf_stats_reset, .xstats_reset = eth_igbvf_stats_reset, .vlan_filter_set = igbvf_vlan_filter_set, .dev_infos_get = eth_igbvf_infos_get, .dev_supported_ptypes_get = eth_igb_supported_ptypes_get, .rx_queue_setup = eth_igb_rx_queue_setup, .rx_queue_release = eth_igb_rx_queue_release, .tx_queue_setup = eth_igb_tx_queue_setup, .tx_queue_release = eth_igb_tx_queue_release, .tx_done_cleanup = eth_igb_tx_done_cleanup, .set_mc_addr_list = eth_igb_set_mc_addr_list, .rxq_info_get = igb_rxq_info_get, .txq_info_get = igb_txq_info_get, .mac_addr_set = igbvf_default_mac_addr_set, .get_reg = igbvf_get_regs, }; /* store statistics names and its offset in stats structure */ struct rte_igb_xstats_name_off { char name[RTE_ETH_XSTATS_NAME_SIZE]; unsigned offset; }; static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = { {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)}, {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)}, {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)}, {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)}, {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)}, {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)}, {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats, ecol)}, {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)}, {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)}, {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)}, {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)}, {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)}, {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)}, {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)}, {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)}, {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)}, {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)}, {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats, fcruc)}, {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)}, {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)}, {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)}, {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)}, {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats, prc1023)}, {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats, prc1522)}, {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)}, {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)}, {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)}, {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)}, {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)}, {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)}, {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)}, {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)}, {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)}, {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)}, {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)}, {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)}, {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)}, {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)}, {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)}, {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)}, {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)}, {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats, ptc1023)}, {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats, ptc1522)}, {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)}, {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)}, {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)}, {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)}, {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)}, {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)}, {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)}, {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)}, }; #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \ sizeof(rte_igb_stats_strings[0])) static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = { {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)}, {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)}, {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)}, {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)}, {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)}, }; #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \ sizeof(rte_igbvf_stats_strings[0])) static inline void igb_intr_enable(struct rte_eth_dev *dev) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; if (rte_intr_allow_others(intr_handle) && dev->data->dev_conf.intr_conf.lsc != 0) { E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC); } E1000_WRITE_REG(hw, E1000_IMS, intr->mask); E1000_WRITE_FLUSH(hw); } static void igb_intr_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; if (rte_intr_allow_others(intr_handle) && dev->data->dev_conf.intr_conf.lsc != 0) { E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC); } E1000_WRITE_REG(hw, E1000_IMC, ~0); E1000_WRITE_FLUSH(hw); } static inline void igbvf_intr_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* only for mailbox */ E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX); E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX); E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX); E1000_WRITE_FLUSH(hw); } /* only for mailbox now. If RX/TX needed, should extend this function. */ static void igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector) { uint32_t tmp = 0; /* mailbox */ tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK); tmp |= E1000_VTIVAR_VALID; E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp); } static void eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* Configure VF other cause ivar */ igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX); } static inline int32_t igb_pf_reset_hw(struct e1000_hw *hw) { uint32_t ctrl_ext; int32_t status; status = e1000_reset_hw(hw); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); /* Set PF Reset Done bit so PF/VF Mail Ops can work */ ctrl_ext |= E1000_CTRL_EXT_PFRSTD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); return status; } static void igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = pci_dev->id.subsystem_device_id; e1000_set_mac_type(hw); /* need to check if it is a vf device below */ } static int igb_reset_swfw_lock(struct e1000_hw *hw) { int ret_val; /* * Do mac ops initialization manually here, since we will need * some function pointers set by this call. */ ret_val = e1000_init_mac_params(hw); if (ret_val) return ret_val; /* * SMBI lock should not fail in this early stage. If this is the case, * it is due to an improper exit of the application. * So force the release of the faulty lock. */ if (e1000_get_hw_semaphore_generic(hw) < 0) { PMD_DRV_LOG(DEBUG, "SMBI lock released"); } e1000_put_hw_semaphore_generic(hw); if (hw->mac.ops.acquire_swfw_sync != NULL) { uint16_t mask; /* * Phy lock should not fail in this early stage. If this is the case, * it is due to an improper exit of the application. * So force the release of the faulty lock. */ mask = E1000_SWFW_PHY0_SM << hw->bus.func; if (hw->bus.func > E1000_FUNC_1) mask <<= 2; if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released", hw->bus.func); } hw->mac.ops.release_swfw_sync(hw, mask); /* * This one is more tricky since it is common to all ports; but * swfw_sync retries last long enough (1s) to be almost sure that if * lock can not be taken it is due to an improper lock of the * semaphore. */ mask = E1000_SWFW_EEP_SM; if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { PMD_DRV_LOG(DEBUG, "SWFW common locks released"); } hw->mac.ops.release_swfw_sync(hw, mask); } return E1000_SUCCESS; } /* Remove all ntuple filters of the device */ static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private); struct e1000_5tuple_filter *p_5tuple; struct e1000_2tuple_filter *p_2tuple; while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) { TAILQ_REMOVE(&filter_info->fivetuple_list, p_5tuple, entries); rte_free(p_5tuple); } filter_info->fivetuple_mask = 0; while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) { TAILQ_REMOVE(&filter_info->twotuple_list, p_2tuple, entries); rte_free(p_2tuple); } filter_info->twotuple_mask = 0; return 0; } /* Remove all flex filters of the device */ static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private); struct e1000_flex_filter *p_flex; while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) { TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries); rte_free(p_flex); } filter_info->flex_mask = 0; return 0; } static int eth_igb_dev_init(struct rte_eth_dev *eth_dev) { int error = 0; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private); struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private); struct e1000_adapter *adapter = E1000_DEV_PRIVATE(eth_dev->data->dev_private); uint32_t ctrl_ext; eth_dev->dev_ops = ð_igb_ops; eth_dev->rx_queue_count = eth_igb_rx_queue_count; eth_dev->rx_descriptor_done = eth_igb_rx_descriptor_done; eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status; eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status; eth_dev->rx_pkt_burst = ð_igb_recv_pkts; eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; eth_dev->tx_pkt_prepare = ð_igb_prep_pkts; /* for secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY){ if (eth_dev->data->scattered_rx) eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; return 0; } rte_eth_copy_pci_info(eth_dev, pci_dev); eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; hw->hw_addr= (void *)pci_dev->mem_resource[0].addr; igb_identify_hardware(eth_dev, pci_dev); if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) { error = -EIO; goto err_late; } e1000_get_bus_info(hw); /* Reset any pending lock */ if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) { error = -EIO; goto err_late; } /* Finish initialization */ if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) { error = -EIO; goto err_late; } hw->mac.autoneg = 1; hw->phy.autoneg_wait_to_complete = 0; hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; /* Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = 0; /* AUTO_ALL_MODES */ hw->phy.disable_polarity_correction = 0; hw->phy.ms_type = e1000_ms_hw_default; } /* * Start from a known state, this is important in reading the nvm * and mac from that. */ igb_pf_reset_hw(hw); /* Make sure we have a good EEPROM before we read from it */ if (e1000_validate_nvm_checksum(hw) < 0) { /* * Some PCI-E parts fail the first check due to * the link being in sleep state, call it again, * if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(hw) < 0) { PMD_INIT_LOG(ERR, "EEPROM checksum invalid"); error = -EIO; goto err_late; } } /* Read the permanent MAC address out of the EEPROM */ if (e1000_read_mac_addr(hw) != 0) { PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address"); error = -EIO; goto err_late; } /* Allocate memory for storing MAC addresses */ eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to " "store MAC addresses", RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count); error = -ENOMEM; goto err_late; } /* Copy the permanent MAC address */ rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); /* initialize the vfta */ memset(shadow_vfta, 0, sizeof(*shadow_vfta)); /* Now initialize the hardware */ if (igb_hardware_init(hw) != 0) { PMD_INIT_LOG(ERR, "Hardware initialization failed"); rte_free(eth_dev->data->mac_addrs); eth_dev->data->mac_addrs = NULL; error = -ENODEV; goto err_late; } hw->mac.get_link_status = 1; adapter->stopped = 0; /* Indicate SOL/IDER usage */ if (e1000_check_reset_block(hw) < 0) { PMD_INIT_LOG(ERR, "PHY reset is blocked due to" "SOL/IDER session"); } /* initialize PF if max_vfs not zero */ igb_pf_host_init(eth_dev); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); /* Set PF Reset Done bit so PF/VF Mail Ops can work */ ctrl_ext |= E1000_CTRL_EXT_PFRSTD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x", eth_dev->data->port_id, pci_dev->id.vendor_id, pci_dev->id.device_id); rte_intr_callback_register(&pci_dev->intr_handle, eth_igb_interrupt_handler, (void *)eth_dev); /* enable uio/vfio intr/eventfd mapping */ rte_intr_enable(&pci_dev->intr_handle); /* enable support intr */ igb_intr_enable(eth_dev); eth_igb_dev_set_link_down(eth_dev); /* initialize filter info */ memset(filter_info, 0, sizeof(struct e1000_filter_info)); TAILQ_INIT(&filter_info->flex_list); TAILQ_INIT(&filter_info->twotuple_list); TAILQ_INIT(&filter_info->fivetuple_list); TAILQ_INIT(&igb_filter_ntuple_list); TAILQ_INIT(&igb_filter_ethertype_list); TAILQ_INIT(&igb_filter_syn_list); TAILQ_INIT(&igb_filter_flex_list); TAILQ_INIT(&igb_filter_rss_list); TAILQ_INIT(&igb_flow_list); return 0; err_late: igb_hw_control_release(hw); return error; } static int eth_igb_dev_uninit(struct rte_eth_dev *eth_dev) { PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; eth_igb_close(eth_dev); return 0; } /* * Virtual Function device init */ static int eth_igbvf_dev_init(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev; struct rte_intr_handle *intr_handle; struct e1000_adapter *adapter = E1000_DEV_PRIVATE(eth_dev->data->dev_private); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); int diag; struct rte_ether_addr *perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr; PMD_INIT_FUNC_TRACE(); eth_dev->dev_ops = &igbvf_eth_dev_ops; eth_dev->rx_descriptor_done = eth_igb_rx_descriptor_done; eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status; eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status; eth_dev->rx_pkt_burst = ð_igb_recv_pkts; eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; eth_dev->tx_pkt_prepare = ð_igb_prep_pkts; /* for secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY){ if (eth_dev->data->scattered_rx) eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; return 0; } pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); rte_eth_copy_pci_info(eth_dev, pci_dev); eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; hw->device_id = pci_dev->id.device_id; hw->vendor_id = pci_dev->id.vendor_id; hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; adapter->stopped = 0; /* Initialize the shared code (base driver) */ diag = e1000_setup_init_funcs(hw, TRUE); if (diag != 0) { PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d", diag); return -EIO; } /* init_mailbox_params */ hw->mbx.ops.init_params(hw); /* Disable the interrupts for VF */ igbvf_intr_disable(hw); diag = hw->mac.ops.reset_hw(hw); /* Allocate memory for storing MAC addresses */ eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to store MAC " "addresses", RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count); return -ENOMEM; } /* Generate a random MAC address, if none was assigned by PF. */ if (rte_is_zero_ether_addr(perm_addr)) { rte_eth_random_addr(perm_addr->addr_bytes); PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF"); PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address " "%02x:%02x:%02x:%02x:%02x:%02x", perm_addr->addr_bytes[0], perm_addr->addr_bytes[1], perm_addr->addr_bytes[2], perm_addr->addr_bytes[3], perm_addr->addr_bytes[4], perm_addr->addr_bytes[5]); } diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0); if (diag) { rte_free(eth_dev->data->mac_addrs); eth_dev->data->mac_addrs = NULL; return diag; } /* Copy the permanent MAC address */ rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr, ð_dev->data->mac_addrs[0]); PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x " "mac.type=%s", eth_dev->data->port_id, pci_dev->id.vendor_id, pci_dev->id.device_id, "igb_mac_82576_vf"); intr_handle = &pci_dev->intr_handle; rte_intr_callback_register(intr_handle, eth_igbvf_interrupt_handler, eth_dev); return 0; } static int eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev) { PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; igbvf_dev_close(eth_dev); return 0; } static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct e1000_adapter), eth_igb_dev_init); } static int eth_igb_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit); } static struct rte_pci_driver rte_igb_pmd = { .id_table = pci_id_igb_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, .probe = eth_igb_pci_probe, .remove = eth_igb_pci_remove, }; static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct e1000_adapter), eth_igbvf_dev_init); } static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit); } /* * virtual function driver struct */ static struct rte_pci_driver rte_igbvf_pmd = { .id_table = pci_id_igbvf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING, .probe = eth_igbvf_pci_probe, .remove = eth_igbvf_pci_remove, }; static void igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* RCTL: enable VLAN filter since VMDq always use VLAN filter */ uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static int igb_check_mq_mode(struct rte_eth_dev *dev) { enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode; enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode; uint16_t nb_rx_q = dev->data->nb_rx_queues; uint16_t nb_tx_q = dev->data->nb_tx_queues; if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) || tx_mq_mode == ETH_MQ_TX_DCB || tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) { PMD_INIT_LOG(ERR, "DCB mode is not supported."); return -EINVAL; } if (RTE_ETH_DEV_SRIOV(dev).active != 0) { /* Check multi-queue mode. * To no break software we accept ETH_MQ_RX_NONE as this might * be used to turn off VLAN filter. */ if (rx_mq_mode == ETH_MQ_RX_NONE || rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) { dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY; RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1; } else { /* Only support one queue on VFs. * RSS together with SRIOV is not supported. */ PMD_INIT_LOG(ERR, "SRIOV is active," " wrong mq_mode rx %d.", rx_mq_mode); return -EINVAL; } /* TX mode is not used here, so mode might be ignored.*/ if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) { /* SRIOV only works in VMDq enable mode */ PMD_INIT_LOG(WARNING, "SRIOV is active," " TX mode %d is not supported. " " Driver will behave as %d mode.", tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY); } /* check valid queue number */ if ((nb_rx_q > 1) || (nb_tx_q > 1)) { PMD_INIT_LOG(ERR, "SRIOV is active," " only support one queue on VFs."); return -EINVAL; } } else { /* To no break software that set invalid mode, only display * warning if invalid mode is used. */ if (rx_mq_mode != ETH_MQ_RX_NONE && rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY && rx_mq_mode != ETH_MQ_RX_RSS) { /* RSS together with VMDq not supported*/ PMD_INIT_LOG(ERR, "RX mode %d is not supported.", rx_mq_mode); return -EINVAL; } if (tx_mq_mode != ETH_MQ_TX_NONE && tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) { PMD_INIT_LOG(WARNING, "TX mode %d is not supported." " Due to txmode is meaningless in this" " driver, just ignore.", tx_mq_mode); } } return 0; } static int eth_igb_configure(struct rte_eth_dev *dev) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); int ret; PMD_INIT_FUNC_TRACE(); if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH; /* multipe queue mode checking */ ret = igb_check_mq_mode(dev); if (ret != 0) { PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.", ret); return ret; } intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; PMD_INIT_FUNC_TRACE(); return 0; } static void eth_igb_rxtx_control(struct rte_eth_dev *dev, bool enable) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t tctl, rctl; tctl = E1000_READ_REG(hw, E1000_TCTL); rctl = E1000_READ_REG(hw, E1000_RCTL); if (enable) { /* enable Tx/Rx */ tctl |= E1000_TCTL_EN; rctl |= E1000_RCTL_EN; } else { /* disable Tx/Rx */ tctl &= ~E1000_TCTL_EN; rctl &= ~E1000_RCTL_EN; } E1000_WRITE_REG(hw, E1000_TCTL, tctl); E1000_WRITE_REG(hw, E1000_RCTL, rctl); E1000_WRITE_FLUSH(hw); } static int eth_igb_start(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_adapter *adapter = E1000_DEV_PRIVATE(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; int ret, mask; uint32_t intr_vector = 0; uint32_t ctrl_ext; uint32_t *speeds; int num_speeds; bool autoneg; PMD_INIT_FUNC_TRACE(); /* disable uio/vfio intr/eventfd mapping */ rte_intr_disable(intr_handle); /* Power up the phy. Needed to make the link go Up */ eth_igb_dev_set_link_up(dev); /* * Packet Buffer Allocation (PBA) * Writing PBA sets the receive portion of the buffer * the remainder is used for the transmit buffer. */ if (hw->mac.type == e1000_82575) { uint32_t pba; pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ E1000_WRITE_REG(hw, E1000_PBA, pba); } /* Put the address into the Receive Address Array */ e1000_rar_set(hw, hw->mac.addr, 0); /* Initialize the hardware */ if (igb_hardware_init(hw)) { PMD_INIT_LOG(ERR, "Unable to initialize the hardware"); return -EIO; } adapter->stopped = 0; E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); /* Set PF Reset Done bit so PF/VF Mail Ops can work */ ctrl_ext |= E1000_CTRL_EXT_PFRSTD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); /* configure PF module if SRIOV enabled */ igb_pf_host_configure(dev); /* check and configure queue intr-vector mapping */ if ((rte_intr_cap_multiple(intr_handle) || !RTE_ETH_DEV_SRIOV(dev).active) && dev->data->dev_conf.intr_conf.rxq != 0) { intr_vector = dev->data->nb_rx_queues; if (rte_intr_efd_enable(intr_handle, intr_vector)) return -1; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (intr_handle->intr_vec == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues" " intr_vec", dev->data->nb_rx_queues); return -ENOMEM; } } /* confiugre msix for rx interrupt */ eth_igb_configure_msix_intr(dev); /* Configure for OS presence */ igb_init_manageability(hw); eth_igb_tx_init(dev); /* This can fail when allocating mbufs for descriptor rings */ ret = eth_igb_rx_init(dev); if (ret) { PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); igb_dev_clear_queues(dev); return ret; } e1000_clear_hw_cntrs_base_generic(hw); /* * VLAN Offload Settings */ mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \ ETH_VLAN_EXTEND_MASK; ret = eth_igb_vlan_offload_set(dev, mask); if (ret) { PMD_INIT_LOG(ERR, "Unable to set vlan offload"); igb_dev_clear_queues(dev); return ret; } if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) { /* Enable VLAN filter since VMDq always use VLAN filter */ igb_vmdq_vlan_hw_filter_enable(dev); } if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) || (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { /* Configure EITR with the maximum possible value (0xFFFF) */ E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF); } /* Setup link speed and duplex */ speeds = &dev->data->dev_conf.link_speeds; if (*speeds == ETH_LINK_SPEED_AUTONEG) { hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; hw->mac.autoneg = 1; } else { num_speeds = 0; autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0; /* Reset */ hw->phy.autoneg_advertised = 0; if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) { num_speeds = -1; goto error_invalid_config; } if (*speeds & ETH_LINK_SPEED_10M_HD) { hw->phy.autoneg_advertised |= ADVERTISE_10_HALF; num_speeds++; } if (*speeds & ETH_LINK_SPEED_10M) { hw->phy.autoneg_advertised |= ADVERTISE_10_FULL; num_speeds++; } if (*speeds & ETH_LINK_SPEED_100M_HD) { hw->phy.autoneg_advertised |= ADVERTISE_100_HALF; num_speeds++; } if (*speeds & ETH_LINK_SPEED_100M) { hw->phy.autoneg_advertised |= ADVERTISE_100_FULL; num_speeds++; } if (*speeds & ETH_LINK_SPEED_1G) { hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL; num_speeds++; } if (num_speeds == 0 || (!autoneg && (num_speeds > 1))) goto error_invalid_config; /* Set/reset the mac.autoneg based on the link speed, * fixed or not */ if (!autoneg) { hw->mac.autoneg = 0; hw->mac.forced_speed_duplex = hw->phy.autoneg_advertised; } else { hw->mac.autoneg = 1; } } e1000_setup_link(hw); if (rte_intr_allow_others(intr_handle)) { /* check if lsc interrupt is enabled */ if (dev->data->dev_conf.intr_conf.lsc != 0) eth_igb_lsc_interrupt_setup(dev, TRUE); else eth_igb_lsc_interrupt_setup(dev, FALSE); } else { rte_intr_callback_unregister(intr_handle, eth_igb_interrupt_handler, (void *)dev); if (dev->data->dev_conf.intr_conf.lsc != 0) PMD_INIT_LOG(INFO, "lsc won't enable because of" " no intr multiplex"); } /* check if rxq interrupt is enabled */ if (dev->data->dev_conf.intr_conf.rxq != 0 && rte_intr_dp_is_en(intr_handle)) eth_igb_rxq_interrupt_setup(dev); /* enable uio/vfio intr/eventfd mapping */ rte_intr_enable(intr_handle); /* resume enabled intr since hw reset */ igb_intr_enable(dev); /* restore all types filter */ igb_filter_restore(dev); eth_igb_rxtx_control(dev, true); eth_igb_link_update(dev, 0); PMD_INIT_LOG(DEBUG, "<<"); return 0; error_invalid_config: PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u", dev->data->dev_conf.link_speeds, dev->data->port_id); igb_dev_clear_queues(dev); return -EINVAL; } /********************************************************************* * * This routine disables all traffic on the adapter by issuing a * global reset on the MAC. * **********************************************************************/ static int eth_igb_stop(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_eth_link link; struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct e1000_adapter *adapter = E1000_DEV_PRIVATE(dev->data->dev_private); if (adapter->stopped) return 0; eth_igb_rxtx_control(dev, false); igb_intr_disable(dev); /* disable intr eventfd mapping */ rte_intr_disable(intr_handle); igb_pf_reset_hw(hw); E1000_WRITE_REG(hw, E1000_WUC, 0); /* Set bit for Go Link disconnect if PHY reset is not blocked */ if (hw->mac.type >= e1000_82580 && (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) { uint32_t phpm_reg; phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); phpm_reg |= E1000_82580_PM_GO_LINKD; E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); } /* Power down the phy. Needed to make the link go Down */ eth_igb_dev_set_link_down(dev); igb_dev_clear_queues(dev); /* clear the recorded link status */ memset(&link, 0, sizeof(link)); rte_eth_linkstatus_set(dev, &link); if (!rte_intr_allow_others(intr_handle)) /* resume to the default handler */ rte_intr_callback_register(intr_handle, eth_igb_interrupt_handler, (void *)dev); /* Clean datapath event and queue/vec mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec != NULL) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } adapter->stopped = true; dev->data->dev_started = 0; return 0; } static int eth_igb_dev_set_link_up(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (hw->phy.media_type == e1000_media_type_copper) e1000_power_up_phy(hw); else e1000_power_up_fiber_serdes_link(hw); return 0; } static int eth_igb_dev_set_link_down(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (hw->phy.media_type == e1000_media_type_copper) e1000_power_down_phy(hw); else e1000_shutdown_fiber_serdes_link(hw); return 0; } static int eth_igb_close(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_link link; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; ret = eth_igb_stop(dev); e1000_phy_hw_reset(hw); igb_release_manageability(hw); igb_hw_control_release(hw); /* Clear bit for Go Link disconnect if PHY reset is not blocked */ if (hw->mac.type >= e1000_82580 && (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) { uint32_t phpm_reg; phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); phpm_reg &= ~E1000_82580_PM_GO_LINKD; E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); } igb_dev_free_queues(dev); if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } memset(&link, 0, sizeof(link)); rte_eth_linkstatus_set(dev, &link); /* Reset any pending lock */ igb_reset_swfw_lock(hw); /* uninitialize PF if max_vfs not zero */ igb_pf_host_uninit(dev); rte_intr_callback_unregister(intr_handle, eth_igb_interrupt_handler, dev); /* clear the SYN filter info */ filter_info->syn_info = 0; /* clear the ethertype filters info */ filter_info->ethertype_mask = 0; memset(filter_info->ethertype_filters, 0, E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter)); /* clear