/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include #include "cperf_options.h" #define AES_BLOCK_SIZE 16 #define DES_BLOCK_SIZE 8 struct name_id_map { const char *name; uint32_t id; }; static void usage(char *progname) { printf("%s [EAL options] --\n" " --silent: disable options dump\n" " --ptest throughput / latency / verify / pmd-cycleount :" " set test type\n" " --pool_sz N: set the number of crypto ops/mbufs allocated\n" " --total-ops N: set the number of total operations performed\n" " --burst-sz N: set the number of packets per burst\n" " --buffer-sz N: set the size of a single packet\n" " --imix N: set the distribution of packet sizes\n" " --segment-sz N: set the size of the segment to use\n" " --desc-nb N: set number of descriptors for each crypto device\n" " --devtype TYPE: set crypto device type to use\n" " --optype cipher-only / auth-only / cipher-then-auth /\n" " auth-then-cipher / aead : set operation type\n" " --sessionless: enable session-less crypto operations\n" " --out-of-place: enable out-of-place crypto operations\n" " --test-file NAME: set the test vector file path\n" " --test-name NAME: set specific test name section in test file\n" " --cipher-algo ALGO: set cipher algorithm\n" " --cipher-op encrypt / decrypt: set the cipher operation\n" " --cipher-key-sz N: set the cipher key size\n" " --cipher-iv-sz N: set the cipher IV size\n" " --auth-algo ALGO: set auth algorithm\n" " --auth-op generate / verify: set the auth operation\n" " --auth-key-sz N: set the auth key size\n" " --auth-iv-sz N: set the auth IV size\n" " --aead-algo ALGO: set AEAD algorithm\n" " --aead-op encrypt / decrypt: set the AEAD operation\n" " --aead-key-sz N: set the AEAD key size\n" " --aead-iv-sz N: set the AEAD IV size\n" " --aead-aad-sz N: set the AEAD AAD size\n" " --digest-sz N: set the digest size\n" " --pmd-cyclecount-delay-ms N: set delay between enqueue\n" " and dequeue in pmd-cyclecount benchmarking mode\n" " --csv-friendly: enable test result output CSV friendly\n" #ifdef RTE_LIB_SECURITY " --pdcp-sn-sz N: set PDCP SN size N <5/7/12/15/18>\n" " --pdcp-domain DOMAIN: set PDCP domain \n" " --pdcp-ses-hfn-en: enable session based fixed HFN\n" " --docsis-hdr-sz: set DOCSIS header size\n" #endif " -h: prints this help\n", progname); } static int get_str_key_id_mapping(struct name_id_map *map, unsigned int map_len, const char *str_key) { unsigned int i; for (i = 0; i < map_len; i++) { if (strcmp(str_key, map[i].name) == 0) return map[i].id; } return -1; } static int parse_cperf_test_type(struct cperf_options *opts, const char *arg) { struct name_id_map cperftest_namemap[] = { { cperf_test_type_strs[CPERF_TEST_TYPE_THROUGHPUT], CPERF_TEST_TYPE_THROUGHPUT }, { cperf_test_type_strs[CPERF_TEST_TYPE_VERIFY], CPERF_TEST_TYPE_VERIFY }, { cperf_test_type_strs[CPERF_TEST_TYPE_LATENCY], CPERF_TEST_TYPE_LATENCY }, { cperf_test_type_strs[CPERF_TEST_TYPE_PMDCC], CPERF_TEST_TYPE_PMDCC } }; int id = get_str_key_id_mapping( (struct name_id_map *)cperftest_namemap, RTE_DIM(cperftest_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "failed to parse test type"); return -1; } opts->test = (enum cperf_perf_test_type)id; return 0; } static int parse_uint32_t(uint32_t *value, const char *arg) { char *end = NULL; unsigned long n = strtoul(arg, &end, 10); if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (n > UINT32_MAX) return -ERANGE; *value = (uint32_t) n; return 0; } static int parse_uint16_t(uint16_t *value, const char *arg) { uint32_t val = 0; int ret = parse_uint32_t(&val, arg); if (ret < 0) return ret; if (val > UINT16_MAX) return -ERANGE; *value = (uint16_t) val; return 0; } static int parse_range(const char *arg, uint32_t *min, uint32_t *max, uint32_t *inc) { char *token; uint32_t number; char *copy_arg = strdup(arg); if (copy_arg == NULL) return -1; errno = 0; token = strtok(copy_arg, ":"); /* Parse minimum value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_range; *min = number; } else goto err_range; token = strtok(NULL, ":"); /* Parse increment value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_range; *inc = number; } else goto err_range; token = strtok(NULL, ":"); /* Parse maximum value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0 || number < *min) goto err_range; *max = number; } else goto err_range; if (strtok(NULL, ":") != NULL) goto err_range; free(copy_arg); return 0; err_range: free(copy_arg); return -1; } static int parse_list(const char *arg, uint32_t *list, uint32_t *min, uint32_t *max) { char *token; uint32_t number; uint8_t count = 0; uint32_t temp_min; uint32_t temp_max; char *copy_arg = strdup(arg); if (copy_arg == NULL) return -1; errno = 0; token = strtok(copy_arg, ","); /* Parse first value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_list; list[count++] = number; temp_min = number; temp_max = number; } else goto err_list; token = strtok(NULL, ","); while (token != NULL) { if (count == MAX_LIST) { RTE_LOG(WARNING, USER1, "Using only the first %u sizes\n", MAX_LIST); break; } number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_list; list[count++] = number; if (number < temp_min) temp_min = number; if (number > temp_max) temp_max = number; token = strtok(NULL, ","); } if (min) *min = temp_min; if (max) *max = temp_max; free(copy_arg); return count; err_list: free(copy_arg); return -1; } static int parse_total_ops(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->total_ops, arg); if (ret) RTE_LOG(ERR, USER1, "failed to parse total operations count\n"); if (opts->total_ops == 0) { RTE_LOG(ERR, USER1, "invalid total operations count number specified\n"); return -1; } return ret; } static int parse_pool_sz(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->pool_sz, arg); if (ret) RTE_LOG(ERR, USER1, "failed to parse pool size"); return ret; } static int parse_burst_sz(struct cperf_options *opts, const char *arg) { int ret; /* Try parsing the argument as a range, if it fails, parse it as a list */ if (parse_range(arg, &opts->min_burst_size, &opts->max_burst_size, &opts->inc_burst_size) < 0) { ret = parse_list(arg, opts->burst_size_list, &opts->min_burst_size, &opts->max_burst_size); if (ret < 0) { RTE_LOG(ERR, USER1, "failed to parse burst size/s\n"); return -1; } opts->burst_size_count = ret; } return 0; } static int parse_buffer_sz(struct cperf_options *opts, const char *arg) { int ret; /* Try parsing the argument as a range, if it fails, parse it as a list */ if (parse_range(arg, &opts->min_buffer_size, &opts->max_buffer_size, &opts->inc_buffer_size) < 0) { ret = parse_list(arg, opts->buffer_size_list, &opts->min_buffer_size, &opts->max_buffer_size); if (ret < 0) { RTE_LOG(ERR, USER1, "failed to parse buffer size/s\n"); return -1; } opts->buffer_size_count = ret; } return 0; } static int parse_segment_sz(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->segment_sz, arg); if (ret) { RTE_LOG(ERR, USER1, "failed to parse segment size\n"); return -1; } if (opts->segment_sz == 0) { RTE_LOG(ERR, USER1, "Segment size has to be bigger than 0\n"); return -1; } return 0; } static int parse_imix(struct cperf_options *opts, const char *arg) { int ret; ret = parse_list(arg, opts->imix_distribution_list, NULL, NULL); if (ret < 0) { RTE_LOG(ERR, USER1, "failed