/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include "isal_compress_pmd_private.h" #define RTE_COMP_ISAL_WINDOW_SIZE 15 #define RTE_COMP_ISAL_LEVEL_ZERO 0 /* ISA-L Level 0 used for fixed Huffman */ #define RTE_COMP_ISAL_LEVEL_ONE 1 #define RTE_COMP_ISAL_LEVEL_TWO 2 #define RTE_COMP_ISAL_LEVEL_THREE 3 /* Optimised for AVX512 & AVX2 only */ #define CHKSUM_SZ_CRC 8 #define CHKSUM_SZ_ADLER 4 #define STRINGIFY(s) #s #define ISAL_TOSTRING(maj, min, patch) \ STRINGIFY(maj)"."STRINGIFY(min)"."STRINGIFY(patch) #define ISAL_VERSION_STRING \ ISAL_TOSTRING(ISAL_MAJOR_VERSION, ISAL_MINOR_VERSION, ISAL_PATCH_VERSION) /* Verify and set private xform parameters */ int isal_comp_set_priv_xform_parameters(struct isal_priv_xform *priv_xform, const struct rte_comp_xform *xform) { if (xform == NULL) return -EINVAL; /* Set compression private xform variables */ if (xform->type == RTE_COMP_COMPRESS) { /* Set private xform type - COMPRESS/DECOMPRESS */ priv_xform->type = RTE_COMP_COMPRESS; /* Set private xform algorithm */ if (xform->compress.algo != RTE_COMP_ALGO_DEFLATE) { if (xform->compress.algo == RTE_COMP_ALGO_NULL) { ISAL_PMD_LOG(ERR, "By-pass not supported\n"); return -ENOTSUP; } ISAL_PMD_LOG(ERR, "Algorithm not supported\n"); return -ENOTSUP; } priv_xform->compress.algo = RTE_COMP_ALGO_DEFLATE; /* Set private xform window size, 32K supported */ if (xform->compress.window_size == RTE_COMP_ISAL_WINDOW_SIZE) priv_xform->compress.window_size = RTE_COMP_ISAL_WINDOW_SIZE; else { ISAL_PMD_LOG(ERR, "Window size not supported\n"); return -ENOTSUP; } /* Set private xform huffman type */ switch (xform->compress.deflate.huffman) { case(RTE_COMP_HUFFMAN_DEFAULT): priv_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT; break; case(RTE_COMP_HUFFMAN_FIXED): priv_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_FIXED; break; case(RTE_COMP_HUFFMAN_DYNAMIC): priv_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_DYNAMIC; break; default: ISAL_PMD_LOG(ERR, "Huffman code not supported\n"); return -ENOTSUP; } /* Set private xform checksum */ switch (xform->compress.chksum) { /* Raw deflate by default */ case(RTE_COMP_CHECKSUM_NONE): priv_xform->compress.chksum = IGZIP_DEFLATE; break; case(RTE_COMP_CHECKSUM_CRC32): priv_xform->compress.chksum = IGZIP_GZIP_NO_HDR; break; case(RTE_COMP_CHECKSUM_ADLER32): priv_xform->compress.chksum = IGZIP_ZLIB_NO_HDR; break; case(RTE_COMP_CHECKSUM_CRC32_ADLER32): ISAL_PMD_LOG(ERR, "Combined CRC and ADLER checksum not" " supported\n"); return -ENOTSUP; default: ISAL_PMD_LOG(ERR, "Checksum type not supported\n"); priv_xform->compress.chksum = IGZIP_DEFLATE; break; } /* Set private xform level. * Checking compliance with compressdev API, -1 <= level => 9 */ if (xform->compress.level < RTE_COMP_LEVEL_PMD_DEFAULT || xform->compress.level > RTE_COMP_LEVEL_MAX) { ISAL_PMD_LOG(ERR, "Compression level out of range\n"); return -EINVAL; } /* Check for Compressdev API level 0, No compression * not supported in ISA-L */ else if (xform->compress.level == RTE_COMP_LEVEL_NONE) { ISAL_PMD_LOG(ERR, "No Compression not supported\n"); return -ENOTSUP; } /* If using fixed huffman code, level must be 0 */ else if (priv_xform->compress.deflate.huffman == RTE_COMP_HUFFMAN_FIXED) { ISAL_PMD_LOG(DEBUG, "ISA-L level 0 used due to a" " fixed huffman