the rss filter info */ memset(&filter_info->rss_info, 0, sizeof(struct igb_rte_flow_rss_conf)); /* remove all ntuple filters of the device */ igb_ntuple_filter_uninit(dev); /* remove all flex filters of the device */ igb_flex_filter_uninit(dev); /* clear all the filters list */ igb_filterlist_flush(dev); return ret; } /* * Reset PF device. */ static int eth_igb_reset(struct rte_eth_dev *dev) { int ret; /* When a DPDK PMD PF begin to reset PF port, it should notify all * its VF to make them align with it. The detailed notification * mechanism is PMD specific and is currently not implemented. * To avoid unexpected behavior in VF, currently reset of PF with * SR-IOV activation is not supported. It might be supported later. */ if (dev->data->sriov.active) return -ENOTSUP; ret = eth_igb_dev_uninit(dev); if (ret) return ret; ret = eth_igb_dev_init(dev); return ret; } static int igb_get_rx_buffer_size(struct e1000_hw *hw) { uint32_t rx_buf_size; if (hw->mac.type == e1000_82576) { rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10; } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) { /* PBS needs to be translated according to a lookup table */ rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf); rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size); rx_buf_size = (rx_buf_size << 10); } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) { rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10; } else { rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10; } return rx_buf_size; } /********************************************************************* * * Initialize the hardware * **********************************************************************/ static int igb_hardware_init(struct e1000_hw *hw) { uint32_t rx_buf_size; int diag; /* Let the firmware know the OS is in control */ igb_hw_control_acquire(hw); /* * These parameters control the automatic generation (Tx) and * response (Rx) to Ethernet PAUSE frames. * - High water mark should allow for at least two standard size (1518) * frames to be received after sending an XOFF. * - Low water mark works best when it is very near the high water mark. * This allows the receiver to restart by sending XON when it has * drained a bit. Here we use an arbitrary value of 1500 which will * restart after one full frame is pulled from the buffer. There * could be several smaller frames in the buffer and if so they will * not trigger the XON until their total number reduces the buffer * by 1500. * - The pause time is fairly large at 1000 x 512ns = 512 usec. */ rx_buf_size = igb_get_rx_buffer_size(hw); hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2); hw->fc.low_water = hw->fc.high_water - 1500; hw->fc.pause_time = IGB_FC_PAUSE_TIME; hw->fc.send_xon = 1; /* Set Flow control, use the tunable location if sane */ if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4)) hw->fc.requested_mode = igb_fc_setting; else hw->fc.requested_mode = e1000_fc_none; /* Issue a global reset */ igb_pf_reset_hw(hw); E1000_WRITE_REG(hw, E1000_WUC, 0); diag = e1000_init_hw(hw); if (diag < 0) return diag; E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN); e1000_get_phy_info(hw); e1000_check_for_link(hw); return 0; } /* This function is based on igb_update_stats_counters() in igb/if_igb.c */ static void igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats) { int pause_frames; uint64_t old_gprc = stats->gprc; uint64_t old_gptc = stats->gptc; uint64_t old_tpr = stats->tpr; uint64_t old_tpt = stats->tpt; uint64_t old_rpthc = stats->rpthc; uint64_t old_hgptc = stats->hgptc; if(hw->phy.media_type == e1000_media_type_copper || (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS); stats->sec += E1000_READ_REG(hw, E1000_SEC); } stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); stats->mpc += E1000_READ_REG(hw, E1000_MPC); stats->scc += E1000_READ_REG(hw, E1000_SCC); stats->ecol += E1000_READ_REG(hw, E1000_ECOL); stats->mcc += E1000_READ_REG(hw, E1000_MCC); stats->latecol += E1000_READ_REG(hw, E1000_LATECOL); stats->colc += E1000_READ_REG(hw, E1000_COLC); stats->dc += E1000_READ_REG(hw, E1000_DC); stats->rlec += E1000_READ_REG(hw, E1000_RLEC); stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC); stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC); /* ** For watchdog management we need to know if we have been ** paused during the last interval, so capture that here. */ pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC); stats->xoffrxc += pause_frames; stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC); stats->prc64 += E1000_READ_REG(hw, E1000_PRC64); stats->prc127 += E1000_READ_REG(hw, E1000_PRC127); stats->prc255 += E1000_READ_REG(hw, E1000_PRC255); stats->prc511 += E1000_READ_REG(hw, E1000_PRC511); stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023); stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522); stats->gprc += E1000_READ_REG(hw, E1000_GPRC); stats->bprc += E1000_READ_REG(hw, E1000_BPRC); stats->mprc += E1000_READ_REG(hw, E1000_MPRC); stats->gptc += E1000_READ_REG(hw, E1000_GPTC); /* For the 64-bit byte counters the low dword must be read first. */ /* Both registers clear on the read of the high dword */ /* Workaround CRC bytes included in size, take away 4 bytes/packet */ stats->gorc += E1000_READ_REG(hw, E1000_GORCL); stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32); stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN; stats->gotc += E1000_READ_REG(hw, E1000_GOTCL); stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32); stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN; stats->rnbc += E1000_READ_REG(hw, E1000_RNBC); stats->ruc += E1000_READ_REG(hw, E1000_RUC); stats->rfc += E1000_READ_REG(hw, E1000_RFC); stats->roc += E1000_READ_REG(hw, E1000_ROC); stats->rjc += E1000_READ_REG(hw, E1000_RJC); stats->tpr += E1000_READ_REG(hw, E1000_TPR); stats->tpt += E1000_READ_REG(hw, E1000_TPT); stats->tor += E1000_READ_REG(hw, E1000_TORL); stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32); stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN; stats->tot += E1000_READ_REG(hw, E1000_TOTL); stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32); stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN; stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64); stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127); stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255); stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511); stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); stats->mptc += E1000_READ_REG(hw, E1000_MPTC); stats->bptc += E1000_READ_REG(hw, E1000_BPTC); /* Interrupt Counts */ stats->iac += E1000_READ_REG(hw, E1000_IAC); stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); /* Host to Card Statistics */ stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC); stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC); stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC); stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC); stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC); stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC); stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC); stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL); stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32); stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN; stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL); stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32); stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN; stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS); stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC); stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC); stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC); stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS); stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR); stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC); stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); } static int eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_hw_stats *stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); igb_read_stats_registers(hw, stats); if (rte_stats == NULL) return -EINVAL; /* Rx Errors */ rte_stats->imissed = stats->mpc; rte_stats->ierrors = stats->crcerrs + stats->rlec + stats->ruc + stats->roc + stats->rxerrc + stats->algnerrc + stats->cexterr; /* Tx Errors */ rte_stats->oerrors = stats->ecol + stats->latecol; rte_stats->ipackets = stats->gprc; rte_stats->opackets = stats->gptc; rte_stats->ibytes = stats->gorc; rte_stats->obytes = stats->gotc; return 0; } static int eth_igb_stats_reset(struct rte_eth_dev *dev) { struct e1000_hw_stats *hw_stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); /* HW registers are cleared on read */ eth_igb_stats_get(dev, NULL); /* Reset software totals */ memset(hw_stats, 0, sizeof(*hw_stats)); return 0; } static int eth_igb_xstats_reset(struct rte_eth_dev *dev) { struct e1000_hw_stats *stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); /* HW registers are cleared on read */ eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS); /* Reset software totals */ memset(stats, 0, sizeof(*stats)); return 0; } static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned int size) { unsigned i; if (xstats_names == NULL) return IGB_NB_XSTATS; /* Note: limit checked in rte_eth_xstats_names() */ for (i = 0; i < IGB_NB_XSTATS; i++) { strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name, sizeof(xstats_names[i].name)); } return IGB_NB_XSTATS; } static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, const uint64_t *ids, unsigned int limit) { unsigned int i; if (!ids) { if (xstats_names == NULL) return IGB_NB_XSTATS; for (i = 0; i < IGB_NB_XSTATS; i++) strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name, sizeof(xstats_names[i].name)); return IGB_NB_XSTATS; } else { struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS]; eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL, IGB_NB_XSTATS); for (i = 0; i < limit; i++) { if (ids[i] >= IGB_NB_XSTATS) { PMD_INIT_LOG(ERR, "id value isn't valid"); return -1; } strcpy(xstats_names[i].name, xstats_names_copy[ids[i]].name); } return limit; } } static int eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_hw_stats *hw_stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); unsigned i; if (n < IGB_NB_XSTATS) return IGB_NB_XSTATS; igb_read_stats_registers(hw, hw_stats); /* If this is a reset xstats is NULL, and we have cleared the * registers by reading them. */ if (!xstats) return 0; /* Extended stats */ for (i = 0; i < IGB_NB_XSTATS; i++) { xstats[i].id = i; xstats[i].value = *(uint64_t *)(((char *)hw_stats) + rte_igb_stats_strings[i].offset); } return IGB_NB_XSTATS; } static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, uint64_t *values, unsigned int n) { unsigned int i; if (!ids) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_hw_stats *hw_stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); if (n < IGB_NB_XSTATS) return IGB_NB_XSTATS; igb_read_stats_registers(hw, hw_stats); /* If this is a reset xstats is NULL, and we have cleared the * registers by reading them. */ if (!values) return 0; /* Extended stats */ for (i = 0; i < IGB_NB_XSTATS; i++) values[i] = *(uint64_t *)(((char *)hw_stats) + rte_igb_stats_strings[i].offset); return IGB_NB_XSTATS; } else { uint64_t values_copy[IGB_NB_XSTATS]; eth_igb_xstats_get_by_id(dev, NULL, values_copy, IGB_NB_XSTATS); for (i = 0; i < n; i++) { if (ids[i] >= IGB_NB_XSTATS) { PMD_INIT_LOG(ERR, "id value isn't valid"); return -1; } values[i] = values_copy[ids[i]]; } return n; } } static void igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats) { /* Good Rx packets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGPRC, hw_stats->last_gprc, hw_stats->gprc); /* Good Rx octets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGORC, hw_stats->last_gorc, hw_stats->gorc); /* Good Tx packets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGPTC, hw_stats->last_gptc, hw_stats->gptc); /* Good Tx octets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGOTC, hw_stats->last_gotc, hw_stats->gotc); /* Rx Multicst packets */ UPDATE_VF_STAT(E1000_VFMPRC, hw_stats->last_mprc, hw_stats->mprc); /* Good Rx loopback packets */ UPDATE_VF_STAT(E1000_VFGPRLBC, hw_stats->last_gprlbc, hw_stats->gprlbc); /* Good Rx loopback octets */ UPDATE_VF_STAT(E1000_VFGORLBC, hw_stats->last_gorlbc, hw_stats->gorlbc); /* Good Tx loopback packets */ UPDATE_VF_STAT(E1000_VFGPTLBC, hw_stats->last_gptlbc, hw_stats->gptlbc); /* Good Tx loopback octets */ UPDATE_VF_STAT(E1000_VFGOTLBC, hw_stats->last_gotlbc, hw_stats->gotlbc); } static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned limit) { unsigned i; if (xstats_names != NULL) for (i = 0; i < IGBVF_NB_XSTATS; i++) { strlcpy(xstats_names[i].name, rte_igbvf_stats_strings[i].name, sizeof(xstats_names[i].name)); } return IGBVF_NB_XSTATS; } static int eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned n) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *) E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); unsigned i; if (n < IGBVF_NB_XSTATS) return IGBVF_NB_XSTATS; igbvf_read_stats_registers(hw, hw_stats); if (!xstats) return 0; for (i = 0; i < IGBVF_NB_XSTATS; i++) { xstats[i].id = i; xstats[i].value = *(uint64_t *)(((char *)hw_stats) + rte_igbvf_stats_strings[i].offset); } return IGBVF_NB_XSTATS; } static int eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *) E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); igbvf_read_stats_registers(hw, hw_stats); if (rte_stats == NULL) return -EINVAL; rte_stats->ipackets = hw_stats->gprc; rte_stats->ibytes = hw_stats->gorc; rte_stats->opackets = hw_stats->gptc; rte_stats->obytes = hw_stats->gotc; return 0; } static int eth_igbvf_stats_reset(struct rte_eth_dev *dev) { struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*) E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); /* Sync HW register to the last stats */ eth_igbvf_stats_get(dev, NULL); /* reset HW current stats*/ memset(&hw_stats->gprc, 0, sizeof(*hw_stats) - offsetof(struct e1000_vf_stats, gprc)); return 0; } static int eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_fw_version fw; int ret; e1000_get_fw_version(hw, &fw); switch (hw->mac.type) { case e1000_i210: case e1000_i211: if (!