to parse imix distribution\n"); return -1; } opts->imix_distribution_count = ret; if (opts->imix_distribution_count <= 1) { RTE_LOG(ERR, USER1, "imix distribution should have " "at least two entries\n"); return -1; } return 0; } static int parse_desc_nb(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->nb_descriptors, arg); if (ret) { RTE_LOG(ERR, USER1, "failed to parse descriptors number\n"); return -1; } if (opts->nb_descriptors == 0) { RTE_LOG(ERR, USER1, "invalid descriptors number specified\n"); return -1; } return 0; } static int parse_device_type(struct cperf_options *opts, const char *arg) { if (strlen(arg) > (sizeof(opts->device_type) - 1)) return -1; strncpy(opts->device_type, arg, sizeof(opts->device_type) - 1); *(opts->device_type + sizeof(opts->device_type) - 1) = '\0'; return 0; } static int parse_op_type(struct cperf_options *opts, const char *arg) { struct name_id_map optype_namemap[] = { { cperf_op_type_strs[CPERF_CIPHER_ONLY], CPERF_CIPHER_ONLY }, { cperf_op_type_strs[CPERF_AUTH_ONLY], CPERF_AUTH_ONLY }, { cperf_op_type_strs[CPERF_CIPHER_THEN_AUTH], CPERF_CIPHER_THEN_AUTH }, { cperf_op_type_strs[CPERF_AUTH_THEN_CIPHER], CPERF_AUTH_THEN_CIPHER }, { cperf_op_type_strs[CPERF_AEAD], CPERF_AEAD }, { cperf_op_type_strs[CPERF_PDCP], CPERF_PDCP }, { cperf_op_type_strs[CPERF_DOCSIS], CPERF_DOCSIS } }; int id = get_str_key_id_mapping(optype_namemap, RTE_DIM(optype_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "invalid opt type specified\n"); return -1; } opts->op_type = (enum cperf_op_type)id; return 0; } static int parse_sessionless(struct cperf_options *opts, const char *arg __rte_unused) { opts->sessionless = 1; return 0; } static int parse_out_of_place(struct cperf_options *opts, const char *arg __rte_unused) { opts->out_of_place = 1; return 0; } static int parse_test_file(struct cperf_options *opts, const char *arg) { opts->test_file = strdup(arg); if (access(opts->test_file, F_OK) != -1) return 0; RTE_LOG(ERR, USER1, "Test vector file doesn't exist\n"); return -1; } static int parse_test_name(struct cperf_options *opts, const char *arg) { char *test_name = (char *) rte_zmalloc(NULL, sizeof(char) * (strlen(arg) + 3), 0); snprintf(test_name, strlen(arg) + 3, "[%s]", arg); opts->test_name = test_name; return 0; } static int parse_silent(struct cperf_options *opts, const char *arg __rte_unused) { opts->silent = 1; return 0; } static int parse_cipher_algo(struct cperf_options *opts, const char *arg) { enum rte_crypto_cipher_algorithm cipher_algo; if (rte_cryptodev_get_cipher_algo_enum(&cipher_algo, arg) < 0) { RTE_LOG(ERR, USER1, "Invalid cipher algorithm specified\n"); return -1; } opts->cipher_algo = cipher_algo; return 0; } static int parse_cipher_op(struct cperf_options *opts, const char *arg) { struct name_id_map cipher_op_namemap[] = { { rte_crypto_cipher_operation_strings [RTE_CRYPTO_CIPHER_OP_ENCRYPT], RTE_CRYPTO_CIPHER_OP_ENCRYPT }, { rte_crypto_cipher_operation_strings [RTE_CRYPTO_CIPHER_OP_DECRYPT], RTE_CRYPTO_CIPHER_OP_DECRYPT } }; int id = get_str_key_id_mapping(cipher_op_namemap, RTE_DIM(cipher_op_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "Invalid cipher operation specified\n"); return -1; } opts->cipher_op = (enum rte_crypto_cipher_operation)id; return 0; } static int parse_cipher_key_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->cipher_key_sz, arg); } static int parse_cipher_iv_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->cipher_iv_sz, arg); } static int parse_auth_algo(struct cperf_options *opts, const char *arg) { enum rte_crypto_auth_algorithm auth_algo; if (rte_cryptodev_get_auth_algo_enum(&auth_algo, arg) < 0) { RTE_LOG(ERR, USER1, "Invalid authentication algorithm specified\n"); return -1; } opts->auth_algo = auth_algo; return 0; } static int parse_auth_op(struct cperf_options *opts, const char *arg) { struct name_id_map auth_op_namemap[] = { { rte_crypto_auth_operation_strings [RTE_CRYPTO_AUTH_OP_GENERATE], RTE_CRYPTO_AUTH_OP_GENERATE }, { rte_crypto_auth_operation_strings [RTE_CRYPTO_AUTH_OP_VERIFY], RTE_CRYPTO_AUTH_OP_VERIFY } }; int id = get_str_key_id_mapping(auth_op_namemap, RTE_DIM(auth_op_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "invalid authentication operation specified" "\n"); return -1; } opts->auth_op = (enum rte_crypto_auth_operation)id; return 0; } static int parse_auth_key_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->auth_key_sz, arg); } static int parse_digest_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->digest_sz, arg); } #ifdef RTE_LIB_SECURITY static int parse_pdcp_sn_sz(struct cperf_options *opts, const char *arg) { uint32_t val = 0; int ret = parse_uint32_t(&val, arg); if (ret < 0) return ret; if (val != RTE_SECURITY_PDCP_SN_SIZE_5 && val != RTE_SECURITY_PDCP_SN_SIZE_7 && val != RTE_SECURITY_PDCP_SN_SIZE_12 && val != RTE_SECURITY_PDCP_SN_SIZE_15 && val != RTE_SECURITY_PDCP_SN_SIZE_18) { printf("\nInvalid pdcp SN size: %u\n", val); return -ERANGE; } opts->pdcp_sn_sz = val; return 0; } const char *cperf_pdcp_domain_strs[] = { [RTE_SECURITY_PDCP_MODE_CONTROL] = "control", [RTE_SECURITY_PDCP_MODE_DATA] = "data" }; static int parse_pdcp_domain(struct cperf_options *opts, const char *arg) { struct name_id_map pdcp_domain_namemap[] = { { cperf_pdcp_domain_strs [RTE_SECURITY_PDCP_MODE_CONTROL], RTE_SECURITY_PDCP_MODE_CONTROL }, { cperf_pdcp_domain_strs [RTE_SECURITY_PDCP_MODE_DATA], RTE_SECURITY_PDCP_MODE_DATA } }; int id = get_str_key_id_mapping(pdcp_domain_namemap, RTE_DIM(pdcp_domain_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "invalid pdcp domain specified" "\n"); return -1; } opts->pdcp_domain = (enum rte_security_pdcp_domain)id; return 0; } static int parse_pdcp_ses_hfn_en(struct cperf_options *opts, const char *arg __rte_unused) { opts->pdcp_ses_hfn_en = 1; return 0; } static int parse_docsis_hdr_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->docsis_hdr_sz, arg); } #endif static int parse_auth_iv_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->auth_iv_sz, arg); } static int parse_aead_algo(struct cperf_options *opts, const char *arg) { enum rte_crypto_aead_algorithm aead_algo; if (rte_cryptodev_get_aead_algo_enum(&aead_algo, arg) < 0) { RTE_LOG(ERR, USER1, "Invalid AEAD algorithm specified\n"); return -1; } opts->aead_algo = aead_algo; return 0; } static int parse_aead_op(struct cperf_options *opts, const char *arg) { struct name_id_map aead_op_namemap[] = { { rte_crypto_aead_operation_strings [RTE_CRYPTO_AEAD_OP_ENCRYPT], RTE_CRYPTO_AEAD_OP_ENCRYPT }, { rte_crypto_aead_operation_strings [RTE_CRYPTO_AEAD_OP_DECRYPT], RTE_CRYPTO_AEAD_OP_DECRYPT } }; int id = get_str_key_id_mapping(aead_op_namemap, RTE_DIM(aead_op_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "invalid AEAD operation specified" "\n"); return -1; } opts->aead_op = (enum rte_crypto_aead_operation)id; return 0; } static int parse_aead_key_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->aead_key_sz, arg); } static int parse_aead_iv_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->aead_iv_sz, arg); } static int parse_aead_aad_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->aead_aad_sz, arg); } static int parse_csv_friendly(struct cperf_options *opts, const char *arg __rte_unused) { opts->csv = 1; opts->silent = 1; return 0; } static int parse_pmd_cyclecount_delay_ms(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->pmdcc_delay, arg); if (ret) { RTE_LOG(ERR, USER1, "failed to parse pmd-cyclecount delay\n"); return -1; } return 0; } typedef int (*option_parser_t)(struct cperf_options *opts, const char *arg); struct long_opt_parser { const char *lgopt_name; option_parser_t parser_fn; }; static struct option lgopts[] = { { CPERF_PTEST_TYPE, required_argument, 0, 0 }, { CPERF_POOL_SIZE, required_argument, 0, 0 }, { CPERF_TOTAL_OPS, required_argument, 0, 0 }, { CPERF_BURST_SIZE, required_argument, 0, 0 }, { CPERF_BUFFER_SIZE, required_argument, 0, 0 }, { CPERF_SEGMENT_SIZE, required_argument, 0, 0 }, { CPERF_DESC_NB, required_argument, 0, 0 }, { CPERF_IMIX, required_argument, 0, 0 }, { CPERF_DEVTYPE, required_argument, 0, 0 }, { CPERF_OPTYPE, required_argument, 0, 0 }, { CPERF_SILENT, no_argument, 0, 0 }, { CPERF_SESSIONLESS, no_argument, 0, 0 }, { CPERF_OUT_OF_PLACE, no_argument, 0, 0 }, { CPERF_TEST_FILE, required_argument, 0, 0 }, { CPERF_TEST_NAME, required_argument, 0, 0 }, { CPERF_CIPHER_ALGO, required_argument, 0, 0 }, { CPERF_CIPHER_OP, required_argument, 0, 0 }, { CPERF_CIPHER_KEY_SZ, required_argument, 0, 0 }, { CPERF_CIPHER_IV_SZ, required_argument, 0, 0 }, { CPERF_AUTH_ALGO, required_argument, 0, 0 }, { CPERF_AUTH_OP, required_argument, 0, 0 }, { CPERF_AUTH_KEY_SZ, required_argument, 0, 0 }, { CPERF_AUTH_IV_SZ, required_argument, 0, 0 }, { CPERF_AEAD_ALGO, required_argument, 0, 0 }, { CPERF_AEAD_OP, required_argument, 0, 0 }, { CPERF_AEAD_KEY_SZ, required_argument, 0, 0 }, { CPERF_AEAD_AAD_SZ, required_argument, 0, 0 }, { CPERF_AEAD_IV_SZ, required_argument, 0, 0 }, { CPERF_DIGEST_SZ, required_argument, 0, 0 }, #ifdef RTE_LIB_SECURITY { CPERF_PDCP_SN_SZ, required_argument, 0, 0 }, { CPERF_PDCP_DOMAIN, required_argument, 0, 0 }, { CPERF_PDCP_SES_HFN_EN, no_argument, 0, 0 }, { CPERF_DOCSIS_HDR_SZ, required_argument, 0, 0 }, #endif { CPERF_CSV, no_argument, 0, 0}, { CPERF_PMDCC_DELAY_MS, required_argument, 0, 0 }, { NULL, 0, 0, 0 } }; void cperf_options_default(struct cperf_options *opts) { opts->test = CPERF_TEST_TYPE_THROUGHPUT; opts->pool_sz = 8192; opts->total_ops = 10000000; opts->nb_descriptors = 2048; opts->buffer_size_list[0] = 64; opts->buffer_size_count = 1; opts->max_buffer_size = 64; opts->min_buffer_size = 64; opts->inc_buffer_size = 0; opts->burst_size_list[0] = 32; opts->burst_size_count = 1; opts->max_burst_size = 32; opts->min_burst_size = 32; opts->inc_burst_size = 0; /* * Will be parsed from command line or set to * maximum buffer size + digest, later */ opts->segment_sz = 0; opts->imix_distribution_count = 0; strncpy(opts->device_type, "crypto_aesni_mb", sizeof(opts->device_type)); opts->nb_qps = 1; opts->op_type = CPERF_CIPHER_THEN_AUTH; opts->silent = 0; opts->test_file = NULL; opts->test_name = NULL; opts->sessionless = 0; opts->out_of_place = 0; opts->csv = 0; opts->cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC; opts->cipher_op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; opts->cipher_key_sz = 16; opts->cipher_iv_sz = 16; opts->auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC; opts->auth_op = RTE_CRYPTO_AUTH_OP_GENERATE; opts->auth_key_sz = 64; opts->auth_iv_sz = 0; opts->aead_key_sz = 0; opts->aead_iv_sz = 0; opts->aead_aad_sz = 0; opts->digest_sz = 12; opts->pmdcc_delay = 0; #ifdef RTE_LIB_SECURITY opts->pdcp_sn_sz = 12; opts->pdcp_domain = RTE_SECURITY_PDCP_MODE_CONTROL; opts->pdcp_ses_hfn_en = 0; opts->docsis_hdr_sz = 17; #endif } static int cperf_opts_parse_long(int