code\n"); priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_ZERO; priv_xform->level_buffer_size = ISAL_DEF_LVL0_DEFAULT; } else { /* Mapping API levels to ISA-L levels 1,2 & 3 */ switch (xform->compress.level) { case RTE_COMP_LEVEL_PMD_DEFAULT: /* Default is 1 if not using fixed huffman */ priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_ONE; priv_xform->level_buffer_size = ISAL_DEF_LVL1_DEFAULT; break; case RTE_COMP_LEVEL_MIN: priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_ONE; priv_xform->level_buffer_size = ISAL_DEF_LVL1_DEFAULT; break; case RTE_COMP_ISAL_LEVEL_TWO: priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_TWO; priv_xform->level_buffer_size = ISAL_DEF_LVL2_DEFAULT; break; /* Level 3 or higher requested */ default: /* Check for AVX512, to use ISA-L level 3 */ if (rte_cpu_get_flag_enabled( RTE_CPUFLAG_AVX512F)) { priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_THREE; priv_xform->level_buffer_size = ISAL_DEF_LVL3_DEFAULT; } /* Check for AVX2, to use ISA-L level 3 */ else if (rte_cpu_get_flag_enabled( RTE_CPUFLAG_AVX2)) { priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_THREE; priv_xform->level_buffer_size = ISAL_DEF_LVL3_DEFAULT; } else { ISAL_PMD_LOG(DEBUG, "Requested ISA-L level" " 3 or above; Level 3 optimized" " for AVX512 & AVX2 only." " level changed to 2.\n"); priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_TWO; priv_xform->level_buffer_size = ISAL_DEF_LVL2_DEFAULT; } } } } /* Set decompression private xform variables */ else if (xform->type == RTE_COMP_DECOMPRESS) { /* Set private xform type - COMPRESS/DECOMPRESS */ priv_xform->type = RTE_COMP_DECOMPRESS; /* Set private xform algorithm */ if (xform->decompress.algo != RTE_COMP_ALGO_DEFLATE) { if (xform->decompress.algo == RTE_COMP_ALGO_NULL) { ISAL_PMD_LOG(ERR, "By pass not supported\n"); return -ENOTSUP; } ISAL_PMD_LOG(ERR, "Algorithm not supported\n"); return -ENOTSUP; } priv_xform->decompress.algo = RTE_COMP_ALGO_DEFLATE; /* Set private xform checksum */ switch (xform->decompress.chksum) { /* Raw deflate by default */ case(RTE_COMP_CHECKSUM_NONE): priv_xform->decompress.chksum = ISAL_DEFLATE; break; case(RTE_COMP_CHECKSUM_CRC32): priv_xform->decompress.chksum = ISAL_GZIP_NO_HDR; break; case(RTE_COMP_CHECKSUM_ADLER32): priv_xform->decompress.chksum = ISAL_ZLIB_NO_HDR; break; case(RTE_COMP_CHECKSUM_CRC32_ADLER32): ISAL_PMD_LOG(ERR, "Combined CRC and ADLER checksum not" " supported\n"); return -ENOTSUP; default: ISAL_PMD_LOG(ERR, "Checksum type not supported\n"); priv_xform->decompress.chksum = ISAL_DEFLATE; break; } /* Set private xform window size, 32K supported */ if (xform->decompress.window_size == RTE_COMP_ISAL_WINDOW_SIZE) priv_xform->decompress.window_size = RTE_COMP_ISAL_WINDOW_SIZE; else { ISAL_PMD_LOG(ERR, "Window size not supported\n"); return -ENOTSUP; } } return 0; } /* Compression using chained mbufs for input/output data */ static int chained_mbuf_compression(struct rte_comp_op *op, struct isal_comp_qp *qp) { int ret; uint32_t remaining_offset; uint32_t remaining_data = op->src.length; struct rte_mbuf *src = op->m_src; struct rte_mbuf *dst = op->m_dst; /* check for source/destination offset passing multiple segments * and point compression stream to input/output buffer. */ remaining_offset = op->src.offset; while (remaining_offset >= src->data_len) { remaining_offset -= src->data_len; src = src->next; } qp->stream->avail_in = RTE_MIN(src->data_len - remaining_offset, op->src.length); qp->stream->next_in = rte_pktmbuf_mtod_offset(src, uint8_t *, remaining_offset); remaining_offset = op->dst.offset; while (remaining_offset >= dst->data_len) { remaining_offset -= dst->data_len; dst = dst->next; } qp->stream->avail_out = dst->data_len - remaining_offset; qp->stream->next_out = rte_pktmbuf_mtod_offset(dst, uint8_t *, remaining_offset); if (unlikely(!qp->stream->next_in || !qp->stream->next_out)) { ISAL_PMD_LOG(ERR, "Invalid source or destination buffer\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } while (qp->stream->internal_state.state != ZSTATE_END) { /* Last segment of data */ if (remaining_data <= src->data_len) qp->stream->end_of_stream = 1; /* Execute compression operation */ ret = isal_deflate(qp->stream); remaining_data = op->src.length - qp->stream->total_in; if (ret != COMP_OK) { ISAL_PMD_LOG(ERR, "Compression operation failed\n"); op->status = RTE_COMP_OP_STATUS_ERROR; return ret; } if (qp->stream->avail_in == 0 && qp->stream->total_in != op->src.length) { if (src->next != NULL) { src = src->next; qp->stream->next_in = rte_pktmbuf_mtod(src, uint8_t *); qp->stream->avail_in = RTE_MIN(remaining_data, src->data_len); } else { ISAL_PMD_LOG(ERR, "Not enough input buffer segments\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } } if (qp->stream->avail_out == 0 && qp->stream->internal_state.state != ZSTATE_END) { if (dst->next != NULL) { dst = dst->next; qp->stream->next_out = rte_pktmbuf_mtod(dst, uint8_t *); qp->stream->avail_out = dst->data_len; } else { ISAL_PMD_LOG(ERR, "Not enough output buffer segments\n"); op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED; return -1; } } } return 0; } /* Decompression using chained mbufs for input/output data */ static int chained_mbuf_decompression(struct rte_comp_op *op, struct isal_comp_qp *qp) { int ret; uint32_t consumed_data, src_remaining_offset, dst_remaining_offset; uint32_t remaining_data = op->src.length; struct rte_mbuf *src = op->m_src; struct rte_mbuf *dst = op->m_dst; /* check for offset passing multiple segments * and point decompression state to input/output buffer */ src_remaining_offset = op->src.offset; while (src_remaining_offset >= src->data_len) { src_remaining_offset -= src->data_len; src = src->next; } qp->state->avail_in = RTE_MIN(src->data_len - src_remaining_offset, op->src.length); qp->state->next_in = rte_pktmbuf_mtod_offset(src, uint8_t *, src_remaining_offset); dst_remaining_offset = op->dst.offset; while (dst_remaining_offset >= dst->data_len) { dst_remaining_offset -= dst->data_len; dst = dst->next; } qp->state->avail_out = dst->data_len - dst_remaining_offset; qp->state->next_out = rte_pktmbuf_mtod_offset(dst, uint8_t *, dst_remaining_offset); while (qp->state->block_state != ISAL_BLOCK_FINISH) { ret = isal_inflate(qp->state); /* Check for first segment, offset needs to be accounted for */ if (remaining_data == op->src.length) { consumed_data = src->data_len - src_remaining_offset; } else consumed_data = src->data_len; if (qp->state->avail_in == 0 && op->consumed != op->src.length) { op->consumed += consumed_data; remaining_data -= consumed_data; if (src->next != NULL) { src = src->next; qp->state->next_in = rte_pktmbuf_mtod(src, uint8_t *); qp->state->avail_in = RTE_MIN(remaining_data, src->data_len); } } if (ret == ISAL_OUT_OVERFLOW) { ISAL_PMD_LOG(ERR, "Decompression operation ran " "out of space, but can be recovered.