(e1000_get_flash_presence_i210(hw))) { ret = snprintf(fw_version, fw_size, "%2d.%2d-%d", fw.invm_major, fw.invm_minor, fw.invm_img_type); break; } /* fall through */ default: /* if option rom is valid, display its version too */ if (fw.or_valid) { ret = snprintf(fw_version, fw_size, "%d.%d, 0x%08x, %d.%d.%d", fw.eep_major, fw.eep_minor, fw.etrack_id, fw.or_major, fw.or_build, fw.or_patch); /* no option rom */ } else { if (fw.etrack_id != 0X0000) { ret = snprintf(fw_version, fw_size, "%d.%d, 0x%08x", fw.eep_major, fw.eep_minor, fw.etrack_id); } else { ret = snprintf(fw_version, fw_size, "%d.%d.%d", fw.eep_major, fw.eep_minor, fw.eep_build); } } break; } ret += 1; /* add the size of '\0' */ if (fw_size < (u32)ret) return ret; else return 0; } static int eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ dev_info->max_mac_addrs = hw->mac.rar_entry_count; dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev); dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) | dev_info->rx_queue_offload_capa; dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev); dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) | dev_info->tx_queue_offload_capa; switch (hw->mac.type) { case e1000_82575: dev_info->max_rx_queues = 4; dev_info->max_tx_queues = 4; dev_info->max_vmdq_pools = 0; break; case e1000_82576: dev_info->max_rx_queues = 16; dev_info->max_tx_queues = 16; dev_info->max_vmdq_pools = ETH_8_POOLS; dev_info->vmdq_queue_num = 16; break; case e1000_82580: dev_info->max_rx_queues = 8; dev_info->max_tx_queues = 8; dev_info->max_vmdq_pools = ETH_8_POOLS; dev_info->vmdq_queue_num = 8; break; case e1000_i350: dev_info->max_rx_queues = 8; dev_info->max_tx_queues = 8; dev_info->max_vmdq_pools = ETH_8_POOLS; dev_info->vmdq_queue_num = 8; break; case e1000_i354: dev_info->max_rx_queues = 8; dev_info->max_tx_queues = 8; break; case e1000_i210: dev_info->max_rx_queues = 4; dev_info->max_tx_queues = 4; dev_info->max_vmdq_pools = 0; break; case e1000_i211: dev_info->max_rx_queues = 2; dev_info->max_tx_queues = 2; dev_info->max_vmdq_pools = 0; break; default: /* Should not happen */ return -EINVAL; } dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t); dev_info->reta_size = ETH_RSS_RETA_SIZE_128; dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = IGB_DEFAULT_RX_PTHRESH, .hthresh = IGB_DEFAULT_RX_HTHRESH, .wthresh = IGB_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, .offloads = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = IGB_DEFAULT_TX_PTHRESH, .hthresh = IGB_DEFAULT_TX_HTHRESH, .wthresh = IGB_DEFAULT_TX_WTHRESH, }, .offloads = 0, }; dev_info->rx_desc_lim = rx_desc_lim; dev_info->tx_desc_lim = tx_desc_lim; dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | ETH_LINK_SPEED_1G; dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD; dev_info->min_mtu = RTE_ETHER_MIN_MTU; return 0; } static const uint32_t * eth_igb_supported_ptypes_get(struct rte_eth_dev *dev) { static const uint32_t ptypes[] = { /* refers to igb_rxd_pkt_info_to_pkt_type() */ RTE_PTYPE_L2_ETHER, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT, RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_SCTP, RTE_PTYPE_TUNNEL_IP, RTE_PTYPE_INNER_L3_IPV6, RTE_PTYPE_INNER_L3_IPV6_EXT, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_UNKNOWN }; if (dev->rx_pkt_burst == eth_igb_recv_pkts || dev->rx_pkt_burst == eth_igb_recv_scattered_pkts) return ptypes; return NULL; } static int eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ dev_info->max_mac_addrs = hw->mac.rar_entry_count; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_TCP_TSO; switch (hw->mac.type) { case e1000_vfadapt: dev_info->max_rx_queues = 2; dev_info->max_tx_queues = 2; break; case e1000_vfadapt_i350: dev_info->max_rx_queues = 1; dev_info->max_tx_queues = 1; break; default: /* Should not happen */ return -EINVAL; } dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev); dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) | dev_info->rx_queue_offload_capa; dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev); dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) | dev_info->tx_queue_offload_capa; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = IGB_DEFAULT_RX_PTHRESH, .hthresh = IGB_DEFAULT_RX_HTHRESH, .wthresh = IGB_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, .offloads = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = IGB_DEFAULT_TX_PTHRESH, .hthresh = IGB_DEFAULT_TX_HTHRESH, .wthresh = IGB_DEFAULT_TX_WTHRESH, }, .offloads = 0, }; dev_info->rx_desc_lim = rx_desc_lim; dev_info->tx_desc_lim = tx_desc_lim; return 0; } /* return 0 means link status changed, -1 means not changed */ static int eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_link link; int link_check, count; link_check = 0; hw->mac.get_link_status = 1; /* possible wait-to-complete in up to 9 seconds */ for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) { /* Read the real link status */ switch (hw->phy.media_type) { case e1000_media_type_copper: /* Do the work to read phy */ e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; break; case e1000_media_type_fiber: e1000_check_for_link(hw); link_check = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: e1000_check_for_link(hw); link_check = hw->mac.serdes_has_link; break; /* VF device is type_unknown */ case e1000_media_type_unknown: eth_igbvf_link_update(hw); link_check = !hw->mac.get_link_status; break; default: break; } if (link_check || wait_to_complete == 0) break; rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL); } memset(&link, 0, sizeof(link)); /* Now we check if a transition has happened */ if (link_check) { uint16_t duplex, speed; hw->mac.ops.get_link_up_info(hw, &speed, &duplex); link.link_duplex = (duplex == FULL_DUPLEX) ? ETH_LINK_FULL_DUPLEX : ETH_LINK_HALF_DUPLEX; link.link_speed = speed; link.link_status = ETH_LINK_UP; link.link_autoneg = !(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED); } else if (!link_check) { link.link_speed = 0; link.link_duplex = ETH_LINK_HALF_DUPLEX; link.link_status = ETH_LINK_DOWN; link.link_autoneg = ETH_LINK_FIXED; } return rte_eth_linkstatus_set(dev, &link); } /* * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means * that the driver is loaded. */ static void igb_hw_control_acquire(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Let firmware know the driver has taken over */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } /* * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. */ static void igb_hw_control_release(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Let firmware taken over control of h/w */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); } /* * Bit of a misnomer, what this really means is * to enable OS management of the system... aka * to disable special hardware management features. */ static void igb_init_manageability(struct e1000_hw *hw) { if (e1000_enable_mng_pass_thru(hw)) { uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H); uint32_t manc = E1000_READ_REG(hw, E1000_MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); /* enable receiving management packets to the host */ manc |= E1000_MANC_EN_MNG2HOST; manc2h |= 1 << 5; /* Mng Port 623 */ manc2h |= 1 << 6; /* Mng Port 664 */ E1000_WRITE_REG(hw, E1000_MANC2H, manc2h); E1000_WRITE_REG(hw, E1000_MANC, manc); } } static void igb_release_manageability(struct e1000_hw *hw) { if (e1000_enable_mng_pass_thru(hw)) { uint32_t manc = E1000_READ_REG(hw, E1000_MANC); manc |= E1000_MANC_ARP_EN; manc &= ~E1000_MANC_EN_MNG2HOST; E1000_WRITE_REG(hw, E1000_MANC, manc); } } static int eth_igb_promiscuous_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); return 0; } static int eth_igb_promiscuous_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= (~E1000_RCTL_UPE); if (dev->data->all_multicast == 1) rctl |= E1000_RCTL_MPE; else rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); return 0; } static int eth_igb_allmulticast_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(hw, E1000_RCTL, rctl); return 0; } static int eth_igb_allmulticast_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; if (dev->data->promiscuous == 1) return 0; /* must remain in all_multicast mode */ rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); return 0; } static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t vfta; uint32_t vid_idx; uint32_t vid_bit; vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK); vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); if (on) vfta |= vid_bit; else vfta &= ~vid_bit; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); /* update local VFTA copy */ shadow_vfta->vfta[vid_idx] = vfta; return 0; } static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type, uint16_t tpid) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg, qinq; qinq = E1000_READ_REG(hw, E1000_CTRL_EXT); qinq &= E1000_CTRL_EXT_EXT_VLAN; /* only outer TPID of double VLAN can be configured*/ if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) { reg = E1000_READ_REG(hw, E1000_VET); reg = (reg & (~E1000_VET_VET_EXT)) | ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT); E1000_WRITE_REG(hw, E1000_VET, reg); return 0; } /* all other TPID values are read-only*/ PMD_DRV_LOG(ERR, "Not supported"); return -ENOTSUP; } static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* Filter Table Disable */ reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg &= ~E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); } static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t reg; int i; /* Filter Table Enable, CFI not used for packet acceptance */ reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg |= E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); /* restore VFTA table */ for (i = 0; i < IGB_VFTA_SIZE; i++) E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]); } static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* VLAN Mode Disable */ reg = E1000_READ_REG(hw, E1000_CTRL); reg &= ~E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* VLAN Mode Enable */ reg = E1000_READ_REG(hw, E1000_CTRL); reg |= E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* CTRL_EXT: Extended VLAN */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~E1000_CTRL_EXT_EXTEND_VLAN; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* Update maximum packet length */ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) E1000_WRITE_REG(hw, E1000_RLPML, dev->data->dev_conf.rxmode.max_rx_pkt_len + VLAN_TAG_SIZE); } static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* CTRL_EXT: Extended VLAN */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= E1000_CTRL_EXT_EXTEND_VLAN; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* Update maximum packet length */ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) E1000_WRITE_REG(hw, E1000_RLPML, dev->data->dev_conf.rxmode.max_rx_pkt_len + 2 * VLAN_TAG_SIZE); } static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask) { struct rte_eth_rxmode *rxmode; rxmode = &dev->data->dev_conf.rxmode; if(mask & ETH_VLAN_STRIP_MASK){ if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) igb_vlan_hw_strip_enable(dev); else igb_vlan_hw_strip_disable(dev); } if(mask & ETH_VLAN_FILTER_MASK){ if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER) igb_vlan_hw_filter_enable(dev); else igb_vlan_hw_filter_disable(dev); } if(mask & ETH_VLAN_EXTEND_MASK){ if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) igb_vlan_hw_extend_enable(dev); else igb_vlan_hw_extend_disable(dev); } return 0; } /** * It enables the interrupt mask and then enable the interrupt. * * @param dev * Pointer to struct rte_eth_dev. * @param on * Enable or Disable * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); if (on) intr->mask |= E1000_ICR_LSC; else intr->mask &= ~E1000_ICR_LSC; return 0; } /* It clears the interrupt causes and enables the interrupt. * It will be called once only during nic initialized. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev) { uint32_t mask, regval; int ret; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0; struct rte_eth_dev_info dev_info; memset(&dev_info, 0, sizeof(dev_info)); ret = eth_igb_infos_get(dev, &dev_info); if (ret != 0) return ret; mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift; regval = E1000_READ_REG(hw, E1000_EIMS); E1000_WRITE_REG(hw, E1000_EIMS, regval | mask); return 0; } /* * It reads ICR and gets interrupt causes, check it and set a bit flag * to update link status. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev) { uint32_t icr; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); igb_intr_disable(dev); /* read-on-clear nic registers here */ icr = E1000_READ_REG(hw, E1000_ICR); intr->flags = 0; if (icr & E1000_ICR_LSC) { intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; } if (icr & E1000_ICR_VMMB) intr->flags |= E1000_FLAG_MAILBOX; return 0; } /* * It executes link_update after knowing an interrupt is prsent. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_eth_link link; int ret; if (intr->flags & E1000_FLAG_MAILBOX) { igb_pf_mbx_process(dev); intr->flags &= ~E1000_FLAG_MAILBOX; } igb_intr_enable(dev); rte_intr_ack(intr_handle); if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) { intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE; /* set get_link_status to check register later */ hw->mac.get_link_status = 1; ret = eth_igb_link_update(dev, 0); /* check if link has changed */ if (ret < 0) return 0; rte_eth_linkstatus_get(dev, &link); if (link.link_status) { PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s", dev->data->port_id, (unsigned)link.link_speed, link.link_duplex == ETH_LINK_FULL_DUPLEX ? "full-duplex" : "half-duplex"); } else { PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id); } PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT, pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function); rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL); } return 0; } /** * Interrupt handler which shall be registered at first. * * @param handle * Pointer to interrupt handle. * @param param * The address of parameter (struct rte_eth_dev *) regsitered before. * * @return * void */ static void eth_igb_interrupt_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; eth_igb_interrupt_get_status(dev); eth_igb_interrupt_action(dev, dev->intr_handle); } static int eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev) { uint32_t eicr; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); igbvf_intr_disable(hw); /* read-on-clear nic registers here */ eicr = E1000_READ_REG(hw, E1000_EICR); intr->flags = 0; if (eicr == E1000_VTIVAR_MISC_MAILBOX) intr->flags |= E1000_FLAG_MAILBOX; return 0; } void igbvf_mbx_process(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_mbx_info *mbx = &hw->mbx; u32 in_msg = 0; /* peek the message first */ in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0)); /* PF reset VF event */ if (in_msg == E1000_PF_CONTROL_MSG) { /* dummy mbx read to ack pf */ if (mbx->ops.read(hw, &in_msg, 1, 0)) return; rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, NULL); } } static int eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); if (intr->flags & E1000_FLAG_MAILBOX) { igbvf_mbx_process(dev); intr->flags &= ~E1000_FLAG_MAILBOX; } igbvf_intr_enable(dev); rte_intr_ack(intr_handle); return 0; } static void eth_igbvf_interrupt_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; eth_igbvf_interrupt_get_status(dev); eth_igbvf_interrupt_action(dev, dev->intr_handle); } static int eth_igb_led_on(struct rte_eth_dev *dev) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; } static int eth_igb_led_off(struct rte_eth_dev *dev) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; } static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct e1000_hw *hw; uint32_t ctrl; int tx_pause; int rx_pause; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); fc_conf->pause_time = hw->fc.pause_time; fc_conf->high_water = hw->fc.high_water; fc_conf->low_water = hw->fc.low_water; fc_conf->send_xon = hw->fc.send_xon; fc_conf->autoneg = hw->mac.autoneg; /* * Return rx_pause and tx_pause status according to actual setting of * the TFCE and RFCE bits in the CTRL register. */ ctrl = E1000_READ_REG(hw, E1000_CTRL); if (ctrl & E1000_CTRL_TFCE) tx_pause = 1; else tx_pause = 0; if (ctrl & E1000_CTRL_RFCE) rx_pause = 1; else rx_pause = 0; if (rx_pause && tx_pause) fc_conf->mode = RTE_FC_FULL; else if (rx_pause) fc_conf->mode = RTE_FC_RX_PAUSE; else if (tx_pause) fc_conf->mode = RTE_FC_TX_PAUSE; else fc_conf->mode = RTE_FC_NONE; return 0; } static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct e1000_hw *hw; int err; enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = { e1000_fc_none, e1000_fc_rx_pause, e1000_fc_tx_pause, e1000_fc_full }; uint32_t rx_buf_size; uint32_t max_high_water; uint32_t rctl; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (fc_conf->autoneg != hw->mac.autoneg) return -ENOTSUP; rx_buf_size = igb_get_rx_buffer_size(hw); PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size); /* At least reserve one Ethernet frame for watermark */ max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN; if ((fc_conf->high_water > max_high_water) || (fc_conf->high_water < fc_conf->low_water)) { PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value"); PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water); return -EINVAL; } hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode]; hw->fc.pause_time = fc_conf->pause_time; hw->fc.high_water = fc_conf->high_water; hw->fc.low_water = fc_conf->low_water; hw->fc.send_xon = fc_conf->send_xon; err = e1000_setup_link_generic(hw); if (err == E1000_SUCCESS) { /* check if we want to forward MAC frames - driver doesn't have native * capability to do that, so we'll write the registers ourselves */ rctl = E1000_READ_REG(hw, E1000_RCTL); /* set or clear MFLCN.PMCF bit depending on configuration */ if (fc_conf->mac_ctrl_frame_fwd != 0) rctl |= E1000_RCTL_PMCF; else rctl &= ~E1000_RCTL_PMCF; E1000_WRITE_REG(hw, E1000_RCTL, rctl); E1000_WRITE_FLUSH(hw); return 0; } PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err); return -EIO; } #define E1000_RAH_POOLSEL_SHIFT (18) static int eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, uint32_t index, uint32_t pool) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rah; e1000_rar_set(hw, mac_addr->addr_bytes, index); rah = E1000_READ_REG(hw, E1000_RAH(index)); rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool)); E1000_WRITE_REG(hw, E1000_RAH(index), rah); return 0; } static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index) { uint8_t addr[RTE_ETHER_ADDR_LEN]; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); memset(addr, 0, sizeof(addr)); e1000_rar_set(hw, addr, index); } static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr) { eth_igb_rar_clear(dev, 0); eth_igb_rar_set(dev, (void *)addr, 0, 0); return 0; } /* * Virtual Function operations */ static void igbvf_intr_disable(struct e1000_hw *hw) { PMD_INIT_FUNC_TRACE(); /* Clear interrupt mask to stop from interrupts being generated */ E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF); E1000_WRITE_FLUSH(hw); } static void igbvf_stop_adapter(struct rte_eth_dev *dev) { u32 reg_val; u16 i; struct rte_eth_dev_info dev_info; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; memset(&dev_info, 0, sizeof(dev_info)); ret = eth_igbvf_infos_get(dev, &dev_info); if (ret != 0) return; /* Clear interrupt mask to stop from interrupts being generated */ igbvf_intr_disable(hw); /* Clear any pending interrupts, flush previous writes */ E1000_READ_REG(hw, E1000_EICR); /* Disable the transmit unit. Each queue must be disabled. */ for (i = 0; i < dev_info.max_tx_queues; i++) E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH); /* Disable the receive unit by stopping each queue */ for (i = 0; i < dev_info.max_rx_queues; i++) { reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i)); reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE; E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val); while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE) ; } /* flush all queues disables */ E1000_WRITE_FLUSH(hw); msec_delay(2); } static int eth_igbvf_link_update(struct e1000_hw *hw) { struct e1000_mbx_info *mbx = &hw->mbx; struct e1000_mac_info *mac = &hw->mac; int ret_val = E1000_SUCCESS; PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf"); /* * We only want to run this if there has been a rst asserted. * in this case that could mean a link change, device reset, * or a virtual function reset */ /* If we were hit with a reset or timeout drop the link */ if (!e1000_check_for_rst(hw, 0) || !mbx->timeout) mac->get_link_status = TRUE; if (!mac->get_link_status) goto out; /* if link status is down no point in checking to see if pf is up */ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) goto out; /* if we passed all the tests above then the link is up and we no * longer need to check for link */ mac->get_link_status = FALSE; out: return ret_val; } static int igbvf_dev_configure(struct rte_eth_dev *dev) { struct rte_eth_conf* conf = &dev->data->dev_conf; PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d", dev->data->port_id); if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH; /* * VF has no ability to enable/disable HW CRC * Keep the persistent behavior the same as Host PF */ #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) { PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip"); conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC; } #else if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) { PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip"); conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC; } #endif return 0; } static int igbvf_dev_start(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_adapter *adapter = E1000_DEV_PRIVATE(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; int ret; uint32_t intr_vector = 0; PMD_INIT_FUNC_TRACE(); hw->mac.ops.reset_hw(hw); adapter->stopped = 0; /* Set all vfta */ igbvf_set_vfta_all(dev,1); eth_igbvf_tx_init(dev); /* This can fail when allocating mbufs for descriptor rings */ ret = eth_igbvf_rx_init(dev); if (ret) { PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); igb_dev_clear_queues(dev); return ret; } /* check and configure queue intr-vector mapping */ if (rte_intr_cap_multiple(intr_handle) && dev->data->dev_conf.intr_conf.rxq) { intr_vector = dev->data->nb_rx_queues; ret = rte_intr_efd_enable(intr_handle, intr_vector); if (ret) return ret; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (!intr_handle->intr_vec) { PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues" " intr_vec", dev->data->nb_rx_queues); return -ENOMEM; } } eth_igbvf_configure_msix_intr(dev); /* enable uio/vfio intr/eventfd mapping */ rte_intr_enable(intr_handle); /* resume enabled intr since hw reset */ igbvf_intr_enable(dev); return 0; } static int igbvf_dev_stop(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct e1000_adapter *adapter = E1000_DEV_PRIVATE(dev->data->dev_private); if (adapter->stopped) return 0; PMD_INIT_FUNC_TRACE(); igbvf_stop_adapter(dev); /* * Clear what we set, but we still keep shadow_vfta to * restore after device starts */ igbvf_set_vfta_all(dev,0); igb_dev_clear_queues(dev); /* disable intr eventfd mapping */ rte_intr_disable(intr_handle); /* Clean datapath event and queue/vec mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } adapter->stopped = true; dev->data->dev_started = 0; return 0; } static int igbvf_dev_close(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_ether_addr addr; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); int ret; PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; e1000_reset_hw(hw); ret = igbvf_dev_stop(dev); if (ret != 0) return ret; igb_dev_free_queues(dev); /** * reprogram the RAR with a zero mac address, * to ensure that the VF traffic goes to the PF * after stop, close and detach of the VF. **/ memset(&addr, 0, sizeof(addr)); igbvf_default_mac_addr_set(dev, &addr); rte_intr_callback_unregister(&pci_dev->intr_handle, eth_igbvf_interrupt_handler, (void *)dev); return 0; } static int igbvf_promiscuous_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* Set both unicast and multicast promisc */ e1000_promisc_set_vf(hw, e1000_promisc_enabled); return 0; } static int igbvf_promiscuous_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* If in allmulticast mode leave multicast promisc */ if (dev->data->all_multicast == 1) e1000_promisc_set_vf(hw, e1000_promisc_multicast); else e1000_promisc_set_vf(hw, e1000_promisc_disabled); return 0; } static int igbvf_allmulticast_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* In promiscuous mode multicast promisc already set */ if (dev->data->promiscuous == 0) e1000_promisc_set_vf(hw, e1000_promisc_multicast); return 0; } static int igbvf_allmulticast_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* In promiscuous mode leave multicast promisc enabled */ if (dev->data->promiscuous == 0) e1000_promisc_set_vf(hw, e1000_promisc_disabled); return 0; } static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on) { struct e1000_mbx_info *mbx = &hw->mbx; uint32_t msgbuf[2]; s32 err; /* After set vlan, vlan strip will also be enabled in igb driver*/ msgbuf[0] = E1000_VF_SET_VLAN; msgbuf[1] = vid; /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ if (on) msgbuf[0] |= E1000_VF_SET_VLAN_ADD; err = mbx->ops.write_posted(hw, msgbuf, 2, 0); if (err) goto mbx_err; err = mbx->ops.read_posted(hw, msgbuf, 2, 0); if (err) goto mbx_err; msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)) err = -EINVAL; mbx_err: return err; } static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); int i = 0, j = 0, vfta = 0, mask = 1; for (i = 0; i < IGB_VFTA_SIZE; i++){ vfta = shadow_vfta->vfta[i]; if(vfta){ mask = 1; for (j = 0; j < 32; j++){ if(vfta & mask) igbvf_set_vfta(hw, (uint16_t)((i<<5)+j), on); mask<<=1; } } } } static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t vid_idx = 0; uint32_t vid_bit = 0; int ret = 0; PMD_INIT_FUNC_TRACE(); /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/ ret = igbvf_set_vfta(hw, vlan_id, !!on); if(ret){ PMD_INIT_LOG(ERR, "Unable to set VF vlan"); return ret; } vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F); vid_bit = (uint32_t) (1 << (vlan_id & 0x1F)); /*Save what we set and retore it after device reset*/ if (on) shadow_vfta->vfta[vid_idx] |= vid_bit; else shadow_vfta->vfta[vid_idx] &= ~vid_bit; return 0; } static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* index is not used by rar_set() */ hw->mac.ops.rar_set(hw, (void *)addr, 0); return 0; } static int eth_igb_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { uint8_t i, j, mask; uint32_t reta, r; uint16_t idx, shift; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (reta_size != ETH_RSS_RETA_SIZE_128) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number hardware can supported " "(%d)", reta_size, ETH_RSS_RETA_SIZE_128); return -EINVAL; } for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; mask = (uint8_t)((reta_conf[idx].mask >> shift) & IGB_4_BIT_MASK); if (!mask) continue; if (mask == IGB_4_BIT_MASK) r = 0; else r = E1000_READ_REG(hw, E1000_RETA(i >> 2)); for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) { if (mask & (0x1 << j)) reta |= reta_conf[idx].reta[shift + j] << (CHAR_BIT * j); else reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j)); } E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); } return 0; } static int eth_igb_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { uint8_t i, j, mask; uint32_t reta; uint16_t idx, shift; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (reta_size != ETH_RSS_RETA_SIZE_128) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number hardware can supported " "(%d)", reta_size, ETH_RSS_RETA_SIZE_128); return -EINVAL; } for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; mask = (uint8_t)((reta_conf[idx].mask >> shift) & IGB_4_BIT_MASK); if (!mask) continue; reta = E1000_READ_REG(hw, E1000_RETA(i >> 2)); for (j = 0; j < IGB_4_BIT_WIDTH; j++) { if (mask & (0x1 << j)) reta_conf[idx].reta[shift + j] = ((reta >> (CHAR_BIT * j)) & IGB_8_BIT_MASK); } } return 0; } int eth_igb_syn_filter_set(struct rte_eth_dev *dev, struct rte_eth_syn_filter *filter, bool add) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); uint32_t synqf, rfctl; if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) return -EINVAL; synqf = E1000_READ_REG(hw, E1000_SYNQF(0)); if (add) { if (synqf & E1000_SYN_FILTER_ENABLE) return -EINVAL; synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) & E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE); rfctl = E1000_READ_REG(hw, E1000_RFCTL); if (filter->hig_pri) rfctl |= E1000_RFCTL_SYNQFP; else rfctl &= ~E1000_RFCTL_SYNQFP; E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); } else { if (!