opt_idx, struct cperf_options *opts) { struct long_opt_parser parsermap[] = { { CPERF_PTEST_TYPE, parse_cperf_test_type }, { CPERF_SILENT, parse_silent }, { CPERF_POOL_SIZE, parse_pool_sz }, { CPERF_TOTAL_OPS, parse_total_ops }, { CPERF_BURST_SIZE, parse_burst_sz }, { CPERF_BUFFER_SIZE, parse_buffer_sz }, { CPERF_SEGMENT_SIZE, parse_segment_sz }, { CPERF_DESC_NB, parse_desc_nb }, { CPERF_DEVTYPE, parse_device_type }, { CPERF_OPTYPE, parse_op_type }, { CPERF_SESSIONLESS, parse_sessionless }, { CPERF_OUT_OF_PLACE, parse_out_of_place }, { CPERF_IMIX, parse_imix }, { CPERF_TEST_FILE, parse_test_file }, { CPERF_TEST_NAME, parse_test_name }, { CPERF_CIPHER_ALGO, parse_cipher_algo }, { CPERF_CIPHER_OP, parse_cipher_op }, { CPERF_CIPHER_KEY_SZ, parse_cipher_key_sz }, { CPERF_CIPHER_IV_SZ, parse_cipher_iv_sz }, { CPERF_AUTH_ALGO, parse_auth_algo }, { CPERF_AUTH_OP, parse_auth_op }, { CPERF_AUTH_KEY_SZ, parse_auth_key_sz }, { CPERF_AUTH_IV_SZ, parse_auth_iv_sz }, { CPERF_AEAD_ALGO, parse_aead_algo }, { CPERF_AEAD_OP, parse_aead_op }, { CPERF_AEAD_KEY_SZ, parse_aead_key_sz }, { CPERF_AEAD_IV_SZ, parse_aead_iv_sz }, { CPERF_AEAD_AAD_SZ, parse_aead_aad_sz }, { CPERF_DIGEST_SZ, parse_digest_sz }, #ifdef RTE_LIB_SECURITY { CPERF_PDCP_SN_SZ, parse_pdcp_sn_sz }, { CPERF_PDCP_DOMAIN, parse_pdcp_domain }, { CPERF_PDCP_SES_HFN_EN, parse_pdcp_ses_hfn_en }, { CPERF_DOCSIS_HDR_SZ, parse_docsis_hdr_sz }, #endif { CPERF_CSV, parse_csv_friendly}, { CPERF_PMDCC_DELAY_MS, parse_pmd_cyclecount_delay_ms}, }; unsigned int i; for (i = 0; i < RTE_DIM(parsermap); i++) { if (strncmp(lgopts[opt_idx].name, parsermap[i].lgopt_name, strlen(lgopts[opt_idx].name)) == 0) return parsermap[i].parser_fn(opts, optarg); } return -EINVAL; } int cperf_options_parse(struct cperf_options *options, int argc, char **argv) { int opt, retval, opt_idx; while ((opt = getopt_long(argc, argv, "h", lgopts, &opt_idx)) != EOF) { switch (opt) { case 'h': usage(argv[0]); rte_exit(EXIT_SUCCESS, "Displayed help\n"); break; /* long options */ case 0: retval = cperf_opts_parse_long(opt_idx, options); if (retval != 0) return retval; break; default: usage(argv[0]); return -EINVAL; } } return 0; } static int check_cipher_buffer_length(struct cperf_options *options) { uint32_t buffer_size, buffer_size_idx = 0; if (options->cipher_algo == RTE_CRYPTO_CIPHER_AES_CBC || options->cipher_algo == RTE_CRYPTO_CIPHER_AES_ECB) { if (options->inc_buffer_size != 0) buffer_size = options->min_buffer_size; else buffer_size = options->buffer_size_list[0]; while (buffer_size <= options->max_buffer_size) { if ((buffer_size % AES_BLOCK_SIZE) != 0) { RTE_LOG(ERR, USER1, "Some of the buffer sizes are " "not suitable for the algorithm selected\n"); return -EINVAL; } if (options->inc_buffer_size != 0) buffer_size += options->inc_buffer_size; else { if (++buffer_size_idx == options->buffer_size_count) break; buffer_size = options->buffer_size_list[buffer_size_idx]; } } } if (options->cipher_algo == RTE_CRYPTO_CIPHER_DES_CBC || options->cipher_algo == RTE_CRYPTO_CIPHER_3DES_CBC || options->cipher_algo == RTE_CRYPTO_CIPHER_3DES_ECB) { if (options->inc_buffer_size != 0) buffer_size = options->min_buffer_size; else buffer_size = options->buffer_size_list[0]; while (buffer_size <= options->max_buffer_size) { if ((buffer_size % DES_BLOCK_SIZE) != 0) { RTE_LOG(ERR, USER1, "Some of the buffer sizes are " "not suitable for the algorithm selected\n"); return -EINVAL; } if (options->inc_buffer_size != 0) buffer_size += options->inc_buffer_size; else { if (++buffer_size_idx == options->buffer_size_count) break; buffer_size = options->buffer_size_list[buffer_size_idx]; } } } return 0; } #ifdef RTE_LIB_SECURITY static int check_docsis_buffer_length(struct cperf_options *options) { uint32_t buffer_size, buffer_size_idx = 0; if (options->inc_buffer_size != 0) buffer_size = options->min_buffer_size; else buffer_size = options->buffer_size_list[0]; while (buffer_size <= options->max_buffer_size) { if (buffer_size < (uint32_t)(options->docsis_hdr_sz + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)) { RTE_LOG(ERR, USER1, "Some of the buffer sizes are not " "valid for DOCSIS\n"); return -EINVAL; } if (options->inc_buffer_size != 0) buffer_size += options->inc_buffer_size; else { if (++buffer_size_idx == options->buffer_size_count) break; buffer_size = options->buffer_size_list[buffer_size_idx]; } } return 0; } #endif int cperf_options_check(struct cperf_options *options) { if (options->op_type == CPERF_CIPHER_ONLY || options->op_type == CPERF_DOCSIS) options->digest_sz = 0; if (options->out_of_place && options->segment_sz <= options->max_buffer_size) { RTE_LOG(ERR, USER1, "Out of place mode can only work " "with non segmented buffers\n"); return -EINVAL; } /* * If segment size is not set, assume only one segment, * big enough to contain the largest buffer and the digest */ if (options->segment_sz == 0) options->segment_sz = options->max_buffer_size + options->digest_sz; if (options->segment_sz < options->digest_sz) { RTE_LOG(ERR, USER1, "Segment size should be at least " "the size of the digest\n"); return -EINVAL; } if ((options->imix_distribution_count != 0) && (options->imix_distribution_count != options->buffer_size_count)) { RTE_LOG(ERR, USER1, "IMIX distribution must have the same " "number of buffer sizes\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && options->test_file == NULL) { RTE_LOG(ERR, USER1, "Define path to the file with test" " vectors.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && options->op_type != CPERF_CIPHER_ONLY && options->test_name == NULL) { RTE_LOG(ERR, USER1, "Define test name to get the correct digest" " from the test vectors.\n"); return -EINVAL; } if (options->test_name != NULL && options->test_file == NULL) { RTE_LOG(ERR, USER1, "Define path to the file with test" " vectors.\n"); return -EINVAL; } if (options->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY && options->test_file == NULL) { RTE_LOG(ERR, USER1, "Define path to the file with test" " vectors.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && (options->inc_buffer_size != 0 || options->buffer_size_count > 1)) { RTE_LOG(ERR, USER1, "Only one buffer size is allowed when " "using the verify test.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && (options->inc_burst_size != 0 || options->burst_size_count > 1)) { RTE_LOG(ERR, USER1, "Only one burst size is allowed when " "using the verify test.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_PMDCC && options->pool_sz < options->nb_descriptors) { RTE_LOG(ERR, USER1, "For pmd cyclecount benchmarks, pool size " "must be equal or greater than the number of " "cryptodev descriptors.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && options->imix_distribution_count > 0) { RTE_LOG(ERR, USER1, "IMIX is not allowed when " "using the verify test.\n"); return -EINVAL; } if (options->op_type == CPERF_CIPHER_THEN_AUTH) { if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_ENCRYPT && options->auth_op != RTE_CRYPTO_AUTH_OP_GENERATE) { RTE_LOG(ERR, USER1, "Option cipher then auth must use" " options: encrypt and generate.