/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Marvell International Ltd. * Copyright(c) 2017 Semihalf. * All rights reserved. */ #include #include #include #include #include #include #include #include #include #include "mrvl_pmd_private.h" #define MRVL_PMD_MAX_NB_SESS_ARG ("max_nb_sessions") #define MRVL_PMD_DEFAULT_MAX_NB_SESSIONS 2048 static uint8_t cryptodev_driver_id; struct mrvl_pmd_init_params { struct rte_cryptodev_pmd_init_params common; uint32_t max_nb_sessions; }; const char *mrvl_pmd_valid_params[] = { RTE_CRYPTODEV_PMD_NAME_ARG, RTE_CRYPTODEV_PMD_MAX_NB_QP_ARG, RTE_CRYPTODEV_PMD_SOCKET_ID_ARG, MRVL_PMD_MAX_NB_SESS_ARG }; /** * Flag if particular crypto algorithm is supported by PMD/MUSDK. * * The idea is to have Not Supported value as default (0). * This way we need only to define proper map sizes, * non-initialized entries will be by default not supported. */ enum algo_supported { ALGO_NOT_SUPPORTED = 0, ALGO_SUPPORTED = 1, }; /** Map elements for cipher mapping.*/ struct cipher_params_mapping { enum algo_supported supported; /**< On/Off switch */ enum sam_cipher_alg cipher_alg; /**< Cipher algorithm */ enum sam_cipher_mode cipher_mode; /**< Cipher mode */ unsigned int max_key_len; /**< Maximum key length (in bytes)*/ } /* We want to squeeze in multiple maps into the cache line. */ __rte_aligned(32); /** Map elements for auth mapping.*/ struct auth_params_mapping { enum algo_supported supported; /**< On/off switch */ enum sam_auth_alg auth_alg; /**< Auth algorithm */ } /* We want to squeeze in multiple maps into the cache line. */ __rte_aligned(32); /** * Map of supported cipher algorithms. */ static const struct cipher_params_mapping cipher_map[] = { [RTE_CRYPTO_CIPHER_NULL] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_NONE }, [RTE_CRYPTO_CIPHER_3DES_CBC] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_3DES, .cipher_mode = SAM_CIPHER_CBC, .max_key_len = BITS2BYTES(192) }, [RTE_CRYPTO_CIPHER_3DES_CTR] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_3DES, .cipher_mode = SAM_CIPHER_CTR, .max_key_len = BITS2BYTES(192) }, [RTE_CRYPTO_CIPHER_3DES_ECB] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_3DES, .cipher_mode = SAM_CIPHER_ECB, .max_key_len = BITS2BYTES(192) }, [RTE_CRYPTO_CIPHER_AES_CBC] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_AES, .cipher_mode = SAM_CIPHER_CBC, .max_key_len = BITS2BYTES(256) }, [RTE_CRYPTO_CIPHER_AES_CTR] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_AES, .cipher_mode = SAM_CIPHER_CTR, .max_key_len = BITS2BYTES(256) }, [RTE_CRYPTO_CIPHER_AES_ECB] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_AES, .cipher_mode = SAM_CIPHER_ECB, .max_key_len = BITS2BYTES(256) }, }; /** * Map of supported auth algorithms. */ static const struct auth_params_mapping auth_map[] = { [RTE_CRYPTO_AUTH_NULL] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_NONE }, [RTE_CRYPTO_AUTH_MD5_HMAC] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HMAC_MD5 }, [RTE_CRYPTO_AUTH_MD5] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HASH_MD5 }, [RTE_CRYPTO_AUTH_SHA1_HMAC] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HMAC_SHA1 }, [RTE_CRYPTO_AUTH_SHA1] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HASH_SHA1 }, [RTE_CRYPTO_AUTH_SHA224_HMAC] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HMAC_SHA2_224 }, [RTE_CRYPTO_AUTH_SHA224] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HASH_SHA2_224 }, [RTE_CRYPTO_AUTH_SHA256_HMAC] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HMAC_SHA2_256 }, [RTE_CRYPTO_AUTH_SHA256] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HASH_SHA2_256 }, [RTE_CRYPTO_AUTH_SHA384_HMAC] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HMAC_SHA2_384 }, [RTE_CRYPTO_AUTH_SHA384] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HASH_SHA2_384 }, [RTE_CRYPTO_AUTH_SHA512_HMAC] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HMAC_SHA2_512 }, [RTE_CRYPTO_AUTH_SHA512] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_HASH_SHA2_512 }, [RTE_CRYPTO_AUTH_AES_GMAC] = { .supported = ALGO_SUPPORTED, .auth_alg = SAM_AUTH_AES_GMAC }, }; /** * Map of supported aead algorithms. */ static const struct cipher_params_mapping aead_map[] = { [RTE_CRYPTO_AEAD_AES_GCM] = { .supported = ALGO_SUPPORTED, .cipher_alg = SAM_CIPHER_AES, .cipher_mode = SAM_CIPHER_GCM, .max_key_len = BITS2BYTES(256) }, }; /* *----------------------------------------------------------------------------- * Forward declarations. *----------------------------------------------------------------------------- */ static int cryptodev_mrvl_crypto_uninit(struct rte_vdev_device *vdev); /* *----------------------------------------------------------------------------- * Session Preparation. *----------------------------------------------------------------------------- */ /** * Get xform chain order. * * @param xform Pointer to configuration structure chain for crypto operations. * @returns Order of crypto operations. */ static enum mrvl_crypto_chain_order mrvl_crypto_get_chain_order(const struct rte_crypto_sym_xform *xform) { /* Currently, Marvell supports max 2 operations in chain */ if (xform->next != NULL && xform->next->next != NULL) return MRVL_CRYPTO_CHAIN_NOT_SUPPORTED; if (xform->next != NULL) { if ((xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) && (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)) return MRVL_CRYPTO_CHAIN_AUTH_CIPHER; if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) && (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)) return MRVL_CRYPTO_CHAIN_CIPHER_AUTH; } else { if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) return MRVL_CRYPTO_CHAIN_AUTH_ONLY; if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) return MRVL_CRYPTO_CHAIN_CIPHER_ONLY; if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) return MRVL_CRYPTO_CHAIN_COMBINED; } return MRVL_CRYPTO_CHAIN_NOT_SUPPORTED; } /** * Set session parameters for cipher part. * * @param sess Crypto session pointer. * @param cipher_xform Pointer to configuration structure for cipher operations. * @returns 0 in case of success, negative value otherwise. */ static int mrvl_crypto_set_cipher_session_parameters(struct mrvl_crypto_session *sess, const struct rte_crypto_sym_xform *cipher_xform) { uint8_t *cipher_key; /* Make sure we've got proper struct */ if (cipher_xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) { MRVL_LOG(ERR, "Wrong xform struct provided!"); return -EINVAL; } /* See if map data is present and valid */ if ((cipher_xform->cipher.algo > RTE_DIM(cipher_map)) || (cipher_map[cipher_xform->cipher.algo].supported != ALGO_SUPPORTED)) { MRVL_LOG(ERR, "Cipher algorithm not supported!"); return -EINVAL; } sess->cipher_iv_offset = cipher_xform->cipher.iv.offset; sess->sam_sess_params.dir = (cipher_xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? SAM_DIR_ENCRYPT : SAM_DIR_DECRYPT; sess->sam_sess_params.cipher_alg = cipher_map[cipher_xform->cipher.algo].cipher_alg; sess->sam_sess_params.cipher_mode = cipher_map[cipher_xform->cipher.algo].cipher_mode; /* Assume IV will be passed together with data. */ sess->sam_sess_params.cipher_iv = NULL; /* Get max key length. */ if (cipher_xform->cipher.key.length > cipher_map[cipher_xform->cipher.algo].max_key_len) { MRVL_LOG(ERR, "Wrong key length!"); return -EINVAL; } cipher_key = malloc(cipher_xform->cipher.key.length); if (cipher_key == NULL) { MRVL_LOG(ERR, "Insufficient memory!"); return -ENOMEM; } memcpy(cipher_key, cipher_xform->cipher.key.data, cipher_xform->cipher.key.length); sess->sam_sess_params.cipher_key_len = cipher_xform->cipher.key.length; sess->sam_sess_params.cipher_key = cipher_key; return 0; } /** * Set session parameters for authentication part. * * @param sess Crypto session pointer. * @param auth_xform Pointer to configuration structure for auth operations. * @returns 0 in case of success, negative value otherwise. */ static int mrvl_crypto_set_auth_session_parameters(struct mrvl_crypto_session *sess, const struct rte_crypto_sym_xform *auth_xform) { uint8_t *auth_key = NULL; /* Make sure we've got proper struct */ if (auth_xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) { MRVL_LOG(ERR, "Wrong xform struct provided!"); return -EINVAL; } /* See if map data is present and valid */ if ((auth_xform->auth.algo > RTE_DIM(auth_map)) || (auth_map[auth_xform->auth.algo].supported != ALGO_SUPPORTED)) { MRVL_LOG(ERR, "Auth algorithm not supported!"); return -EINVAL; } sess->sam_sess_params.dir = (auth_xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) ? SAM_DIR_ENCRYPT : SAM_DIR_DECRYPT; sess->sam_sess_params.auth_alg = auth_map[auth_xform->auth.algo].auth_alg; sess->sam_sess_params.u.basic.auth_icv_len = auth_xform->auth.digest_length; if (auth_xform->auth.key.length > 0) { auth_key = malloc(auth_xform->auth.key.length); if (auth_key == NULL) { MRVL_LOG(ERR, "Not enough memory!"); return -EINVAL; } memcpy(auth_key, auth_xform->auth.key.data, auth_xform->auth.key.length); } /* auth_key must be NULL if auth algorithm does not use HMAC */ sess->sam_sess_params.auth_key = auth_key; sess->sam_sess_params.auth_key_len = auth_xform->auth.key.length; return 0; } /** * Set session parameters for aead part. * * @param sess Crypto session pointer. * @param aead_xform Pointer to configuration structure for aead operations. * @returns 0 in case of success, negative value otherwise. */ static int mrvl_crypto_set_aead_session_parameters(struct mrvl_crypto_session *sess, const struct rte_crypto_sym_xform *aead_xform) { uint8_t *aead_key; /* Make sure we've got proper struct */ if (aead_xform->type != RTE_CRYPTO_SYM_XFORM_AEAD) { MRVL_LOG(ERR, "Wrong xform struct provided!"); return -EINVAL; } /* See if map data is present and valid */ if ((aead_xform->aead.algo > RTE_DIM(aead_map)) || (aead_map[aead_xform->aead.algo].supported != ALGO_SUPPORTED)) { MRVL_LOG(ERR, "AEAD algorithm not supported!"); return -EINVAL; } sess->sam_sess_params.dir = (aead_xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ? SAM_DIR_ENCRYPT : SAM_DIR_DECRYPT; sess->sam_sess_params.cipher_alg = aead_map[aead_xform->aead.algo].cipher_alg; sess->sam_sess_params.cipher_mode = aead_map[aead_xform->aead.algo].cipher_mode; /* Assume IV will be passed together with data. */ sess->sam_sess_params.cipher_iv = NULL; /* Get max key length. */ if (aead_xform->aead.key.length > aead_map[aead_xform->aead.algo].max_key_len) { MRVL_LOG(ERR, "Wrong key length!"); return -EINVAL; } aead_key = malloc(aead_xform->aead.key.length); if (aead_key == NULL) { MRVL_LOG(ERR, "Insufficient memory!"); return -ENOMEM; } memcpy(aead_key, aead_xform->aead.key.data, aead_xform->aead.key.length); sess->sam_sess_params.cipher_key = aead_key; sess->sam_sess_params.cipher_key_len = aead_xform->aead.key.length; if (sess->sam_sess_params.cipher_mode == SAM_CIPHER_GCM) sess->sam_sess_params.auth_alg = SAM_AUTH_AES_GCM; sess->sam_sess_params.u.basic.auth_icv_len = aead_xform->aead.digest_length; sess->sam_sess_params.u.basic.auth_aad_len = aead_xform->aead.aad_length; return 0; } /** * Parse crypto transform chain and setup session parameters. * * @param dev Pointer to crypto device * @param sess Poiner to crypto session * @param xform Pointer to configuration structure chain for crypto