(synqf & E1000_SYN_FILTER_ENABLE)) return -ENOENT; synqf = 0; } filter_info->syn_info = synqf; E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf); E1000_WRITE_FLUSH(hw); return 0; } /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/ static inline int ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter, struct e1000_2tuple_filter_info *filter_info) { if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) return -EINVAL; if (filter->priority > E1000_2TUPLE_MAX_PRI) return -EINVAL; /* filter index is out of range. */ if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK) return -EINVAL; /* flags is invalid. */ switch (filter->dst_port_mask) { case UINT16_MAX: filter_info->dst_port_mask = 0; filter_info->dst_port = filter->dst_port; break; case 0: filter_info->dst_port_mask = 1; break; default: PMD_DRV_LOG(ERR, "invalid dst_port mask."); return -EINVAL; } switch (filter->proto_mask) { case UINT8_MAX: filter_info->proto_mask = 0; filter_info->proto = filter->proto; break; case 0: filter_info->proto_mask = 1; break; default: PMD_DRV_LOG(ERR, "invalid protocol mask."); return -EINVAL; } filter_info->priority = (uint8_t)filter->priority; if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) filter_info->tcp_flags = filter->tcp_flags; else filter_info->tcp_flags = 0; return 0; } static inline struct e1000_2tuple_filter * igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list, struct e1000_2tuple_filter_info *key) { struct e1000_2tuple_filter *it; TAILQ_FOREACH(it, filter_list, entries) { if (memcmp(key, &it->filter_info, sizeof(struct e1000_2tuple_filter_info)) == 0) { return it; } } return NULL; } /* inject a igb 2tuple filter to HW */ static inline void igb_inject_2uple_filter(struct rte_eth_dev *dev, struct e1000_2tuple_filter *filter) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t ttqf = E1000_TTQF_DISABLE_MASK; uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP; int i; i = filter->index; imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT); if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */ imir |= E1000_IMIR_PORT_BP; else imir &= ~E1000_IMIR_PORT_BP; imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT; ttqf |= E1000_TTQF_QUEUE_ENABLE; ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT); ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK); if (filter->filter_info.proto_mask == 0) ttqf &= ~E1000_TTQF_MASK_ENABLE; /* tcp flags bits setting. */ if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) { if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG) imir_ext |= E1000_IMIREXT_CTRL_URG; if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG) imir_ext |= E1000_IMIREXT_CTRL_ACK; if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG) imir_ext |= E1000_IMIREXT_CTRL_PSH; if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG) imir_ext |= E1000_IMIREXT_CTRL_RST; if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG) imir_ext |= E1000_IMIREXT_CTRL_SYN; if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG) imir_ext |= E1000_IMIREXT_CTRL_FIN; } else { imir_ext |= E1000_IMIREXT_CTRL_BP; } E1000_WRITE_REG(hw, E1000_IMIR(i), imir); E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf); E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext); } /* * igb_add_2tuple_filter - add a 2tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * ntuple_filter: ponter to the filter that will be added. * * @return * - On success, zero. * - On failure, a negative value. */ static int igb_add_2tuple_filter(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_2tuple_filter *filter; int i, ret; filter = rte_zmalloc("e1000_2tuple_filter", sizeof(struct e1000_2tuple_filter), 0); if (filter == NULL) return -ENOMEM; ret = ntuple_filter_to_2tuple(ntuple_filter, &filter->filter_info); if (ret < 0) { rte_free(filter); return ret; } if (igb_2tuple_filter_lookup(&filter_info->twotuple_list, &filter->filter_info) != NULL) { PMD_DRV_LOG(ERR, "filter exists."); rte_free(filter); return -EEXIST; } filter->queue = ntuple_filter->queue; /* * look for an unused 2tuple filter index, * and insert the filter to list. */ for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) { if (!(filter_info->twotuple_mask & (1 << i))) { filter_info->twotuple_mask |= 1 << i; filter->index = i; TAILQ_INSERT_TAIL(&filter_info->twotuple_list, filter, entries); break; } } if (i >= E1000_MAX_TTQF_FILTERS) { PMD_DRV_LOG(ERR, "2tuple filters are full."); rte_free(filter); return -ENOSYS; } igb_inject_2uple_filter(dev, filter); return 0; } int igb_delete_2tuple_filter(struct rte_eth_dev *dev, struct e1000_2tuple_filter *filter) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); filter_info->twotuple_mask &= ~(1 << filter->index); TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries); rte_free(filter); E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK); E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0); E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0); return 0; } /* * igb_remove_2tuple_filter - remove a 2tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * ntuple_filter: ponter to the filter that will be removed. * * @return * - On success, zero. * - On failure, a negative value. */ static int igb_remove_2tuple_filter(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_2tuple_filter_info filter_2tuple; struct e1000_2tuple_filter *filter; int ret; memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info)); ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple); if (ret < 0) return ret; filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list, &filter_2tuple); if (filter == NULL) { PMD_DRV_LOG(ERR, "filter doesn't exist."); return -ENOENT; } igb_delete_2tuple_filter(dev, filter); return 0; } /* inject a igb flex filter to HW */ static inline void igb_inject_flex_filter(struct rte_eth_dev *dev, struct e1000_flex_filter *filter) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t wufc, queueing; uint32_t reg_off; uint8_t i, j = 0; wufc = E1000_READ_REG(hw, E1000_WUFC); if (filter->index < E1000_MAX_FHFT) reg_off = E1000_FHFT(filter->index); else reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT); E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << filter->index)); queueing = filter->filter_info.len | (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) | (filter->filter_info.priority << E1000_FHFT_QUEUEING_PRIO_SHIFT); E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET, queueing); for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) { E1000_WRITE_REG(hw, reg_off, filter->filter_info.dwords[j]); reg_off += sizeof(uint32_t); E1000_WRITE_REG(hw, reg_off, filter->filter_info.dwords[++j]); reg_off += sizeof(uint32_t); E1000_WRITE_REG(hw, reg_off, (uint32_t)filter->filter_info.mask[i]); reg_off += sizeof(uint32_t) * 2; ++j; } } static inline struct e1000_flex_filter * eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list, struct e1000_flex_filter_info *key) { struct e1000_flex_filter *it; TAILQ_FOREACH(it, filter_list, entries) { if (memcmp(key, &it->filter_info, sizeof(struct e1000_flex_filter_info)) == 0) return it; } return NULL; } /* remove a flex byte filter * @param * dev: Pointer to struct rte_eth_dev. * filter: the pointer of the filter will be removed. */ void igb_remove_flex_filter(struct rte_eth_dev *dev, struct e1000_flex_filter *filter) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t wufc, i; uint32_t reg_off; wufc = E1000_READ_REG(hw, E1000_WUFC); if (filter->index < E1000_MAX_FHFT) reg_off = E1000_FHFT(filter->index); else reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT); for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++) E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0); E1000_WRITE_REG(hw, E1000_WUFC, wufc & (~(E1000_WUFC_FLX0 << filter->index))); filter_info->flex_mask &= ~(1 << filter->index); TAILQ_REMOVE(&filter_info->flex_list, filter, entries); rte_free(filter); } int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev, struct igb_flex_filter *filter, bool add) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_flex_filter *flex_filter, *it; uint32_t mask; uint8_t shift, i; flex_filter = rte_zmalloc("e1000_flex_filter", sizeof(struct e1000_flex_filter), 0); if (flex_filter == NULL) return -ENOMEM; flex_filter->filter_info.len = filter->len; flex_filter->filter_info.priority = filter->priority; memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len); for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) { mask = 0; /* reverse bits in flex filter's mask*/ for (shift = 0; shift < CHAR_BIT; shift++) { if (filter->mask[i] & (0x01 << shift)) mask |= (0x80 >> shift); } flex_filter->filter_info.mask[i] = mask; } it = eth_igb_flex_filter_lookup(&filter_info->flex_list, &flex_filter->filter_info); if (it == NULL && !add) { PMD_DRV_LOG(ERR, "filter doesn't exist."); rte_free(flex_filter); return -ENOENT; } if (it != NULL && add) { PMD_DRV_LOG(ERR, "filter exists."); rte_free(flex_filter); return -EEXIST; } if (add) { flex_filter->queue = filter->queue; /* * look for an unused flex filter index * and insert the filter into the list. */ for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) { if (!(filter_info->flex_mask & (1 << i))) { filter_info->flex_mask |= 1 << i; flex_filter->index = i; TAILQ_INSERT_TAIL(&filter_info->flex_list, flex_filter, entries); break; } } if (i >= E1000_MAX_FLEX_FILTERS) { PMD_DRV_LOG(ERR, "flex filters are full."); rte_free(flex_filter); return -ENOSYS; } igb_inject_flex_filter(dev, flex_filter); } else { igb_remove_flex_filter(dev, it); rte_free(flex_filter); } return 0; } /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/ static inline int ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter, struct e1000_5tuple_filter_info *filter_info) { if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) return -EINVAL; if (filter->priority > E1000_2TUPLE_MAX_PRI) return -EINVAL; /* filter index is out of range. */ if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK) return -EINVAL; /* flags is invalid. */ switch (filter->dst_ip_mask) { case UINT32_MAX: filter_info->dst_ip_mask = 0; filter_info->dst_ip = filter->dst_ip; break; case 0: filter_info->dst_ip_mask = 1; break; default: PMD_DRV_LOG(ERR, "invalid dst_ip mask."); return -EINVAL; } switch (filter->src_ip_mask) { case UINT32_MAX: filter_info->src_ip_mask = 0; filter_info->src_ip = filter->src_ip; break; case 0: filter_info->src_ip_mask = 1; break; default: PMD_DRV_LOG(ERR, "invalid src_ip mask."); return -EINVAL; } switch (filter->dst_port_mask) { case UINT16_MAX: filter_info->dst_port_mask = 0; filter_info->dst_port = filter->dst_port; break; case 0: filter_info->dst_port_mask = 1; break; default: PMD_DRV_LOG(ERR, "invalid dst_port mask."); return -EINVAL; } switch (filter->src_port_mask) { case UINT16_MAX: filter_info->src_port_mask = 0; filter_info->src_port = filter->src_port; break; case 0: filter_info->src_port_mask = 1; break; default: PMD_DRV_LOG(ERR, "invalid src_port mask."); return -EINVAL; } switch (filter->proto_mask) { case UINT8_MAX: filter_info->proto_mask = 0; filter_info->proto = filter->proto; break; case 0: filter_info->proto_mask = 1; break; default: PMD_DRV_LOG(ERR, "invalid protocol mask."); return -EINVAL; } filter_info->priority = (uint8_t)filter->priority; if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) filter_info->tcp_flags = filter->tcp_flags; else filter_info->tcp_flags = 0; return 0; } static inline struct e1000_5tuple_filter * igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list, struct e1000_5tuple_filter_info *key) { struct e1000_5tuple_filter *it; TAILQ_FOREACH(it, filter_list, entries) { if (memcmp(key, &it->filter_info, sizeof(struct e1000_5tuple_filter_info)) == 0) { return it; } } return NULL; } /* inject a igb 5-tuple filter to HW */ static inline void igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev, struct e1000_5tuple_filter *filter) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK; uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP; uint8_t i; i = filter->index; ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK; if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */ ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP; if (filter->filter_info.dst_ip_mask == 0) ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP; if (filter->filter_info.src_port_mask == 0) ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; if (filter->filter_info.proto_mask == 0) ftqf &= ~E1000_FTQF_MASK_PROTO_BP; ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) & E1000_FTQF_QUEUE_MASK; ftqf |= E1000_FTQF_QUEUE_ENABLE; E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf); E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip); E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip); spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT; E1000_WRITE_REG(hw, E1000_SPQF(i), spqf); imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT); if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */ imir |= E1000_IMIR_PORT_BP; else imir &= ~E1000_IMIR_PORT_BP; imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT; /* tcp flags bits setting. */ if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) { if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG) imir_ext |= E1000_IMIREXT_CTRL_URG; if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG) imir_ext |= E1000_IMIREXT_CTRL_ACK; if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG) imir_ext |= E1000_IMIREXT_CTRL_PSH; if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG) imir_ext |= E1000_IMIREXT_CTRL_RST; if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG) imir_ext |= E1000_IMIREXT_CTRL_SYN; if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG) imir_ext |= E1000_IMIREXT_CTRL_FIN; } else { imir_ext |= E1000_IMIREXT_CTRL_BP; } E1000_WRITE_REG(hw, E1000_IMIR(i), imir); E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext); } /* * igb_add_5tuple_filter_82576 - add a 5tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * ntuple_filter: ponter to the filter that will be added. * * @return * - On success, zero. * - On failure, a negative value. */ static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_5tuple_filter *filter; uint8_t i; int ret; filter = rte_zmalloc("e1000_5tuple_filter", sizeof(struct e1000_5tuple_filter), 0); if (filter == NULL) return -ENOMEM; ret = ntuple_filter_to_5tuple_82576(ntuple_filter, &filter->filter_info); if (ret < 0) { rte_free(filter); return ret; } if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list, &filter->filter_info) != NULL) { PMD_DRV_LOG(ERR, "filter exists."); rte_free(filter); return -EEXIST; } filter->queue = ntuple_filter->queue; /* * look for an unused 5tuple filter index, * and insert the filter to list. */ for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) { if (!