/* SPDX-License-Identifier: BSD-3-Clause * * Copyright 2017 NXP * */ #include #include #include #include /* This header declares things about Fman hardware itself (the format of status * words and an inline implementation of CRC64). We include it only in order to * instantiate the one global variable it depends on. */ #include #include #include #define FMAN_SP_SG_DISABLE 0x80000000 #define FMAN_SP_EXT_BUF_MARG_START_SHIFT 16 /* Instantiate the global variable that the inline CRC64 implementation (in * ) depends on. */ DECLARE_FMAN_CRC64_TABLE(); #define ETH_ADDR_TO_UINT64(eth_addr) \ (uint64_t)(((uint64_t)(eth_addr)[0] << 40) | \ ((uint64_t)(eth_addr)[1] << 32) | \ ((uint64_t)(eth_addr)[2] << 24) | \ ((uint64_t)(eth_addr)[3] << 16) | \ ((uint64_t)(eth_addr)[4] << 8) | \ ((uint64_t)(eth_addr)[5])) void fman_if_set_mcast_filter_table(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); void *hashtable_ctrl; uint32_t i; hashtable_ctrl = &((struct memac_regs *)__if->ccsr_map)->hashtable_ctrl; for (i = 0; i < 64; i++) out_be32(hashtable_ctrl, i|HASH_CTRL_MCAST_EN); } void fman_if_reset_mcast_filter_table(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); void *hashtable_ctrl; uint32_t i; hashtable_ctrl = &((struct memac_regs *)__if->ccsr_map)->hashtable_ctrl; for (i = 0; i < 64; i++) out_be32(hashtable_ctrl, i & ~HASH_CTRL_MCAST_EN); } static uint32_t get_mac_hash_code(uint64_t eth_addr) { uint64_t mask1, mask2; uint32_t xorVal = 0; uint8_t i, j; for (i = 0; i < 6; i++) { mask1 = eth_addr & (uint64_t)0x01; eth_addr >>= 1; for (j = 0; j < 7; j++) { mask2 = eth_addr & (uint64_t)0x01; mask1 ^= mask2; eth_addr >>= 1; } xorVal |= (mask1 << (5 - i)); } return xorVal; } int fman_if_add_hash_mac_addr(struct fman_if *p, uint8_t *eth) { uint64_t eth_addr; void *hashtable_ctrl; uint32_t hash; struct __fman_if *__if = container_of(p, struct __fman_if, __if); eth_addr = ETH_ADDR_TO_UINT64(eth); if (!(eth_addr & GROUP_ADDRESS)) return -1; hash = get_mac_hash_code(eth_addr) & HASH_CTRL_ADDR_MASK; hash = hash | HASH_CTRL_MCAST_EN; hashtable_ctrl = &((struct memac_regs *)__if->ccsr_map)->hashtable_ctrl; out_be32(hashtable_ctrl, hash); return 0; } int fman_if_get_primary_mac_addr(struct fman_if *p, uint8_t *eth) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); void *mac_reg = &((struct memac_regs *)__if->ccsr_map)->mac_addr0.mac_addr_l; u32 val = in_be32(mac_reg); eth[0] = (val & 0x000000ff) >> 0; eth[1] = (val & 0x0000ff00) >> 8; eth[2] = (val & 0x00ff0000) >> 16; eth[3] = (val & 0xff000000) >> 24; mac_reg = &((struct memac_regs *)__if->ccsr_map)->mac_addr0.mac_addr_u; val = in_be32(mac_reg); eth[4] = (val & 0x000000ff) >> 0; eth[5] = (val & 0x0000ff00) >> 8; return 0; } void fman_if_clear_mac_addr(struct fman_if *p, uint8_t addr_num) { struct __fman_if *m = container_of(p, struct __fman_if, __if); void *reg; if (addr_num) { reg = &((struct memac_regs *)m->ccsr_map)-> mac_addr[addr_num-1].mac_addr_l; out_be32(reg, 0x0); reg = &((struct memac_regs *)m->ccsr_map)-> mac_addr[addr_num-1].mac_addr_u; out_be32(reg, 0x0); } else { reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_l; out_be32(reg, 0x0); reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_u; out_be32(reg, 0x0); } } int fman_if_add_mac_addr(struct fman_if *p, uint8_t *eth, uint8_t addr_num) { struct __fman_if *m = container_of(p, struct __fman_if, __if); void *reg; u32 val; memcpy(&m->__if.mac_addr, eth, ETHER_ADDR_LEN); if (addr_num) reg = &((struct memac_regs *)m->ccsr_map)-> mac_addr[addr_num-1].mac_addr_l; else reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_l; val = (m->__if.mac_addr.addr_bytes[0] | (m->__if.mac_addr.addr_bytes[1] << 8) | (m->__if.mac_addr.addr_bytes[2] << 16) | (m->__if.mac_addr.addr_bytes[3] << 24)); out_be32(reg, val); if (addr_num) reg = &((struct memac_regs *)m->ccsr_map)-> mac_addr[addr_num-1].mac_addr_u; else reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_u; val = ((m->__if.mac_addr.addr_bytes[4] << 0) | (m->__if.mac_addr.addr_bytes[5] << 8)); out_be32(reg, val); return 0; } void fman_if_set_rx_ignore_pause_frames(struct fman_if *p, bool enable) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); u32 value = 0; void *cmdcfg; assert(fman_ccsr_map_fd != -1); /* Set Rx Ignore Pause Frames */ cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config; if (enable) value = in_be32(cmdcfg) | CMD_CFG_PAUSE_IGNORE; else value = in_be32(cmdcfg) & ~CMD_CFG_PAUSE_IGNORE; out_be32(cmdcfg, value); } void fman_if_conf_max_frame_len(struct fman_if *p, unsigned int max_frame_len) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); unsigned int *maxfrm; assert(fman_ccsr_map_fd != -1); /* Set Max frame length */ maxfrm = &((struct memac_regs *)__if->ccsr_map)->maxfrm; out_be32(maxfrm, (MAXFRM_RX_MASK & max_frame_len)); } void fman_if_stats_get(struct fman_if *p, struct rte_eth_stats *stats) { struct __fman_if *m = container_of(p, struct __fman_if, __if); struct memac_regs *regs = m->ccsr_map; /* read recved packet count */ stats->ipackets = ((u64)in_be32(®s->rfrm_u)) << 32 | in_be32(®s->rfrm_l); stats->ibytes = ((u64)in_be32(®s->roct_u)) << 32 | in_be32(®s->roct_l); stats->ierrors = ((u64)in_be32(®s->rerr_u)) << 32 | in_be32(®s->rerr_l); /* read xmited packet count */ stats->opackets = ((u64)in_be32(®s->tfrm_u)) << 32 | in_be32(®s->tfrm_l); stats->obytes = ((u64)in_be32(®s->toct_u)) << 32 | in_be32(®s->toct_l); stats->oerrors = ((u64)in_be32(®s->terr_u)) << 32 | in_be32(®s->terr_l); } void fman_if_stats_get_all(struct fman_if *p, uint64_t *value, int n) { struct __fman_if *m = container_of(p, struct __fman_if, __if); struct memac_regs *regs = m->ccsr_map; int i; uint64_t base_offset = offsetof(struct memac_regs, reoct_l); for (i = 0; i < n; i++) value[i] = ((u64)in_be32((char *)regs + base_offset + 8 * i + 4)) << 32 | ((u64)in_be32((char *)regs + base_offset + 8 * i)); } void fman_if_stats_reset(struct fman_if *p) { struct __fman_if *m = container_of(p, struct __fman_if, __if); struct memac_regs *regs = m->ccsr_map; uint32_t tmp; tmp = in_be32(®s->statn_config); tmp |= STATS_CFG_CLR; out_be32(®s->statn_config, tmp); while (in_be32(®s->statn_config) & STATS_CFG_CLR) ; } void fman_if_promiscuous_enable(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); void *cmdcfg; assert(fman_ccsr_map_fd != -1); /* Enable Rx promiscuous mode */ cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config; out_be32(cmdcfg, in_be32(cmdcfg) | CMD_CFG_PROMIS_EN); } void fman_if_promiscuous_disable(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); void *cmdcfg; assert(fman_ccsr_map_fd != -1); /* Disable Rx promiscuous mode */ cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config; out_be32(cmdcfg, in_be32(cmdcfg) & (~CMD_CFG_PROMIS_EN)); } void fman_if_enable_rx(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); /* enable Rx and Tx */ out_be32(__if->ccsr_map + 8, in_be32(__if->ccsr_map + 8) | 3); } void fman_if_disable_rx(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); /* only disable Rx, not Tx */ out_be32(__if->ccsr_map + 8, in_be32(__if->ccsr_map + 8) & ~(u32)2); } void fman_if_loopback_enable(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); /* Enable