/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Cavium, Inc */ #include "test_perf_common.h" int perf_test_result(struct evt_test *test, struct evt_options *opt) { RTE_SET_USED(opt); int i; uint64_t total = 0; struct test_perf *t = evt_test_priv(test); printf("Packet distribution across worker cores :\n"); for (i = 0; i < t->nb_workers; i++) total += t->worker[i].processed_pkts; for (i = 0; i < t->nb_workers; i++) printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:" CLGRN" %3.2f\n"CLNRM, i, t->worker[i].processed_pkts, (((double)t->worker[i].processed_pkts)/total) * 100); return t->result; } static inline int perf_producer(void *arg) { int i; struct prod_data *p = arg; struct test_perf *t = p->t; struct evt_options *opt = t->opt; const uint8_t dev_id = p->dev_id; const uint8_t port = p->port_id; struct rte_mempool *pool = t->pool; const uint64_t nb_pkts = t->nb_pkts; const uint32_t nb_flows = t->nb_flows; uint32_t flow_counter = 0; uint64_t count = 0; struct perf_elt *m[BURST_SIZE + 1] = {NULL}; struct rte_event ev; if (opt->verbose_level > 1) printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__, rte_lcore_id(), dev_id, port, p->queue_id); ev.event = 0; ev.op = RTE_EVENT_OP_NEW; ev.queue_id = p->queue_id; ev.sched_type = t->opt->sched_type_list[0]; ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL; ev.event_type = RTE_EVENT_TYPE_CPU; ev.sub_event_type = 0; /* stage 0 */ while (count < nb_pkts && t->done == false) { if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0) continue; for (i = 0; i < BURST_SIZE; i++) { ev.flow_id = flow_counter++ % nb_flows; ev.event_ptr = m[i]; m[i]->timestamp = rte_get_timer_cycles(); while (rte_event_enqueue_burst(dev_id, port, &ev, 1) != 1) { if (t->done) break; rte_pause(); m[i]->timestamp = rte_get_timer_cycles(); } } count += BURST_SIZE; } return 0; } static inline int perf_event_timer_producer(void *arg) { int i; struct prod_data *p = arg; struct test_perf *t = p->t; struct evt_options *opt = t->opt; uint32_t flow_counter = 0; uint64_t count = 0; uint64_t arm_latency = 0; const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs; const uint32_t nb_flows = t->nb_flows; const uint64_t nb_timers = opt->nb_timers; struct rte_mempool *pool = t->pool; struct perf_elt *m[BURST_SIZE + 1] = {NULL}; struct rte_event_timer_adapter **adptr = t->timer_adptr; struct rte_event_timer tim; uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec; memset(&tim, 0, sizeof(struct rte_event_timer)); timeout_ticks = opt->optm_timer_tick_nsec ? (timeout_ticks * opt->timer_tick_nsec) / opt->optm_timer_tick_nsec : timeout_ticks; timeout_ticks += timeout_ticks ? 0 : 1; tim.ev.event_type = RTE_EVENT_TYPE_TIMER; tim.ev.op = RTE_EVENT_OP_NEW; tim.ev.sched_type = t->opt->sched_type_list[0]; tim.ev.queue_id = p->queue_id; tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL; tim.state = RTE_EVENT_TIMER_NOT_ARMED; tim.timeout_ticks = timeout_ticks; if (opt->verbose_level > 1) printf("%s(): lcore %d\n", __func__, rte_lcore_id()); while (count < nb_timers && t->done == false) { if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0) continue; for (i = 0; i < BURST_SIZE; i++) { rte_prefetch0(m[i + 1]); m[i]->tim = tim; m[i]->tim.ev.flow_id = flow_counter++ % nb_flows; m[i]->tim.ev.event_ptr = m[i]; m[i]->timestamp = rte_get_timer_cycles(); while (rte_event_timer_arm_burst( adptr[flow_counter % nb_timer_adptrs], (struct rte_event_timer **)&m[i], 1) != 1) { if (t->done) break; m[i]->timestamp = rte_get_timer_cycles(); } arm_latency += rte_get_timer_cycles() - m[i]->timestamp; } count += BURST_SIZE; } fflush(stdout); rte_delay_ms(1000); printf("%s(): lcore %d Average event timer arm latency = %.3f us\n", __func__, rte_lcore_id(), count ? (float)(arm_latency / count) / (rte_get_timer_hz() / 1000000) : 0); return 0; } static inline int perf_event_timer_producer_burst(void *arg) { int i; struct prod_data *p = arg; struct test_perf *t = p->t; struct evt_options *opt = t->opt; uint32_t flow_counter = 0; uint64_t count = 0; uint64_t arm_latency = 0; const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs; const uint32_t nb_flows = t->nb_flows; const uint64_t nb_timers = opt->nb_timers; struct rte_mempool *pool = t->pool; struct perf_elt *m[BURST_SIZE + 1] = {NULL}; struct rte_event_timer_adapter **adptr = t->timer_adptr; struct rte_event_timer tim; uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec; memset(&tim, 0, sizeof(struct rte_event_timer)); timeout_ticks = opt->optm_timer_tick_nsec ? (timeout_ticks * opt->timer_tick_nsec) / opt->optm_timer_tick_nsec : timeout_ticks; timeout_ticks += timeout_ticks ? 