operations. * @returns 0 in case of success, negative value otherwise. */ int mrvl_crypto_set_session_parameters(struct mrvl_crypto_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *cipher_xform = NULL; const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *aead_xform = NULL; /* Filter out spurious/broken requests */ if (xform == NULL) return -EINVAL; sess->chain_order = mrvl_crypto_get_chain_order(xform); switch (sess->chain_order) { case MRVL_CRYPTO_CHAIN_CIPHER_AUTH: cipher_xform = xform; auth_xform = xform->next; break; case MRVL_CRYPTO_CHAIN_AUTH_CIPHER: auth_xform = xform; cipher_xform = xform->next; break; case MRVL_CRYPTO_CHAIN_CIPHER_ONLY: cipher_xform = xform; break; case MRVL_CRYPTO_CHAIN_AUTH_ONLY: auth_xform = xform; break; case MRVL_CRYPTO_CHAIN_COMBINED: aead_xform = xform; break; default: return -EINVAL; } if ((cipher_xform != NULL) && (mrvl_crypto_set_cipher_session_parameters( sess, cipher_xform) < 0)) { MRVL_LOG(ERR, "Invalid/unsupported cipher parameters!"); return -EINVAL; } if ((auth_xform != NULL) && (mrvl_crypto_set_auth_session_parameters( sess, auth_xform) < 0)) { MRVL_LOG(ERR, "Invalid/unsupported auth parameters!"); return -EINVAL; } if ((aead_xform != NULL) && (mrvl_crypto_set_aead_session_parameters( sess, aead_xform) < 0)) { MRVL_LOG(ERR, "Invalid/unsupported aead parameters!"); return -EINVAL; } return 0; } /* *----------------------------------------------------------------------------- * Process Operations *----------------------------------------------------------------------------- */ /** * Prepare a single request. * * This function basically translates DPDK crypto request into one * understandable by MUDSK's SAM. If this is a first request in a session, * it starts the session. * * @param request Pointer to pre-allocated && reset request buffer [Out]. * @param src_bd Pointer to pre-allocated source descriptor [Out]. * @param dst_bd Pointer to pre-allocated destination descriptor [Out]. * @param op Pointer to DPDK crypto operation struct [In]. */ static inline int mrvl_request_prepare(struct sam_cio_op_params *request, struct sam_buf_info *src_bd, struct sam_buf_info *dst_bd, struct rte_crypto_op *op) { struct mrvl_crypto_session *sess; struct rte_mbuf *src_mbuf, *dst_mbuf; uint16_t segments_nb; uint8_t *digest; int i; if (unlikely(op->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) { MRVL_LOG(ERR, "MRVL CRYPTO PMD only supports session " "oriented requests, op (%p) is sessionless!", op); return -EINVAL; } sess = (struct mrvl_crypto_session *)get_sym_session_private_data( op->sym->session, cryptodev_driver_id); if (unlikely(sess == NULL)) { MRVL_LOG(ERR, "Session was not created for this device!"); return -EINVAL; } request->sa = sess->sam_sess; request->cookie = op; src_mbuf = op->sym->m_src; segments_nb = src_mbuf->nb_segs; /* The following conditions must be met: * - Destination buffer is required when segmented source buffer * - Segmented destination buffer is not supported */ if ((segments_nb > 1) && (!op->sym->m_dst)) { MRVL_LOG(ERR, "op->sym->m_dst = NULL!"); return -1; } /* For non SG case: * If application delivered us null dst buffer, it means it expects * us to deliver the result in src buffer. */ dst_mbuf = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src; if (!rte_pktmbuf_is_contiguous(dst_mbuf)) { MRVL_LOG(ERR, "Segmented destination buffer not supported!"); return -1; } request->num_bufs = segments_nb; for (i = 0; i < segments_nb; i++) { /* Empty source. */ if (rte_pktmbuf_data_len(src_mbuf) == 0) { /* EIP does not support 0 length buffers. */ MRVL_LOG(ERR, "Buffer length == 0 not supported!"); return -1; } src_bd[i].vaddr = rte_pktmbuf_mtod(src_mbuf, void *); src_bd[i].paddr = rte_pktmbuf_iova(src_mbuf); src_bd[i].len = rte_pktmbuf_data_len(src_mbuf); src_mbuf = src_mbuf->next; } request->src = src_bd; /* Empty destination. */ if (rte_pktmbuf_data_len(dst_mbuf) == 0) { /* Make dst buffer fit at least source data. */ if (rte_pktmbuf_append(dst_mbuf, rte_pktmbuf_data_len(op->sym->m_src)) == NULL) { MRVL_LOG(ERR, "Unable to set big enough dst buffer!"); return -1; } } request->dst = dst_bd; dst_bd->vaddr = rte_pktmbuf_mtod(dst_mbuf, void *); dst_bd->paddr = rte_pktmbuf_iova(dst_mbuf); /* * We can use all available space in dst_mbuf, * not only what's used currently. */ dst_bd->len = dst_mbuf->buf_len - rte_pktmbuf_headroom(dst_mbuf); if (sess->chain_order == MRVL_CRYPTO_CHAIN_COMBINED) { request->cipher_len = op->sym->aead.data.length; request->cipher_offset = op->sym->aead.data.offset; request->cipher_iv = rte_crypto_op_ctod_offset(op, uint8_t *, sess->cipher_iv_offset); request->auth_aad = op->sym->aead.aad.data; request->auth_offset = request->cipher_offset; request->auth_len = request->cipher_len; } else { request->cipher_len = op->sym->cipher.data.length; request->cipher_offset = op->sym->cipher.data.offset; request->cipher_iv = rte_crypto_op_ctod_offset(op, uint8_t *, sess->cipher_iv_offset); request->auth_offset = op->sym->auth.data.offset; request->auth_len = op->sym->auth.data.length; } digest = sess->chain_order == MRVL_CRYPTO_CHAIN_COMBINED ? op->sym->aead.digest.data : op->sym->auth.digest.data; if (digest == NULL) { /* No auth - no worry. */ return 0; } request->auth_icv_offset = request->auth_offset + request->auth_len; /* * EIP supports only scenarios where ICV(digest buffer) is placed at * auth_icv_offset. */ if (sess->sam_sess_params.dir == SAM_DIR_ENCRYPT) { /* * This should be the most common case anyway, * EIP will overwrite DST buffer at auth_icv_offset. */ if (rte_pktmbuf_mtod_offset( dst_mbuf, uint8_t *, request->auth_icv_offset) == digest) return 0; } else {/* sess->sam_sess_params.dir == SAM_DIR_DECRYPT */ /* * EIP will look for digest at auth_icv_offset * offset in SRC buffer. It must be placed in the last * segment and the offset must be set to reach digest * in the last segment */ struct rte_mbuf *last_seg = op->sym->m_src; uint32_t d_offset = request->auth_icv_offset; u32 d_size = sess->sam_sess_params.u.basic.auth_icv_len; unsigned char *d_ptr; /* Find the last segment and the offset for the last segment */ while ((last_seg->next != NULL) && (d_offset >= last_seg->data_len)) { d_offset -= last_seg->data_len; last_seg = last_seg->next; } if (rte_pktmbuf_mtod_offset(last_seg, uint8_t *, d_offset) == digest) return 0; /* copy digest to last segment */ if (last_seg->buf_len >= (d_size + d_offset)) { d_ptr = (unsigned char *)last_seg->buf_addr + d_offset; rte_memcpy(d_ptr, digest, d_size); return 0; } } /* * If we landed here it means that digest pointer is * at different than expected place. */ return -1; } /* *----------------------------------------------------------------------------- * PMD Framework handlers *----------------------------------------------------------------------------- */ /** * Enqueue burst. * * @param queue_pair Pointer to queue pair. * @param ops Pointer to ops requests array. * @param nb_ops Number of elements in ops requests array. * @returns Number of elements consumed from ops. */ static uint16_t mrvl_crypto_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { uint16_t iter_ops = 0; uint16_t to_enq = 0; uint16_t consumed = 0; int ret; struct sam_cio_op_params requests[nb_ops]; /* * SAM does not store bd pointers, so on-stack scope will be enough. */ struct mrvl_crypto_src_table src_bd[nb_ops]; struct sam_buf_info dst_bd[nb_ops]; struct mrvl_crypto_qp *qp = (struct mrvl_crypto_qp *)queue_pair; if (nb_ops == 0) return 0; /* Prepare the burst. */ memset(&requests, 0, sizeof(requests)); memset(&src_bd, 0, sizeof(src_bd)); /* Iterate through */ for (; iter_ops < nb_ops; ++iter_ops) { /* store the op id for debug */ src_bd[iter_ops].iter_ops = iter_ops; if (mrvl_request_prepare(&requests[iter_ops], src_bd[iter_ops].src_bd, &dst_bd[iter_ops], ops[iter_ops]) < 0) { MRVL_LOG(ERR, "Error while preparing parameters!"); qp->stats.enqueue_err_count++; ops[iter_ops]->status = RTE_CRYPTO_OP_STATUS_ERROR; /* * Number of handled ops is increased * (even if the result of handling is error). */ ++consumed; break; } ops[iter_ops]->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; /* Increase the number of ops to enqueue. */ ++to_enq; } /* for (; iter_ops < nb_ops;... */ if (to_enq > 0) { /* Send the burst */ ret = sam_cio_enq(qp->cio, requests, &to_enq); consumed += to_enq; if (ret < 0) { /* * Trust SAM that in this case returned value will be at * some point correct (now it is returned unmodified). */ qp->stats.enqueue_err_count += to_enq; for (iter_ops = 0; iter_ops < to_enq; ++iter_ops) ops[iter_ops]->status = RTE_CRYPTO_OP_STATUS_ERROR; } } qp->stats.enqueued_count += to_enq; return consumed; } /** * Dequeue burst. * * @param queue_pair Pointer to queue pair. * @param ops Pointer to ops requests array. * @param nb_ops Number of elements in ops requests array. * @returns Number of elements dequeued. */ static uint16_t mrvl_crypto_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { int ret; struct mrvl_crypto_qp *qp = queue_pair; struct sam_cio *cio = qp->cio; struct sam_cio_op_result results[nb_ops]; uint16_t i; ret = sam_cio_deq(cio, results, &nb_ops); if (ret < 0) { /* Count all dequeued as error. */ qp->stats.dequeue_err_count += nb_ops; /* But act as they were dequeued anyway*/ qp->stats.dequeued_count += nb_ops; return 0; } /* Unpack and check results. */ for (i = 0; i < nb_ops; ++i) { ops[i] = results[i].cookie; switch (results[i].status) { case SAM_CIO_OK: ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS; break; case SAM_CIO_ERR_ICV: MRVL_LOG(DEBUG, "CIO returned SAM_CIO_ERR_ICV."); ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; break; default: MRVL_LOG(DEBUG, "CIO returned Error: %d.", results[i].status); ops[i]->status = RTE_CRYPTO_OP_STATUS_ERROR; break; } } qp->stats.dequeued_count += nb_ops; return nb_ops; } /** * Create a new crypto device. * * @param name Driver name. * @param vdev Pointer to device structure. * @param init_params Pointer to initialization parameters. * @returns 0 in case of success, negative value otherwise. */ static int cryptodev_mrvl_crypto_create(const char *name, struct rte_vdev_device *vdev, struct mrvl_pmd_init_params *init_params) { struct rte_cryptodev *dev; struct mrvl_crypto_private *internals; struct sam_init_params sam_params; int ret = -EINVAL; dev = rte_cryptodev_pmd_create(name, &vdev->device, &init_params->common); if (dev == NULL) { MRVL_LOG(ERR, "Failed to create cryptodev vdev!"); goto init_error; } dev->driver_id = cryptodev_driver_id; dev->dev_ops = rte_mrvl_crypto_pmd_ops; /* Register rx/tx burst functions for data path. */ dev->enqueue_burst = mrvl_crypto_pmd_enqueue_burst; dev->dequeue_burst = mrvl_crypto_pmd_dequeue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_HW_ACCELERATED | RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT; internals = dev->data->dev_private; internals->max_nb_qpairs = init_params->common.max_nb_queue_pairs; internals->max_nb_sessions = init_params->max_nb_sessions; ret = rte_mvep_init(MVEP_MOD_T_SAM, NULL); if (ret) goto init_error; sam_params.max_num_sessions = internals->max_nb_sessions; /* sam_set_debug_flags(3); */ ret = sam_init(&sam_params); if (ret) goto init_error; return 0; init_error: MRVL_LOG(ERR, "Driver %s: %s