loopback mode */ if ((__if->__if.is_memac) && (__if->__if.is_rgmii)) { unsigned int *ifmode = &((struct memac_regs *)__if->ccsr_map)->if_mode; out_be32(ifmode, in_be32(ifmode) | IF_MODE_RLP); } else{ unsigned int *cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config; out_be32(cmdcfg, in_be32(cmdcfg) | CMD_CFG_LOOPBACK_EN); } } void fman_if_loopback_disable(struct fman_if *p) { struct __fman_if *__if = container_of(p, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); /* Disable loopback mode */ if ((__if->__if.is_memac) && (__if->__if.is_rgmii)) { unsigned int *ifmode = &((struct memac_regs *)__if->ccsr_map)->if_mode; out_be32(ifmode, in_be32(ifmode) & ~IF_MODE_RLP); } else { unsigned int *cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config; out_be32(cmdcfg, in_be32(cmdcfg) & ~CMD_CFG_LOOPBACK_EN); } } void fman_if_set_bp(struct fman_if *fm_if, unsigned num __always_unused, int bpid, size_t bufsize) { u32 fmbm_ebmpi; u32 ebmpi_val_ace = 0xc0000000; u32 ebmpi_mask = 0xffc00000; struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); fmbm_ebmpi = in_be32(&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ebmpi[0]); fmbm_ebmpi = ebmpi_val_ace | (fmbm_ebmpi & ebmpi_mask) | (bpid << 16) | (bufsize); out_be32(&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ebmpi[0], fmbm_ebmpi); } int fman_if_get_fc_threshold(struct fman_if *fm_if) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *fmbm_mpd; assert(fman_ccsr_map_fd != -1); fmbm_mpd = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_mpd; return in_be32(fmbm_mpd); } int fman_if_set_fc_threshold(struct fman_if *fm_if, u32 high_water, u32 low_water, u32 bpid) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *fmbm_mpd; assert(fman_ccsr_map_fd != -1); fmbm_mpd = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_mpd; out_be32(fmbm_mpd, FMAN_ENABLE_BPOOL_DEPLETION); return bm_pool_set_hw_threshold(bpid, low_water, high_water); } int fman_if_get_fc_quanta(struct fman_if *fm_if) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); return in_be32(&((struct memac_regs *)__if->ccsr_map)->pause_quanta[0]); } int fman_if_set_fc_quanta(struct fman_if *fm_if, u16 pause_quanta) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); out_be32(&((struct memac_regs *)__if->ccsr_map)->pause_quanta[0], pause_quanta); return 0; } int fman_if_get_fdoff(struct fman_if *fm_if) { u32 fmbm_rebm; int fdoff; struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); fmbm_rebm = in_be32(&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rebm); fdoff = (fmbm_rebm >> FMAN_SP_EXT_BUF_MARG_START_SHIFT) & 0x1ff; return fdoff; } void fman_if_set_err_fqid(struct fman_if *fm_if, uint32_t err_fqid) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); unsigned int *fmbm_refqid = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_refqid; out_be32(fmbm_refqid, err_fqid); } int fman_if_get_ic_params(struct fman_if *fm_if, struct fman_if_ic_params *icp) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); int val = 0; int iceof_mask = 0x001f0000; int icsz_mask = 0x0000001f; int iciof_mask = 0x00000f00; assert(fman_ccsr_map_fd != -1); unsigned int *fmbm_ricp = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ricp; val = in_be32(fmbm_ricp); icp->iceof = (val & iceof_mask) >> 12; icp->iciof = (val & iciof_mask) >> 4; icp->icsz = (val & icsz_mask) << 4; return 0; } int fman_if_set_ic_params(struct fman_if *fm_if, const struct fman_if_ic_params *icp) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); int val = 0; int iceof_mask = 0x001f0000; int icsz_mask = 