/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Cavium, Inc */ #include "test_perf_common.h" /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */ static inline int atq_nb_event_queues(struct evt_options *opt) { /* nb_queues = number of producers */ return opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ? rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores); } static __rte_always_inline void atq_mark_fwd_latency(struct rte_event *const ev) { if (unlikely(ev->sub_event_type == 0)) { struct perf_elt *const m = ev->event_ptr; m->timestamp = rte_get_timer_cycles(); } } static __rte_always_inline void atq_fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list, const uint8_t nb_stages) { ev->sub_event_type++; ev->sched_type = sched_type_list[ev->sub_event_type % nb_stages]; ev->op = RTE_EVENT_OP_FORWARD; ev->event_type = RTE_EVENT_TYPE_CPU; } static int perf_atq_worker(void *arg, const int enable_fwd_latency) { PERF_WORKER_INIT; struct rte_event ev; while (t->done == false) { uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0); if (!event) { rte_pause(); continue; } if (enable_fwd_latency && !prod_timer_type) /* first stage in pipeline, mark ts to compute fwd latency */ atq_mark_fwd_latency(&ev); /* last stage in pipeline */ if (unlikely((ev.sub_event_type % nb_stages) == laststage)) { if (enable_fwd_latency) cnt = perf_process_last_stage_latency(pool, &ev, w, bufs, sz, cnt); else cnt = perf_process_last_stage(pool, &ev, w, bufs, sz, cnt); } else { atq_fwd_event(&ev, sched_type_list, nb_stages); while (rte_event_enqueue_burst(dev, port, &ev, 1) != 1) rte_pause(); } } return 0; } static int perf_atq_worker_burst(void *arg, const int enable_fwd_latency) { PERF_WORKER_INIT; uint16_t i; /* +1 to avoid prefetch out of array check */ struct rte_event ev[BURST_SIZE + 1]; while (t->done == false) { uint16_t const nb_rx = rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0); if (!nb_rx) { rte_pause(); continue; } for (i = 0; i < nb_rx; i++) { if (enable_fwd_latency && !prod_timer_type) { rte_prefetch0(ev[i+1].event_ptr); /* first stage in pipeline. * mark time stamp to compute fwd latency */ atq_mark_fwd_latency(&ev[i]); } /* last stage in pipeline */ if (unlikely((ev[i].sub_event_type % nb_stages) == laststage)) { if (enable_fwd_latency) cnt = perf_process_last_stage_latency( pool, &ev[i], w, bufs, sz, cnt); else cnt = perf_process_last_stage(pool, &ev[i], w, bufs, sz, cnt); ev[i].op = RTE_EVENT_OP_RELEASE; } else { atq_fwd_event(&ev[i], sched_type_list, nb_stages); } } uint16_t enq; enq = rte_event_enqueue_burst(dev, port, ev, nb_rx); while (enq < nb_rx) { enq += rte_event_enqueue_burst(dev, port, ev + enq, nb_rx - enq); } } return 0; } static int worker_wrapper(void *arg) { struct worker_data *w = arg; struct evt_options *opt = w->t->opt; const bool burst = evt_has_burst_mode(w->dev_id); const int fwd_latency = opt->fwd_latency; /* allow compiler to optimize */ if (!burst && !fwd_latency) return perf_atq_worker(arg, 0); else if (!burst && fwd_latency) return perf_atq_worker(arg, 1); else if (burst && !fwd_latency) return perf_atq_worker_burst(arg, 0); else if (burst && fwd_latency) return perf_atq_worker_burst(arg, 1); rte_panic("invalid worker\n"); } static int perf_atq_launch_lcores(struct evt_test *test, struct evt_options *opt) { return perf_launch_lcores(test, opt, worker_wrapper); } static int perf_atq_eventdev_setup(struct evt_test *test, struct evt_options *opt) { int ret; uint8_t queue; uint8_t nb_queues; uint8_t nb_ports; uint16_t prod; struct rte_event_dev_info dev_info; struct test_perf *t = evt_test_priv(test); nb_ports = evt_nr_active_lcores(opt->wlcores); nb_ports += (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR || opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) ? 