\n%d bytes " "consumed\t%d bytes produced\n", consumed_data, qp->state->total_out); op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE; return ret; } else if (ret < 0) { ISAL_PMD_LOG(ERR, "Decompression operation failed\n"); op->status = RTE_COMP_OP_STATUS_ERROR; return ret; } if (qp->state->avail_out == 0 && qp->state->block_state != ISAL_BLOCK_FINISH) { if (dst->next != NULL) { dst = dst->next; qp->state->next_out = rte_pktmbuf_mtod(dst, uint8_t *); qp->state->avail_out = dst->data_len; } else { ISAL_PMD_LOG(ERR, "Not enough output buffer segments\n"); op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED; return -1; } } } return 0; } /* Stateless Compression Function */ static int process_isal_deflate(struct rte_comp_op *op, struct isal_comp_qp *qp, struct isal_priv_xform *priv_xform) { int ret = 0; op->status = RTE_COMP_OP_STATUS_SUCCESS; /* Required due to init clearing level_buf */ uint8_t *temp_level_buf = qp->stream->level_buf; /* Initialize compression stream */ isal_deflate_init(qp->stream); qp->stream->level_buf = temp_level_buf; /* Set Checksum flag */ qp->stream->gzip_flag = priv_xform->compress.chksum; /* Stateless operation, input will be consumed in one go */ qp->stream->flush = NO_FLUSH; /* set compression level & intermediate level buffer size */ qp->stream->level = priv_xform->compress.level; qp->stream->level_buf_size = priv_xform->level_buffer_size; /* Set op huffman code */ if (priv_xform->compress.deflate.huffman == RTE_COMP_HUFFMAN_FIXED) isal_deflate_set_hufftables(qp->stream, NULL, IGZIP_HUFFTABLE_STATIC); else if (priv_xform->compress.deflate.huffman == RTE_COMP_HUFFMAN_DEFAULT) isal_deflate_set_hufftables(qp->stream, NULL, IGZIP_HUFFTABLE_DEFAULT); /* Dynamically change the huffman code to suit the input data */ else if (priv_xform->compress.deflate.huffman == RTE_COMP_HUFFMAN_DYNAMIC) isal_deflate_set_hufftables(qp->stream, NULL, IGZIP_HUFFTABLE_DEFAULT); if (op->m_src->pkt_len < (op->src.length + op->src.offset)) { ISAL_PMD_LOG(ERR, "Input mbuf(s) not big enough.\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } if (op->dst.offset >= op->m_dst->pkt_len) { ISAL_PMD_LOG(ERR, "Output mbuf(s) not big enough" " for offset provided.\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } /* Chained mbufs */ if (op->m_src->nb_segs > 1 || op->m_dst->nb_segs > 1) { ret = chained_mbuf_compression(op, qp); if (ret < 0) return ret; } else { /* Linear buffer */ qp->stream->end_of_stream = 1; /* All input consumed in one */ /* Point compression stream to input buffer */ qp->stream->avail_in = op->src.length; qp->stream->next_in = rte_pktmbuf_mtod_offset(op->m_src, uint8_t *, op->src.offset); /* Point compression stream to output buffer */ qp->stream->avail_out = op->m_dst->data_len - op->dst.offset; qp->stream->next_out = rte_pktmbuf_mtod_offset(op->m_dst, uint8_t *, op->dst.offset); if (unlikely(!qp->stream->next_in || !qp->stream->next_out)) { ISAL_PMD_LOG(ERR, "Invalid source or destination" " buffers\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } /* Execute compression operation */ ret = isal_deflate_stateless(qp->stream); /* Check that output buffer did not run out of space */ if (ret == STATELESS_OVERFLOW) { ISAL_PMD_LOG(ERR, "Output buffer not big enough\n"); op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED; return ret; } /* Check that input buffer has been fully consumed */ if (qp->stream->avail_in != (uint32_t)0) { ISAL_PMD_LOG(ERR, "Input buffer could not be read" " entirely\n"); op->status = RTE_COMP_OP_STATUS_ERROR; return -1; } if (ret != COMP_OK) { ISAL_PMD_LOG(ERR, "Compression operation failed\n"); op->status = RTE_COMP_OP_STATUS_ERROR; return ret; } } op->consumed = qp->stream->total_in; if (qp->stream->gzip_flag == IGZIP_DEFLATE) { op->produced = qp->stream->total_out; } else if (qp->stream->gzip_flag == IGZIP_ZLIB_NO_HDR) { op->produced = qp->stream->total_out - CHKSUM_SZ_ADLER; op->output_chksum = qp->stream->internal_state.crc + 1; } else { op->produced = qp->stream->total_out - CHKSUM_SZ_CRC; op->output_chksum = qp->stream->internal_state.crc; } return ret; } /* Stateless Decompression Function */ static int process_isal_inflate(struct rte_comp_op *op, struct isal_comp_qp *qp, struct isal_priv_xform *priv_xform) { int ret = 0; op->status = RTE_COMP_OP_STATUS_SUCCESS; /* Initialize decompression state */ isal_inflate_init(qp->state); /* Set Checksum flag */ qp->state->crc_flag = priv_xform->decompress.chksum; if (op->m_src->pkt_len < (op->src.length + op->src.offset)) { ISAL_PMD_LOG(ERR, "Input mbuf(s) not big enough.\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } if (op->dst.offset >= op->m_dst->pkt_len) { ISAL_PMD_LOG(ERR, "Output mbuf not big enough for " "offset provided.\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } /* Chained mbufs */ if (op->m_src->nb_segs > 1 || op->m_dst->nb_segs > 1) { ret = chained_mbuf_decompression(op, qp); if (ret != 0) return ret; } else { /* Linear buffer */ /* Point decompression state to input buffer */ qp->state->avail_in = op->src.length; qp->state->next_in = rte_pktmbuf_mtod_offset(op->m_src, uint8_t *, op->src.offset); /* Point decompression state to output buffer */ qp->state->avail_out = op->m_dst->data_len - op->dst.offset; qp->state->next_out = rte_pktmbuf_mtod_offset(op->m_dst, uint8_t *, op->dst.offset); if (unlikely(!qp->state->next_in || !qp->state->next_out)) { ISAL_PMD_LOG(ERR, "Invalid source or destination" " buffers\n"); op->status = RTE_COMP_OP_STATUS_INVALID_ARGS; return -1; } /* Execute decompression operation */ ret = isal_inflate_stateless(qp->state); if (ret == ISAL_OUT_OVERFLOW) { ISAL_PMD_LOG(ERR, "Output buffer not big enough\n"); op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED; return ret; } /* Check that input buffer has been fully consumed */ if (qp->state->avail_in != (uint32_t)0) { ISAL_PMD_LOG(ERR, "Input buffer could not be read" " entirely\n"); op->status = RTE_COMP_OP_STATUS_ERROR; return -1; } if (ret != ISAL_DECOMP_OK && ret != ISAL_END_INPUT) { ISAL_PMD_LOG(ERR, "Decompression operation failed\n"); op->status = RTE_COMP_OP_STATUS_ERROR; return ret; } op->consumed = op->src.length - qp->state->avail_in; } op->produced = qp->state->total_out; op->output_chksum = qp->state->crc; return ret; } /* Process compression/decompression operation */ static int process_op(struct isal_comp_qp *qp, struct rte_comp_op *op, struct isal_priv_xform *priv_xform) { switch (priv_xform->type) { case RTE_COMP_COMPRESS: process_isal_deflate(op, qp, priv_xform); break; case RTE_COMP_DECOMPRESS: process_isal_inflate(op, qp, priv_xform); break; default: ISAL_PMD_LOG(ERR, "Operation Not Supported\n"); return -ENOTSUP; } return 0; } /* Enqueue burst */ static uint16_t isal_comp_pmd_enqueue_burst(void *queue_pair, struct rte_comp_op **ops, uint16_t nb_ops) { struct isal_comp_qp *qp = queue_pair; uint16_t i; int retval; int16_t num_enq = RTE_MIN(qp->num_free_elements, nb_ops); for (i = 0; i < num_enq; i++) { if (unlikely(ops[i]->op_type != RTE_COMP_OP_STATELESS)) { ops[i]->status = RTE_COMP_OP_STATUS_INVALID_ARGS; ISAL_PMD_LOG(ERR, "Stateful operation not Supported\n"); qp->qp_stats.enqueue_err_count++; continue; } retval = process_op(qp, ops[i], ops[i]->private_xform); if (unlikely(retval < 0) || ops[i]->status != RTE_COMP_OP_STATUS_SUCCESS) { qp->qp_stats.enqueue_err_count++; } } retval = rte_ring_enqueue_burst(qp->processed_pkts, (void *)ops, num_enq, NULL); qp->num_free_elements -= retval; qp->qp_stats.enqueued_count += retval; return retval; } /* Dequeue burst */ static uint16_t isal_comp_pmd_dequeue_burst(void *queue_pair, struct rte_comp_op **ops, uint16_t nb_ops) { struct isal_comp_qp *qp = queue_pair; uint16_t nb_dequeued; nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts, (void **)ops, nb_ops, NULL); qp->num_free_elements += nb_dequeued; qp->qp_stats.dequeued_count += nb_dequeued; return nb_dequeued; } /* Create ISA-L compression device */ static int compdev_isal_create(const char *name, struct rte_vdev_device *vdev, struct rte_compressdev_pmd_init_params *init_params) { struct rte_compressdev *dev; dev = rte_compressdev_pmd_create(name, &vdev->device, sizeof(struct isal_comp_private), init_params); if (dev == NULL) { ISAL_PMD_LOG(ERR, "failed to create compressdev vdev"); return -EFAULT; } dev->dev_ops = isal_compress_pmd_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = isal_comp_pmd_dequeue_burst; dev->enqueue_burst = isal_comp_pmd_enqueue_burst; ISAL_PMD_LOG(INFO, "\nISA-L library version used: "ISAL_VERSION_STRING); return 0; } /** Remove compression device */ static int compdev_isal_remove_dev(struct rte_vdev_device *vdev) { struct rte_compressdev *compdev; const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; compdev = rte_compressdev_pmd_get_named_dev(name); if (compdev == NULL) return -ENODEV; return rte_compressdev_pmd_destroy(compdev); } /** Initialise ISA-L compression device */ static int compdev_isal_probe(struct rte_vdev_device *dev) { struct rte_compressdev_pmd_init_params init_params = { "", rte_socket_id(), }; const char *name, *args; int retval; name = rte_vdev_device_name(dev); if (name == NULL) return -EINVAL; args = rte_vdev_device_args(dev); retval = rte_compressdev_pmd_parse_input_args(&init_params, args); if (retval) { ISAL_PMD_LOG(ERR, "Failed to parse initialisation arguments[%s]\n", args); return -EINVAL; } return compdev_isal_create(name, dev, &init_params); } static struct rte_vdev_driver compdev_isal_pmd_drv = { .probe = compdev_isal_probe, .remove = compdev_isal_remove_dev, }; RTE_PMD_REGISTER_VDEV(COMPDEV_NAME_ISAL_PMD, compdev_isal_pmd_drv); RTE_PMD_REGISTER_PARAM_STRING(COMPDEV_NAME_ISAL_PMD, "socket_id="); RTE_LOG_REGISTER(isal_logtype_driver, pmd.compress.isal, INFO);