0x0000001f; int iciof_mask = 0x00000f00; assert(fman_ccsr_map_fd != -1); val |= (icp->iceof << 12) & iceof_mask; val |= (icp->iciof << 4) & iciof_mask; val |= (icp->icsz >> 4) & icsz_mask; unsigned int *fmbm_ricp = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ricp; out_be32(fmbm_ricp, val); return 0; } void fman_if_set_fdoff(struct fman_if *fm_if, uint32_t fd_offset) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *fmbm_rebm; int val = 0; int fmbm_mask = 0x01ff0000; val = fd_offset << FMAN_SP_EXT_BUF_MARG_START_SHIFT; assert(fman_ccsr_map_fd != -1); fmbm_rebm = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rebm; out_be32(fmbm_rebm, (in_be32(fmbm_rebm) & ~fmbm_mask) | val); } void fman_if_set_maxfrm(struct fman_if *fm_if, uint16_t max_frm) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *reg_maxfrm; assert(fman_ccsr_map_fd != -1); reg_maxfrm = &((struct memac_regs *)__if->ccsr_map)->maxfrm; out_be32(reg_maxfrm, (in_be32(reg_maxfrm) & 0xFFFF0000) | max_frm); } uint16_t fman_if_get_maxfrm(struct fman_if *fm_if) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *reg_maxfrm; assert(fman_ccsr_map_fd != -1); reg_maxfrm = &((struct memac_regs *)__if->ccsr_map)->maxfrm; return (in_be32(reg_maxfrm) | 0x0000FFFF); } /* MSB in fmbm_rebm register * 0 - If BMI cannot store the frame in a single buffer it may select a buffer * of smaller size and store the frame in scatter gather (S/G) buffers * 1 - Scatter gather format is not enabled for frame storage. If BMI cannot * store the frame in a single buffer, the frame is discarded. */ int fman_if_get_sg_enable(struct fman_if *fm_if) { u32 fmbm_rebm; struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); assert(fman_ccsr_map_fd != -1); fmbm_rebm = in_be32(&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rebm); return (fmbm_rebm & FMAN_SP_SG_DISABLE) ? 0 : 1; } void fman_if_set_sg(struct fman_if *fm_if, int enable) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *fmbm_rebm; int val; int fmbm_mask = FMAN_SP_SG_DISABLE; if (enable) val = 0; else val = FMAN_SP_SG_DISABLE; assert(fman_ccsr_map_fd != -1); fmbm_rebm = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rebm; out_be32(fmbm_rebm, (in_be32(fmbm_rebm) & ~fmbm_mask) | val); } void fman_if_set_dnia(struct fman_if *fm_if, uint32_t nia) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *fmqm_pndn; assert(fman_ccsr_map_fd != -1); fmqm_pndn = &((struct fman_port_qmi_regs *)__if->qmi_map)->fmqm_pndn; out_be32(fmqm_pndn, nia); } void fman_if_discard_rx_errors(struct fman_if *fm_if) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *fmbm_rfsdm, *fmbm_rfsem; fmbm_rfsem = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rfsem; out_be32(fmbm_rfsem, 0); /* Configure the discard mask to discard the error packets which have * DMA errors, Frame size error, Header error etc. The mask 0x010EE3F0 * is to configured discard all the errors which come in the FD[STATUS] */ fmbm_rfsdm = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rfsdm; out_be32(fmbm_rfsdm, 0x010EE3F0); } void fman_if_receive_rx_errors(struct fman_if *fm_if, unsigned int err_eq) { struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if); unsigned int *fmbm_rcfg, *fmbm_rfsdm, *fmbm_rfsem; unsigned int val; fmbm_rcfg = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rcfg; fmbm_rfsdm = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rfsdm; fmbm_rfsem = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rfsem; val = in_be32(fmbm_rcfg); out_be32(fmbm_rcfg, val | BMI_PORT_CFG_FDOVR); out_be32(fmbm_rfsdm, 0); out_be32(fmbm_rfsem, err_eq); }