0 : evt_nr_active_lcores(opt->plcores); nb_queues = atq_nb_event_queues(opt); memset(&dev_info, 0, sizeof(struct rte_event_dev_info)); ret = rte_event_dev_info_get(opt->dev_id, &dev_info); if (ret) { evt_err("failed to get eventdev info %d", opt->dev_id); return ret; } ret = evt_configure_eventdev(opt, nb_queues, nb_ports); if (ret) { evt_err("failed to configure eventdev %d", opt->dev_id); return ret; } struct rte_event_queue_conf q_conf = { .priority = RTE_EVENT_DEV_PRIORITY_NORMAL, .event_queue_cfg = RTE_EVENT_QUEUE_CFG_ALL_TYPES, .nb_atomic_flows = opt->nb_flows, .nb_atomic_order_sequences = opt->nb_flows, }; /* queue configurations */ for (queue = 0; queue < nb_queues; queue++) { ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf); if (ret) { evt_err("failed to setup queue=%d", queue); return ret; } } if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth) opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth; /* port configuration */ const struct rte_event_port_conf p_conf = { .dequeue_depth = opt->wkr_deq_dep, .enqueue_depth = dev_info.max_event_port_dequeue_depth, .new_event_threshold = dev_info.max_num_events, }; ret = perf_event_dev_port_setup(test, opt, 1 /* stride */, nb_queues, &p_conf); if (ret) return ret; if (!evt_has_distributed_sched(opt->dev_id)) { uint32_t service_id; rte_event_dev_service_id_get(opt->dev_id, &service_id); ret = evt_service_setup(service_id); if (ret) { evt_err("No service lcore found to run event dev."); return ret; } } ret = rte_event_dev_start(opt->dev_id); if (ret) { evt_err("failed to start eventdev %d", opt->dev_id); return ret; } if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { RTE_ETH_FOREACH_DEV(prod) { ret = rte_eth_dev_start(prod); if (ret) { evt_err("Ethernet dev [%d] failed to start. Using synthetic producer", prod); return ret; } ret = rte_event_eth_rx_adapter_start(prod); if (ret) { evt_err("Rx adapter[%d] start failed", prod); return ret; } printf("%s: Port[%d] using Rx adapter[%d] started\n", __func__, prod, prod); } } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { for (prod = 0; prod < opt->nb_timer_adptrs; prod++) { ret = rte_event_timer_adapter_start( t->timer_adptr[prod]); if (ret) { evt_err("failed to Start event timer adapter %d" , prod); return ret; } } } return 0; } static void perf_atq_opt_dump(struct evt_options *opt) { perf_opt_dump(opt, atq_nb_event_queues(opt)); } static int perf_atq_opt_check(struct evt_options *opt) { return perf_opt_check(opt, atq_nb_event_queues(opt)); } static bool perf_atq_capability_check(struct evt_options *opt) { struct rte_event_dev_info dev_info; rte_event_dev_info_get(opt->dev_id, &dev_info); if (dev_info.max_event_queues < atq_nb_event_queues(opt) || dev_info.max_event_ports < perf_nb_event_ports(opt)) { evt_err("not enough eventdev queues=%d/%d or ports=%d/%d", atq_nb_event_queues(opt), dev_info.max_event_queues, perf_nb_event_ports(opt), dev_info.max_event_ports); } if (!evt_has_all_types_queue(opt->dev_id)) return false; return true; } static const struct evt_test_ops perf_atq = { .cap_check = perf_atq_capability_check, .opt_check = perf_atq_opt_check, .opt_dump = perf_atq_opt_dump, .test_setup = perf_test_setup, .ethdev_setup = perf_ethdev_setup, .mempool_setup = perf_mempool_setup, .eventdev_setup = perf_atq_eventdev_setup, .launch_lcores = perf_atq_launch_lcores, .eventdev_destroy = perf_eventdev_destroy, .mempool_destroy = perf_mempool_destroy, .ethdev_destroy = perf_ethdev_destroy, .test_result = perf_test_result, .test_destroy = perf_test_destroy, }; EVT_TEST_REGISTER(perf_atq);