failed!", init_params->common.name, __func__); cryptodev_mrvl_crypto_uninit(vdev); return ret; } /** Parse integer from integer argument */ static int parse_integer_arg(const char *key __rte_unused, const char *value, void *extra_args) { int *i = (int *) extra_args; *i = atoi(value); if (*i < 0) { MRVL_LOG(ERR, "Argument has to be positive!"); return -EINVAL; } return 0; } /** Parse name */ static int parse_name_arg(const char *key __rte_unused, const char *value, void *extra_args) { struct rte_cryptodev_pmd_init_params *params = extra_args; if (strlen(value) >= RTE_CRYPTODEV_NAME_MAX_LEN - 1) { MRVL_LOG(ERR, "Invalid name %s, should be less than %u bytes!", value, RTE_CRYPTODEV_NAME_MAX_LEN - 1); return -EINVAL; } strncpy(params->name, value, RTE_CRYPTODEV_NAME_MAX_LEN); return 0; } static int mrvl_pmd_parse_input_args(struct mrvl_pmd_init_params *params, const char *input_args) { struct rte_kvargs *kvlist = NULL; int ret = 0; if (params == NULL) return -EINVAL; if (input_args) { kvlist = rte_kvargs_parse(input_args, mrvl_pmd_valid_params); if (kvlist == NULL) return -1; /* Common VDEV parameters */ ret = rte_kvargs_process(kvlist, RTE_CRYPTODEV_PMD_MAX_NB_QP_ARG, &parse_integer_arg, ¶ms->common.max_nb_queue_pairs); if (ret < 0) goto free_kvlist; ret = rte_kvargs_process(kvlist, RTE_CRYPTODEV_PMD_SOCKET_ID_ARG, &parse_integer_arg, ¶ms->common.socket_id); if (ret < 0) goto free_kvlist; ret = rte_kvargs_process(kvlist, RTE_CRYPTODEV_PMD_NAME_ARG, &parse_name_arg, ¶ms->common); if (ret < 0) goto free_kvlist; ret = rte_kvargs_process(kvlist, MRVL_PMD_MAX_NB_SESS_ARG, &parse_integer_arg, params); if (ret < 0) goto free_kvlist; } free_kvlist: rte_kvargs_free(kvlist); return ret; } /** * Initialize the crypto device. * * @param vdev Pointer to device structure. * @returns 0 in case of success, negative value otherwise. */ static int cryptodev_mrvl_crypto_init(struct rte_vdev_device *vdev) { struct mrvl_pmd_init_params init_params = { .common = { .name = "", .private_data_size = sizeof(struct mrvl_crypto_private), .max_nb_queue_pairs = sam_get_num_inst() * sam_get_num_cios(0), .socket_id = rte_socket_id() }, .max_nb_sessions = MRVL_PMD_DEFAULT_MAX_NB_SESSIONS }; const char *name, *args; int ret; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; args = rte_vdev_device_args(vdev); ret = mrvl_pmd_parse_input_args(&init_params, args); if (ret) { MRVL_LOG(ERR, "Failed to parse initialisation arguments[%s]!", args); return -EINVAL; } return cryptodev_mrvl_crypto_create(name, vdev, &init_params); } /** * Uninitialize the crypto device * * @param vdev Pointer to device structure. * @returns 0 in case of success, negative value otherwise. */ static int cryptodev_mrvl_crypto_uninit(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; const char *name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; MRVL_LOG(INFO, "Closing Marvell crypto device %s on numa socket %u.", name, rte_socket_id()); sam_deinit(); rte_mvep_deinit(MVEP_MOD_T_SAM); cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; return rte_cryptodev_pmd_destroy(cryptodev); } /** * Basic driver handlers for use in the constructor. */ static struct rte_vdev_driver cryptodev_mrvl_pmd_drv = { .probe = cryptodev_mrvl_crypto_init, .remove = cryptodev_mrvl_crypto_uninit }; static struct cryptodev_driver mrvl_crypto_drv; /* Register the driver in constructor. */ RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_MRVL_PMD, cryptodev_mrvl_pmd_drv); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_MRVL_PMD, "max_nb_queue_pairs= " "max_nb_sessions= " "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(mrvl_crypto_drv, cryptodev_mrvl_pmd_drv.driver, cryptodev_driver_id); RTE_LOG_REGISTER(mrvl_logtype_driver, pmd.crypto.mvsam, NOTICE);