(filter_info->fivetuple_mask & (1 << i))) { filter_info->fivetuple_mask |= 1 << i; filter->index = i; TAILQ_INSERT_TAIL(&filter_info->fivetuple_list, filter, entries); break; } } if (i >= E1000_MAX_FTQF_FILTERS) { PMD_DRV_LOG(ERR, "5tuple filters are full."); rte_free(filter); return -ENOSYS; } igb_inject_5tuple_filter_82576(dev, filter); return 0; } int igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev, struct e1000_5tuple_filter *filter) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); filter_info->fivetuple_mask &= ~(1 << filter->index); TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries); rte_free(filter); E1000_WRITE_REG(hw, E1000_FTQF(filter->index), E1000_FTQF_VF_BP | E1000_FTQF_MASK); E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0); E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0); E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0); E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0); E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0); return 0; } /* * igb_remove_5tuple_filter_82576 - remove a 5tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * ntuple_filter: ponter to the filter that will be removed. * * @return * - On success, zero. * - On failure, a negative value. */ static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_5tuple_filter_info filter_5tuple; struct e1000_5tuple_filter *filter; int ret; memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info)); ret = ntuple_filter_to_5tuple_82576(ntuple_filter, &filter_5tuple); if (ret < 0) return ret; filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list, &filter_5tuple); if (filter == NULL) { PMD_DRV_LOG(ERR, "filter doesn't exist."); return -ENOENT; } igb_delete_5tuple_filter_82576(dev, filter); return 0; } static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { uint32_t rctl; struct e1000_hw *hw; struct rte_eth_dev_info dev_info; uint32_t frame_size = mtu + E1000_ETH_OVERHEAD; int ret; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); #ifdef RTE_LIBRTE_82571_SUPPORT /* XXX: not bigger than max_rx_pktlen */ if (hw->mac.type == e1000_82571) return -ENOTSUP; #endif ret = eth_igb_infos_get(dev, &dev_info); if (ret != 0) return ret; /* check that mtu is within the allowed range */ if (mtu < RTE_ETHER_MIN_MTU || frame_size > dev_info.max_rx_pktlen) return -EINVAL; /* refuse mtu that requires the support of scattered packets when this * feature has not been enabled before. */ if (!dev->data->scattered_rx && frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) return -EINVAL; rctl = E1000_READ_REG(hw, E1000_RCTL); /* switch to jumbo mode if needed */ if (frame_size > RTE_ETHER_MAX_LEN) { dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; rctl |= E1000_RCTL_LPE; } else { dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; rctl &= ~E1000_RCTL_LPE; } E1000_WRITE_REG(hw, E1000_RCTL, rctl); /* update max frame size */ dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; E1000_WRITE_REG(hw, E1000_RLPML, dev->data->dev_conf.rxmode.max_rx_pkt_len); return 0; } /* * igb_add_del_ntuple_filter - add or delete a ntuple filter * * @param * dev: Pointer to struct rte_eth_dev. * ntuple_filter: Pointer to struct rte_eth_ntuple_filter * add: if true, add filter, if false, remove filter * * @return * - On success, zero. * - On failure, a negative value. */ int igb_add_del_ntuple_filter(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter, bool add) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; switch (ntuple_filter->flags) { case RTE_5TUPLE_FLAGS: case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG): if (hw->mac.type != e1000_82576) return -ENOTSUP; if (add) ret = igb_add_5tuple_filter_82576(dev, ntuple_filter); else ret = igb_remove_5tuple_filter_82576(dev, ntuple_filter); break; case RTE_2TUPLE_FLAGS: case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG): if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 && hw->mac.type != e1000_i210 && hw->mac.type != e1000_i211) return -ENOTSUP; if (add) ret = igb_add_2tuple_filter(dev, ntuple_filter); else ret = igb_remove_2tuple_filter(dev, ntuple_filter); break; default: ret = -EINVAL; break; } return ret; } static inline int igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info, uint16_t ethertype) { int i; for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) { if (filter_info->ethertype_filters[i].ethertype == ethertype && (filter_info->ethertype_mask & (1 << i))) return i; } return -1; } static inline int igb_ethertype_filter_insert(struct e1000_filter_info *filter_info, uint16_t ethertype, uint32_t etqf) { int i; for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) { if (!(filter_info->ethertype_mask & (1 << i))) { filter_info->ethertype_mask |= 1 << i; filter_info->ethertype_filters[i].ethertype = ethertype; filter_info->ethertype_filters[i].etqf = etqf; return i; } } return -1; } int igb_ethertype_filter_remove(struct e1000_filter_info *filter_info, uint8_t idx) { if (idx >= E1000_MAX_ETQF_FILTERS) return -1; filter_info->ethertype_mask &= ~(1 << idx); filter_info->ethertype_filters[idx].ethertype = 0; filter_info->ethertype_filters[idx].etqf = 0; return idx; } int igb_add_del_ethertype_filter(struct rte_eth_dev *dev, struct rte_eth_ethertype_filter *filter, bool add) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); uint32_t etqf = 0; int ret; if (filter->ether_type == RTE_ETHER_TYPE_IPV4 || filter->ether_type == RTE_ETHER_TYPE_IPV6) { PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in" " ethertype filter.", filter->ether_type); return -EINVAL; } if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) { PMD_DRV_LOG(ERR, "mac compare is unsupported."); return -EINVAL; } if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) { PMD_DRV_LOG(ERR, "drop option is unsupported."); return -EINVAL; } ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type); if (ret >= 0 && add) { PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.", filter->ether_type); return -EEXIST; } if (ret < 0 && !add) { PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.", filter->ether_type); return -ENOENT; } if (add) { etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE; etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE); etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT; ret = igb_ethertype_filter_insert(filter_info, filter->ether_type, etqf); if (ret < 0) { PMD_DRV_LOG(ERR, "ethertype filters are full."); return -ENOSYS; } } else { ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret); if (ret < 0) return -ENOSYS; } E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf); E1000_WRITE_FLUSH(hw); return 0; } static int eth_igb_filter_ctrl(struct rte_eth_dev *dev __rte_unused, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { int ret = 0; switch (filter_type) { case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; *(const void **)arg = &igb_flow_ops; break; default: PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", filter_type); break; } return ret; } static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr); return 0; } static uint64_t igb_read_systime_cyclecounter(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t systime_cycles; switch (hw->mac.type) { case e1000_i210: case e1000_i211: /* * Need to read System Time Residue Register to be able * to read the other two registers. */ E1000_READ_REG(hw, E1000_SYSTIMR); /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */ systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML); systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH) * NSEC_PER_SEC; break; case e1000_82580: case e1000_i350: case e1000_i354: /* * Need to read System Time Residue Register to be able * to read the other two registers. */ E1000_READ_REG(hw, E1000_SYSTIMR); systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML); /* Only the 8 LSB are valid. */ systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH) & 0xff) << 32; break; default: systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML); systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH) << 32; break; } return systime_cycles; } static uint64_t igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t rx_tstamp_cycles; switch (hw->mac.type) { case e1000_i210: case e1000_i211: /* RXSTMPL stores ns and RXSTMPH stores seconds. */ rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL); rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH) * NSEC_PER_SEC; break; case e1000_82580: case e1000_i350: case e1000_i354: rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL); /* Only the 8 LSB are valid. */ rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH) & 0xff) << 32; break; default: rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL); rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH) << 32; break; } return rx_tstamp_cycles; } static uint64_t igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint64_t tx_tstamp_cycles; switch (hw->mac.type) { case e1000_i210: case e1000_i211: /* RXSTMPL stores ns and RXSTMPH stores seconds. */ tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL); tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH) * NSEC_PER_SEC; break; case e1000_82580: case e1000_i350: case e1000_i354: tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL); /* Only the 8 LSB are valid. */ tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH) & 0xff) << 32; break; default: tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL); tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH) << 32; break; } return tx_tstamp_cycles; } static void igb_start_timecounters(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_adapter *adapter = dev->data->dev_private; uint32_t incval = 1; uint32_t shift = 0; uint64_t mask = E1000_CYCLECOUNTER_MASK; switch (hw->mac.type) { case e1000_82580: case e1000_i350: case e1000_i354: /* 32 LSB bits + 8 MSB bits = 40 bits */ mask = (1ULL << 40) - 1; /* fall-through */ case e1000_i210: case e1000_i211: /* * Start incrementing the register * used to timestamp PTP packets. */ E1000_WRITE_REG(hw, E1000_TIMINCA, incval); break; case e1000_82576: incval = E1000_INCVALUE_82576; shift = IGB_82576_TSYNC_SHIFT; E1000_WRITE_REG(hw, E1000_TIMINCA, E1000_INCPERIOD_82576 | incval); break; default: /* Not supported */ return; } memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter)); memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter)); memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter)); adapter->systime_tc.cc_mask = mask; adapter->systime_tc.cc_shift = shift; adapter->systime_tc.nsec_mask = (1ULL << shift) - 1; adapter->rx_tstamp_tc.cc_mask = mask; adapter->rx_tstamp_tc.cc_shift = shift; adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; adapter->tx_tstamp_tc.cc_mask = mask; adapter->tx_tstamp_tc.cc_shift = shift; adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; } static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta) { struct e1000_adapter *adapter = dev->data->dev_private; adapter->systime_tc.nsec += delta; adapter->rx_tstamp_tc.nsec += delta; adapter->tx_tstamp_tc.nsec += delta; return 0; } static int igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts) { uint64_t ns; struct e1000_adapter *adapter = dev->data->dev_private; ns = rte_timespec_to_ns(ts); /* Set the timecounters to a new value. */ adapter->systime_tc.nsec = ns; adapter->rx_tstamp_tc.nsec = ns; adapter->tx_tstamp_tc.nsec = ns; return 0; } static int igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts) { uint64_t ns, systime_cycles; struct e1000_adapter *adapter = dev->data->dev_private; systime_cycles = igb_read_systime_cyclecounter(dev); ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles); *ts = rte_ns_to_timespec(ns); return 0; } static int igb_timesync_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t tsync_ctl; uint32_t tsauxc; /* Stop the timesync system time. */ E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0); /* Reset the timesync system time value. */ switch (hw->mac.type) { case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0); /* fall-through */ case e1000_82576: E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0); E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0); break; default: /* Not supported. */ return -ENOTSUP; } /* Enable system time for it isn't on by default. */ tsauxc = E1000_READ_REG(hw, E1000_TSAUXC); tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME; E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc); igb_start_timecounters(dev); /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */ E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), (RTE_ETHER_TYPE_1588 | E1000_ETQF_FILTER_ENABLE | E1000_ETQF_1588)); /* Enable timestamping of received PTP packets. */ tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL); tsync_ctl |= E1000_TSYNCRXCTL_ENABLED; E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl); /* Enable Timestamping of transmitted PTP packets. */ tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL); tsync_ctl |= E1000_TSYNCTXCTL_ENABLED; E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl); return 0; } static int igb_timesync_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t tsync_ctl; /* Disable timestamping of transmitted PTP packets. */ tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL); tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED; E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl); /* Disable timestamping of received PTP packets. */ tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL); tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED; E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl); /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */ E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0); /* Stop incrementating the System Time registers. */ E1000_WRITE_REG(hw, E1000_TIMINCA, 0); return 0; } static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp, uint32_t flags __rte_unused) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_adapter *adapter = dev->data->dev_private; uint32_t tsync_rxctl; uint64_t rx_tstamp_cycles; uint64_t ns; tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL); if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0) return -EINVAL; rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev); ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_adapter *adapter = dev->data->dev_private; uint32_t tsync_txctl; uint64_t tx_tstamp_cycles; uint64_t ns; tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL); if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0) return -EINVAL; tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev); ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } static int eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused) { int count = 0; int g_ind = 0; const struct reg_info *reg_group; while ((reg_group = igb_regs[g_ind++])) count += igb_reg_group_count(reg_group); return count; } static int igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused) { int count = 0; int g_ind = 0; const struct reg_info *reg_group; while ((reg_group = igbvf_regs[g_ind++])) count += igb_reg_group_count(reg_group); return count; } static int eth_igb_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t *data = regs->data; int g_ind = 0; int count = 0; const struct reg_info *reg_group; if (data == NULL) { regs->length = eth_igb_get_reg_length(dev); regs->width = sizeof(uint32_t); return 0; } /* Support only full register dump */ if ((regs->length == 0) || (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) { regs->version = hw->mac.type << 24 | hw->revision_id << 16 | hw->device_id; while ((reg_group = igb_regs[g_ind++])) count += igb_read_regs_group(dev, &data[count], reg_group); return 0; } return -ENOTSUP; } static int igbvf_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t *data = regs->data; int g_ind = 0; int count = 0; const struct reg_info *reg_group; if (data == NULL) { regs->length = igbvf_get_reg_length(dev); regs->width = sizeof(uint32_t); return 0; } /* Support only full register dump */ if ((regs->length == 0) || (regs->length == (uint32_t)igbvf_get_reg_length(dev))) { regs->version = hw->mac.type << 24 | hw->revision_id << 16 | hw->device_id; while ((reg_group = igbvf_regs[g_ind++])) count += igb_read_regs_group(dev, &data[count], reg_group); return 0; } return -ENOTSUP; } static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* Return unit is byte count */ return hw->nvm.word_size * 2; } static int eth_igb_get_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_nvm_info *nvm = &hw->nvm; uint16_t *data = in_eeprom->data; int first, length; first = in_eeprom->offset >> 1; length = in_eeprom->length >> 1; if ((first >= hw->nvm.word_size) || ((first + length) >= hw->nvm.word_size)) return -EINVAL; in_eeprom->magic = hw->vendor_id | ((uint32_t)hw->device_id << 16); if ((nvm->ops.read) == NULL) return -ENOTSUP; return nvm->ops.read(hw, first, length, data); } static int eth_igb_set_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_nvm_info *nvm = &hw->nvm; uint16_t *data = in_eeprom->data; int first, length; first = in_eeprom->offset >> 1; length = in_eeprom->length >> 1; if ((first >= hw->nvm.word_size) || ((first + length) >= hw->nvm.word_size)) return -EINVAL; in_eeprom->magic = (uint32_t)hw->vendor_id | ((uint32_t)hw->device_id << 16); if ((nvm->ops.write) == NULL) return -ENOTSUP; return nvm->ops.write(hw, first, length, data); } static int eth_igb_get_module_info(struct rte_eth_dev *dev, struct rte_eth_dev_module_info *modinfo) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t status = 0; uint16_t sff8472_rev, addr_mode; bool page_swap = false; if (hw->phy.media_type == e1000_media_type_copper || hw->phy.media_type == e1000_media_type_unknown) return -EOPNOTSUPP; /* Check whether we support SFF-8472 or not */ status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); if (status) return -EIO; /* addressing mode is not supported */ status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); if (status) return -EIO; /* addressing mode is not supported */ if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { PMD_DRV_LOG(ERR, "Address change required to access page 0xA2, " "but not supported. Please report the module " "type to the driver maintainers.\n"); page_swap = true; } if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { /* We have an SFP, but it does not support SFF-8472 */ modinfo->type = RTE_ETH_MODULE_SFF_8079; modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN; } else { /* We have an SFP which supports a revision of SFF-8472 */ modinfo->type = RTE_ETH_MODULE_SFF_8472; modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN; } return 0; } static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *info) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t status = 0; uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1]; u16 first_word, last_word; int i = 0; if (info->length == 0) return -EINVAL; first_word = info->offset >> 1; last_word = (info->offset + info->length - 1) >> 1; /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ for (i = 0; i < last_word - first_word + 1; i++) { status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2, &dataword[i]); if (status) { /* Error occurred while reading module */ return -EIO; } dataword[i] = rte_be_to_cpu_16(dataword[i]); } memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length); return 0; } static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t vec = E1000_MISC_VEC_ID; if (rte_intr_allow_others(intr_handle)) vec = E1000_RX_VEC_START; uint32_t mask = 1 << (queue_id + vec); E1000_WRITE_REG(hw, E1000_EIMC, mask); E1000_WRITE_FLUSH(hw); return 0; } static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint32_t vec = E1000_MISC_VEC_ID; if (rte_intr_allow_others(intr_handle)) vec = E1000_RX_VEC_START; uint32_t mask = 1 << (queue_id + vec); uint32_t regval; regval = E1000_READ_REG(hw, E1000_EIMS); E1000_WRITE_REG(hw, E1000_EIMS, regval | mask); E1000_WRITE_FLUSH(hw); rte_intr_ack(intr_handle); return 0; } static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector, uint8_t index, uint8_t offset) { uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); /* clear bits */ val &= ~((uint32_t)0xFF << offset); /* write vector and valid bit */ val |= (msix_vector | E1000_IVAR_VALID) << offset; E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val); } static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction, uint8_t queue, uint8_t msix_vector) { uint32_t tmp = 0; if (hw->mac.type == e1000_82575) { if (direction == 0) tmp = E1000_EICR_RX_QUEUE0 << queue; else if (direction == 1) tmp = E1000_EICR_TX_QUEUE0 << queue; E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp); } else if (hw->mac.type == e1000_82576) { if ((direction == 0) || (direction == 1)) eth_igb_write_ivar(hw, msix_vector, queue & 0x7, ((queue & 0x8) << 1) + 8 * direction); } else if ((hw->mac.type == e1000_82580) || (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354) || (hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { if ((direction == 0) || (direction == 1)) eth_igb_write_ivar(hw, msix_vector, queue >> 1, ((queue & 0x1) << 4) + 8 * direction); } } /* Sets up the hardware to generate MSI-X interrupts properly * @hw * board private structure */ static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev) { int queue_id; uint32_t tmpval, regval, intr_mask; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t vec = E1000_MISC_VEC_ID; uint32_t base = E1000_MISC_VEC_ID; uint32_t misc_shift = 0; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; /* won't configure msix register if no mapping is done * between intr vector and event fd */ if (!rte_intr_dp_is_en(intr_handle)) return; if (rte_intr_allow_others(intr_handle)) { vec = base = E1000_RX_VEC_START; misc_shift = 1; } /* set interrupt vector for other causes */ if (hw->mac.type == e1000_82575) { tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT); /* enable MSI-X PBA support */ tmpval |= E1000_CTRL_EXT_PBA_CLR; /* Auto-Mask interrupts upon ICR read */ tmpval |= E1000_CTRL_EXT_EIAME; tmpval |= E1000_CTRL_EXT_IRCA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval); /* enable msix_other interrupt */ E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER); regval = E1000_READ_REG(hw, E1000_EIAC); E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER); regval = E1000_READ_REG(hw, E1000_EIAM); E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER); } else if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) || (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354) || (hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { /* turn on MSI-X capability first */ E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_EIAME | E1000_GPIE_NSICR); intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) << misc_shift; if (dev->data->dev_conf.intr_conf.lsc != 0) intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC); regval = E1000_READ_REG(hw, E1000_EIAC); E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask); /* enable msix_other interrupt */ regval = E1000_READ_REG(hw, E1000_EIMS); E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask); tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8; E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval); } /* use EIAM to auto-mask when MSI-X interrupt * is asserted, this saves a register write for every interrupt */ intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) << misc_shift; if (dev->data->dev_conf.intr_conf.lsc != 0) intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC); regval = E1000_READ_REG(hw, E1000_EIAM); E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask); for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) { eth_igb_assign_msix_vector(hw, 0, queue_id, vec); intr_handle->intr_vec[queue_id] = vec; if (vec < base + intr_handle->nb_efd - 1) vec++; } E1000_WRITE_FLUSH(hw); } /* restore n-tuple filter */ static inline void igb_ntuple_filter_restore(struct rte_eth_dev *dev) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_5tuple_filter *p_5tuple; struct e1000_2tuple_filter *p_2tuple; TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) { igb_inject_5tuple_filter_82576(dev, p_5tuple); } TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) { igb_inject_2uple_filter(dev, p_2tuple); } } /* restore SYN filter */ static inline void igb_syn_filter_restore(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); uint32_t synqf; synqf = filter_info->syn_info; if (synqf & E1000_SYN_FILTER_ENABLE) { E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf); E1000_WRITE_FLUSH(hw); } } /* restore ethernet type filter */ static inline void igb_ethertype_filter_restore(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); int i; for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) { if (filter_info->ethertype_mask & (1 << i)) { E1000_WRITE_REG(hw, E1000_ETQF(i), filter_info->ethertype_filters[i].etqf); E1000_WRITE_FLUSH(hw); } } } /* restore flex byte filter */ static inline void igb_flex_filter_restore(struct rte_eth_dev *dev) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct e1000_flex_filter *flex_filter; TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) { igb_inject_flex_filter(dev, flex_filter); } } /* restore rss filter */ static inline void igb_rss_filter_restore(struct rte_eth_dev *dev) { struct e1000_filter_info *filter_info = E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); if (filter_info->rss_info.conf.queue_num) igb_config_rss_filter(dev, &filter_info->rss_info, TRUE); } /* restore all types filter */ static int igb_filter_restore(struct rte_eth_dev *dev) { igb_ntuple_filter_restore(dev); igb_ethertype_filter_restore(dev); igb_syn_filter_restore(dev); igb_flex_filter_restore(dev); igb_rss_filter_restore(dev); return 0; } RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map); RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map); RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci"); /* see e1000_logs.c */ RTE_INIT(e1000_init_log) { e1000_igb_init_log(); }