0 : 1; tim.ev.event_type = RTE_EVENT_TYPE_TIMER; tim.ev.op = RTE_EVENT_OP_NEW; tim.ev.sched_type = t->opt->sched_type_list[0]; tim.ev.queue_id = p->queue_id; tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL; tim.state = RTE_EVENT_TIMER_NOT_ARMED; tim.timeout_ticks = timeout_ticks; if (opt->verbose_level > 1) printf("%s(): lcore %d\n", __func__, rte_lcore_id()); while (count < nb_timers && t->done == false) { if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0) continue; for (i = 0; i < BURST_SIZE; i++) { rte_prefetch0(m[i + 1]); m[i]->tim = tim; m[i]->tim.ev.flow_id = flow_counter++ % nb_flows; m[i]->tim.ev.event_ptr = m[i]; m[i]->timestamp = rte_get_timer_cycles(); } rte_event_timer_arm_tmo_tick_burst( adptr[flow_counter % nb_timer_adptrs], (struct rte_event_timer **)m, tim.timeout_ticks, BURST_SIZE); arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp; count += BURST_SIZE; } fflush(stdout); rte_delay_ms(1000); printf("%s(): lcore %d Average event timer arm latency = %.3f us\n", __func__, rte_lcore_id(), count ? (float)(arm_latency / count) / (rte_get_timer_hz() / 1000000) : 0); return 0; } static int perf_producer_wrapper(void *arg) { struct prod_data *p = arg; struct test_perf *t = p->t; /* Launch the producer function only in case of synthetic producer. */ if (t->opt->prod_type == EVT_PROD_TYPE_SYNT) return perf_producer(arg); else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR && !t->opt->timdev_use_burst) return perf_event_timer_producer(arg); else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR && t->opt->timdev_use_burst) return perf_event_timer_producer_burst(arg); return 0; } static inline uint64_t processed_pkts(struct test_perf *t) { uint8_t i; uint64_t total = 0; rte_smp_rmb(); for (i = 0; i < t->nb_workers; i++) total += t->worker[i].processed_pkts; return total; } static inline uint64_t total_latency(struct test_perf *t) { uint8_t i; uint64_t total = 0; rte_smp_rmb(); for (i = 0; i < t->nb_workers; i++) total += t->worker[i].latency; return total; } int perf_launch_lcores(struct evt_test *test, struct evt_options *opt, int (*worker)(void *)) { int ret, lcore_id; struct test_perf *t = evt_test_priv(test); int port_idx = 0; /* launch workers */ RTE_LCORE_FOREACH_WORKER(lcore_id) { if (!(opt->wlcores[lcore_id])) continue; ret = rte_eal_remote_launch(worker, &t->worker[port_idx], lcore_id); if (ret) { evt_err("failed to launch worker %d", lcore_id); return ret; } port_idx++; } /* launch producers */ RTE_LCORE_FOREACH_WORKER(lcore_id) { if (!(opt->plcores[lcore_id])) continue; ret = rte_eal_remote_launch(perf_producer_wrapper, &t->prod[port_idx], lcore_id); if (ret) { evt_err("failed to launch perf_producer %d", lcore_id); return ret; } port_idx++; } const uint64_t total_pkts = t->outstand_pkts; uint64_t dead_lock_cycles = rte_get_timer_cycles(); int64_t dead_lock_remaining = total_pkts; const uint64_t dead_lock_sample = rte_get_timer_hz() * 5; uint64_t perf_cycles = rte_get_timer_cycles(); int64_t perf_remaining = total_pkts; const uint64_t perf_sample = rte_get_timer_hz(); static float total_mpps; static uint64_t samples; const uint64_t freq_mhz = rte_get_timer_hz() / 1000000; int64_t remaining = t->outstand_pkts - processed_pkts(t); while (t->done == false) { const uint64_t new_cycles = rte_get_timer_cycles(); if ((new_cycles - perf_cycles) > perf_sample) { const uint64_t latency = total_latency(t); const uint64_t pkts = processed_pkts(t); remaining = t->outstand_pkts - pkts; float mpps = (float)(perf_remaining-remaining)/1000000; perf_remaining = remaining; perf_cycles = new_cycles; total_mpps += mpps; ++samples; if (opt->fwd_latency && pkts > 0) { printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM, mpps, total_mpps/samples, (float)(latency/pkts)/freq_mhz); } else { printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM, mpps, total_mpps/samples); } fflush(stdout); if (remaining <= 0) { t->result = EVT_TEST_SUCCESS; if (opt->prod_type == EVT_PROD_TYPE_SYNT || opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { t->done = true; rte_smp_wmb(); break; } } } if (new_cycles - dead_lock_cycles > dead_lock_sample && (opt->prod_type == EVT_PROD_TYPE_SYNT || opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)) { remaining = t->outstand_pkts - processed_pkts(t); if (dead_lock_remaining == remaining) { rte_event_dev_dump(opt->dev_id, stdout); evt_err("No schedules for seconds, deadlock"); t->done = true; rte_smp_wmb(); break; } dead_lock_remaining = remaining; dead_lock_cycles = new_cycles; } } printf("\n"); return 0; } static int perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride, struct rte_event_port_conf prod_conf) { int ret = 0; uint16_t prod; struct rte_event_eth_rx_adapter_queue_conf queue_conf; memset(&queue_conf, 0, sizeof(struct rte_event_eth_rx_adapter_queue_conf)); queue_conf.ev.sched_type = opt->sched_type_list[0]; RTE_ETH_FOREACH_DEV(prod) { uint32_t cap; ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id, prod, &cap); if (ret) { evt_err("failed to get event rx adapter[%d]" " capabilities", opt->dev_id); return ret; } queue_conf.ev.queue_id = prod * stride; ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id, &prod_conf); if (ret) { evt_err("failed to create rx adapter[%d]", prod); return ret; } ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1, &queue_conf); if (ret) { evt_err("failed to add rx queues to adapter[%d]", prod); return ret; } if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) { uint32_t service_id; rte_event_eth_rx_adapter_service_id_get(prod, &service_id); ret = evt_service_setup(service_id); if (ret) { evt_err("Failed to setup service core" " for Rx adapter\n"); return ret; } } } return ret; } static int perf_event_timer_adapter_setup(struct test_perf *t) { int i; int ret; struct rte_event_timer_adapter_info adapter_info; struct rte_event_timer_adapter *wl; uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores); uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES; if (nb_producers == 1) flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT; for (i = 0; i < t->opt->nb_timer_adptrs; i++) { struct rte_event_timer_adapter_conf config = { .event_dev_id = t->opt->dev_id, .timer_adapter_id = i, .timer_tick_ns = t->opt->timer_tick_nsec, .max_tmo_ns = t->opt->max_tmo_nsec, .nb_timers = t->opt->pool_sz, .flags = flags, }; wl = rte_event_timer_adapter_create(&config); if (wl == NULL) { evt_err("failed to create event timer ring %d", i); return rte_errno; } memset(&adapter_info, 0, sizeof(struct rte_event_timer_adapter_info)); rte_event_timer_adapter_get_info(wl, &adapter_info); t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns; if (!(adapter_info.caps & RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) { uint32_t service_id = -1U; rte_event_timer_adapter_service_id_get(wl, &service_id); ret = evt_service_setup(service_id); if (ret) { evt_err("Failed to setup service core" " for timer adapter\n"); return ret; } rte_service_runstate_set(service_id, 1); } t->timer_adptr[i] = wl; } return 0; } int perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt, uint8_t stride, uint8_t nb_queues, const struct rte_event_port_conf *port_conf) { struct test_perf *t = evt_test_priv(test); uint16_t port, prod; int ret = -1; /* setup one port per worker, linking to all queues */ for (port = 0; port < evt_nr_active_lcores(opt->wlcores); port++) { struct worker_data *w = &t->worker[port]; w->dev_id = opt->dev_id; w->port_id = port; w->t = t; w->processed_pkts = 0; w->latency = 0; ret = rte_event_port_setup(opt->dev_id, port, port_conf); if (ret) { evt_err("failed to setup port %d", port); return ret; } ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0); if (ret != nb_queues) { evt_err("failed to link all queues to port %d", port); return -EINVAL; } } /* port for producers, no links */ if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { for ( ; port < perf_nb_event_ports(opt); port++) { struct prod_data *p = &t->prod[port]; p->t = t; } ret = perf_event_rx_adapter_setup(opt, stride, *port_conf); if (ret) return ret; } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { prod = 0; for ( ; port < perf_nb_event_ports(opt); port++) { struct prod_data *p = &t->prod[port]; p->queue_id = prod * stride; p->t = t; prod++; } ret = perf_event_timer_adapter_setup(t); if (ret) return ret; } else { prod = 0; for ( ; port < perf_nb_event_ports(opt); port++) { struct prod_data *p = &t->prod[port]; p->dev_id = opt->dev_id; p->port_id = port; p->queue_id = prod * stride; p->t = t; ret = rte_event_port_setup(opt->dev_id, port, port_conf); if (ret) { evt_err("failed to setup port %d", port); return ret; } prod++; } } return ret; } int perf_opt_check(struct evt_options *opt, uint64_t nb_queues) { unsigned int lcores; /* N producer + N worker + main when producer cores are used * Else N worker + main when Rx adapter is used */ lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2; if (rte_lcore_count() < lcores) { evt_err("test need minimum %d lcores", lcores); return -1; } /* Validate worker lcores */ if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) { evt_err("worker lcores overlaps with main lcore"); return -1; } if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) { evt_err("worker lcores overlaps producer lcores"); return -1; } if (evt_has_disabled_lcore(opt->wlcores)) { evt_err("one or more workers lcores are not enabled"); return -1; } if (!evt_has_active_lcore(opt->wlcores)) { evt_err("minimum one worker is required"); return -1; } if (opt->prod_type == EVT_PROD_TYPE_SYNT || opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { /* Validate producer lcores */ if (evt_lcores_has_overlap(opt->plcores, rte_get_main_lcore())) { evt_err("producer lcores overlaps with main lcore"); return -1; } if (evt_has_disabled_lcore(opt->plcores)) { evt_err("one or more producer lcores are not enabled"); return -1; } if (!evt_has_active_lcore(opt->plcores)) { evt_err("minimum one producer is required"); return -1; } } if (evt_has_invalid_stage(opt)) return -1; if (evt_has_invalid_sched_type(opt)) return -1; if (nb_queues > EVT_MAX_QUEUES) { evt_err("number of queues exceeds %d", EVT_MAX_QUEUES); return -1; } if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) { evt_err("number of ports exceeds %d", EVT_MAX_PORTS); return -1; } /* Fixups */ if ((opt->nb_stages == 1 && opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) && opt->fwd_latency) { evt_info("fwd_latency is valid when nb_stages > 1, disabling"); opt->fwd_latency = 0; } if (opt->fwd_latency && !opt->q_priority) { evt_info("enabled queue priority for latency measurement"); opt->q_priority = 1; } if (opt->nb_pkts == 0) opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores); return 0; } void perf_opt_dump(struct evt_options *opt, uint8_t nb_queues) { evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores)); evt_dump_producer_lcores(opt); evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores)); evt_dump_worker_lcores(opt); evt_dump_nb_stages(opt); evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt)); evt_dump("nb_evdev_queues", "%d", nb_queues); evt_dump_queue_priority(opt); evt_dump_sched_type_list(opt); evt_dump_producer_type(opt); } void perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt) { int i; struct test_perf *t = evt_test_priv(test); if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { for (i = 0; i < opt->nb_timer_adptrs; i++) rte_event_timer_adapter_stop(t->timer_adptr[i]); } rte_event_dev_stop(opt->dev_id); rte_event_dev_close(opt->dev_id); } static inline void perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused, void *obj, unsigned i __rte_unused) { memset(obj, 0, mp->elt_size); } #define NB_RX_DESC 128 #define NB_TX_DESC 512 int perf_ethdev_setup(struct evt_test *test, struct evt_options *opt) { uint16_t i; int ret; struct test_perf *t = evt_test_priv(test); struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = RTE_ETHER_MAX_LEN, .split_hdr_size = 0, }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = ETH_RSS_IP, }, }, }; if (opt->prod_type == EVT_PROD_TYPE_SYNT || opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) return 0; if (!rte_eth_dev_count_avail()) { evt_err("No ethernet ports found."); return -ENODEV; } RTE_ETH_FOREACH_DEV(i) { struct rte_eth_dev_info dev_info; struct rte_eth_conf local_port_conf = port_conf; ret = rte_eth_dev_info_get(i, &dev_info); if (ret != 0) { evt_err("Error during getting device (port %u) info: %s\n", i, strerror(-ret)); return ret; } local_port_conf.rx_adv_conf.rss_conf.rss_hf &= dev_info.flow_type_rss_offloads; if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != port_conf.rx_adv_conf.rss_conf.rss_hf) { evt_info("Port %u modified RSS hash function based on hardware support," "requested:%#"PRIx64" configured:%#"PRIx64"\n", i, port_conf.rx_adv_conf.rss_conf.rss_hf, local_port_conf.rx_adv_conf.rss_conf.rss_hf); } if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) { evt_err("Failed to configure eth port [%d]", i); return -EINVAL; } if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC, rte_socket_id(), NULL, t->pool) < 0) { evt_err("Failed to setup eth port [%d] rx_queue: %d.", i, 0); return -EINVAL; } if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC, rte_socket_id(), NULL) < 0) { evt_err("Failed to setup eth port [%d] tx_queue: %d.", i, 0); return -EINVAL; } ret = rte_eth_promiscuous_enable(i); if (ret != 0) { evt_err("Failed to enable promiscuous mode for eth port [%d]: %s", i, rte_strerror(-ret)); return ret; } } return 0; } void perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt) { uint16_t i; RTE_SET_USED(test); if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { RTE_ETH_FOREACH_DEV(i) { rte_event_eth_rx_adapter_stop(i); rte_eth_dev_stop(i); } } } int perf_mempool_setup(struct evt_test *test, struct evt_options *opt) { struct test_perf *t = evt_test_priv(test); if (opt->prod_type == EVT_PROD_TYPE_SYNT || opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { t->pool = rte_mempool_create(test->name, /* mempool name */ opt->pool_sz, /* number of elements*/ sizeof(struct perf_elt), /* element size*/ 512, /* cache size*/ 0, NULL, NULL, perf_elt_init, /* obj constructor */ NULL, opt->socket_id, 0); /* flags */ } else { t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */ opt->pool_sz, /* number of elements*/ 512, /* cache size*/ 0, RTE_MBUF_DEFAULT_BUF_SIZE, opt->socket_id); /* flags */ } if (t->pool == NULL) { evt_err("failed to create mempool"); return -ENOMEM; } return 0; } void perf_mempool_destroy(struct evt_test *test, struct evt_options *opt) { RTE_SET_USED(opt); struct test_perf *t = evt_test_priv(test); rte_mempool_free(t->pool); } int perf_test_setup(struct evt_test *test, struct evt_options *opt) { void *test_perf; test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf), RTE_CACHE_LINE_SIZE, opt->socket_id); if (test_perf == NULL) { evt_err("failed to allocate test_perf memory"); goto nomem; } test->test_priv = test_perf; struct test_perf *t = evt_test_priv(test); if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { t->outstand_pkts = opt->nb_timers * evt_nr_active_lcores(opt->plcores); t->nb_pkts = opt->nb_timers; } else { t->outstand_pkts = opt->nb_pkts * evt_nr_active_lcores(opt->plcores); t->nb_pkts = opt->nb_pkts; } t->nb_workers = evt_nr_active_lcores(opt->wlcores); t->done = false; t->nb_flows = opt->nb_flows; t->result = EVT_TEST_FAILED; t->opt = opt; memcpy(t->sched_type_list, opt->sched_type_list, sizeof(opt->sched_type_list)); return 0; nomem: return -ENOMEM; } void perf_test_destroy(struct evt_test *test, struct evt_options *opt) { RTE_SET_USED(opt); rte_free(test->test_priv); }