\n"); return -EINVAL; } } else if (options->op_type == CPERF_AUTH_THEN_CIPHER) { if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_DECRYPT && options->auth_op != RTE_CRYPTO_AUTH_OP_VERIFY) { RTE_LOG(ERR, USER1, "Option auth then cipher must use" " options: decrypt and verify.\n"); return -EINVAL; } } if (options->op_type == CPERF_CIPHER_ONLY || options->op_type == CPERF_CIPHER_THEN_AUTH || options->op_type == CPERF_AUTH_THEN_CIPHER) { if (check_cipher_buffer_length(options) < 0) return -EINVAL; } #ifdef RTE_LIB_SECURITY if (options->op_type == CPERF_DOCSIS) { if (check_docsis_buffer_length(options) < 0) return -EINVAL; } #endif return 0; } void cperf_options_dump(struct cperf_options *opts) { uint8_t size_idx; printf("# Crypto Performance Application Options:\n"); printf("#\n"); printf("# cperf test: %s\n", cperf_test_type_strs[opts->test]); printf("#\n"); printf("# size of crypto op / mbuf pool: %u\n", opts->pool_sz); printf("# total number of ops: %u\n", opts->total_ops); if (opts->inc_buffer_size != 0) { printf("# buffer size:\n"); printf("#\t min: %u\n", opts->min_buffer_size); printf("#\t max: %u\n", opts->max_buffer_size); printf("#\t inc: %u\n", opts->inc_buffer_size); } else { printf("# buffer sizes: "); for (size_idx = 0; size_idx < opts->buffer_size_count; size_idx++) printf("%u ", opts->buffer_size_list[size_idx]); printf("\n"); } if (opts->inc_burst_size != 0) { printf("# burst size:\n"); printf("#\t min: %u\n", opts->min_burst_size); printf("#\t max: %u\n", opts->max_burst_size); printf("#\t inc: %u\n", opts->inc_burst_size); } else { printf("# burst sizes: "); for (size_idx = 0; size_idx < opts->burst_size_count; size_idx++) printf("%u ", opts->burst_size_list[size_idx]); printf("\n"); } printf("\n# segment size: %u\n", opts->segment_sz); printf("#\n"); printf("# cryptodev type: %s\n", opts->device_type); printf("#\n"); printf("# number of queue pairs per device: %u\n", opts->nb_qps); printf("# crypto operation: %s\n", cperf_op_type_strs[opts->op_type]); printf("# sessionless: %s\n", opts->sessionless ? "yes" : "no"); printf("# out of place: %s\n", opts->out_of_place ? "yes" : "no"); if (opts->test == CPERF_TEST_TYPE_PMDCC) printf("# inter-burst delay: %u ms\n", opts->pmdcc_delay); printf("#\n"); if (opts->op_type == CPERF_AUTH_ONLY || opts->op_type == CPERF_CIPHER_THEN_AUTH || opts->op_type == CPERF_AUTH_THEN_CIPHER) { printf("# auth algorithm: %s\n", rte_crypto_auth_algorithm_strings[opts->auth_algo]); printf("# auth operation: %s\n", rte_crypto_auth_operation_strings[opts->auth_op]); printf("# auth key size: %u\n", opts->auth_key_sz); printf("# auth iv size: %u\n", opts->auth_iv_sz); printf("# auth digest size: %u\n", opts->digest_sz); printf("#\n"); } if (opts->op_type == CPERF_CIPHER_ONLY || opts->op_type == CPERF_CIPHER_THEN_AUTH || opts->op_type == CPERF_AUTH_THEN_CIPHER) { printf("# cipher algorithm: %s\n", rte_crypto_cipher_algorithm_strings[opts->cipher_algo]); printf("# cipher operation: %s\n", rte_crypto_cipher_operation_strings[opts->cipher_op]); printf("# cipher key size: %u\n", opts->cipher_key_sz); printf("# cipher iv size: %u\n", opts->cipher_iv_sz); printf("#\n"); } if (opts->op_type == CPERF_AEAD) { printf("# aead algorithm: %s\n", rte_crypto_aead_algorithm_strings[opts->aead_algo]); printf("# aead operation: %s\n", rte_crypto_aead_operation_strings[opts->aead_op]); printf("# aead key size: %u\n", opts->aead_key_sz); printf("# aead iv size: %u\n", opts->aead_iv_sz); printf("# aead digest size: %u\n", opts->digest_sz); printf("# aead aad size: %u\n", opts->aead_aad_sz); printf("#\n"); } #ifdef RTE_LIB_SECURITY if (opts->op_type == CPERF_DOCSIS) { printf("# docsis header size: %u\n", opts->docsis_hdr_sz); printf("#\n"); } #endif }