/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001-2022 Intel Corporation */ #ifndef _IDPF_OSDEP_H_ #define _IDPF_OSDEP_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define INLINE inline #define STATIC static typedef uint8_t u8; typedef int8_t s8; typedef uint16_t u16; typedef int16_t s16; typedef uint32_t u32; typedef int32_t s32; typedef uint64_t u64; typedef uint64_t s64; typedef struct idpf_lock idpf_lock; #define __iomem #define hw_dbg(hw, S, A...) do {} while (0) #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) #define lower_32_bits(n) ((u32)(n)) #define low_16_bits(x) ((x) & 0xFFFF) #define high_16_bits(x) (((x) & 0xFFFF0000) >> 16) #ifndef ETH_ADDR_LEN #define ETH_ADDR_LEN 6 #endif #ifndef __le16 #define __le16 uint16_t #endif #ifndef __le32 #define __le32 uint32_t #endif #ifndef __le64 #define __le64 uint64_t #endif #ifndef __be16 #define __be16 uint16_t #endif #ifndef __be32 #define __be32 uint32_t #endif #ifndef __be64 #define __be64 uint64_t #endif #ifndef BIT_ULL #define BIT_ULL(a) RTE_BIT64(a) #endif #ifndef BIT #define BIT(a) RTE_BIT32(a) #endif #define FALSE 0 #define TRUE 1 #define false 0 #define true 1 /* Avoid macro redefinition warning on Windows */ #ifdef RTE_EXEC_ENV_WINDOWS #ifdef min #undef min #endif #ifdef max #undef max #endif #endif #define min(a, b) RTE_MIN(a, b) #define max(a, b) RTE_MAX(a, b) #define ARRAY_SIZE(arr) RTE_DIM(arr) #define FIELD_SIZEOF(t, f) (sizeof(((t *)0)->(f))) #define MAKEMASK(m, s) ((m) << (s)) extern int idpf_common_logger; #define DEBUGOUT(S) rte_log(RTE_LOG_DEBUG, idpf_common_logger, S) #define DEBUGOUT2(S, A...) rte_log(RTE_LOG_DEBUG, idpf_common_logger, S, ##A) #define DEBUGFUNC(F) DEBUGOUT(F "\n") #define idpf_debug(h, m, s, ...) \ do { \ if (((m) & (h)->debug_mask)) \ PMD_DRV_LOG_RAW(DEBUG, "idpf %02x.%x " s, \ (h)->bus.device, (h)->bus.func, \ ##__VA_ARGS__); \ } while (0) #define idpf_info(hw, fmt, args...) idpf_debug(hw, IDPF_DBG_ALL, fmt, ##args) #define idpf_warn(hw, fmt, args...) idpf_debug(hw, IDPF_DBG_ALL, fmt, ##args) #define idpf_debug_array(hw, type, rowsize, groupsize, buf, len) \ do { \ struct idpf_hw *hw_l = hw; \ u16 len_l = len; \ u8 *buf_l = buf; \ int i; \ for (i = 0; i < len_l; i += 8) \ idpf_debug(hw_l, type, \ "0x%04X 0x%016"PRIx64"\n", \ i, *((u64 *)((buf_l) + i))); \ } while (0) #define idpf_snprintf snprintf #ifndef SNPRINTF #define SNPRINTF idpf_snprintf #endif #define IDPF_PCI_REG(reg) rte_read32(reg) #define IDPF_PCI_REG_ADDR(a, reg) \ ((volatile uint32_t *)((char *)(a)->hw_addr + (reg))) #define IDPF_PCI_REG64(reg) rte_read64(reg) #define IDPF_PCI_REG_ADDR64(a, reg) \ ((volatile uint64_t *)((char *)(a)->hw_addr + (reg))) #define idpf_wmb() rte_io_wmb() #define idpf_rmb() rte_io_rmb() #define idpf_mb() rte_io_mb() static inline uint32_t idpf_read_addr(volatile void *addr) { return rte_le_to_cpu_32(IDPF_PCI_REG(addr)); } static inline uint64_t idpf_read_addr64(volatile void *addr) { return rte_le_to_cpu_64(IDPF_PCI_REG64(addr)); } #define IDPF_PCI_REG_WRITE(reg, value) \ rte_write32((rte_cpu_to_le_32(value)), reg) #define IDPF_PCI_REG_WRITE64(reg, value) \ rte_write64((rte_cpu_to_le_64(value)), reg) #define IDPF_READ_REG(hw, reg) idpf_read_addr(IDPF_PCI_REG_ADDR((hw), (reg))) #define IDPF_WRITE_REG(hw, reg, value) \ IDPF_PCI_REG_WRITE(IDPF_PCI_REG_ADDR((hw), (reg)), (value)) #define rd32(a, reg) idpf_read_addr(IDPF_PCI_REG_ADDR((a), (reg))) #define wr32(a, reg, value) \ IDPF_PCI_REG_WRITE(IDPF_PCI_REG_ADDR((a), (reg)), (value)) #define div64_long(n, d) ((n) / (d)) #define rd64(a, reg) idpf_read_addr64(IDPF_PCI_REG_ADDR64((a), (reg))) #define BITS_PER_BYTE 8 /* memory allocation tracking */ struct idpf_dma_mem { void *va; u64 pa; u32 size; const void *zone; } __rte_packed; struct idpf_virt_mem { void *va; u32 size; } __rte_packed; #define idpf_malloc(h, s) rte_zmalloc(NULL, s, 0) #define idpf_calloc(h, c, s) rte_zmalloc(NULL, (c) * (s), 0) #define idpf_free(h, m) rte_free(m) #define idpf_memset(a, b, c, d) memset((a), (b), (c)) #define idpf_memcpy(a, b, c, d) rte_memcpy((a), (b), (c)) #define idpf_memdup(a, b, c, d) rte_memcpy(idpf_malloc(a, c), b, c) #define CPU_TO_BE16(o) rte_cpu_to_be_16(o) #define CPU_TO_BE32(o) rte_cpu_to_be_32(o) #define CPU_TO_BE64(o) rte_cpu_to_be_64(o) #define CPU_TO_LE16(o) rte_cpu_to_le_16(o) #define CPU_TO_LE32(s) rte_cpu_to_le_32(s) #define CPU_TO_LE64(h) rte_cpu_to_le_64(h) #define LE16_TO_CPU(a) rte_le_to_cpu_16(a) #define LE32_TO_CPU(c) rte_le_to_cpu_32(c) #define LE64_TO_CPU(k) rte_le_to_cpu_64(k) #define NTOHS(a) rte_be_to_cpu_16(a) #define NTOHL(a) rte_be_to_cpu_32(a) #define HTONS(a) rte_cpu_to_be_16(a) #define HTONL(a) rte_cpu_to_be_32(a) /* SW spinlock */ struct idpf_lock { rte_spinlock_t spinlock; }; static inline void idpf_init_lock(struct idpf_lock *sp) { rte_spinlock_init(&sp->spinlock); } static inline void idpf_acquire_lock(struct idpf_lock *sp) { rte_spinlock_lock(&sp->spinlock); } static inline void idpf_release_lock(struct idpf_lock *sp) { rte_spinlock_unlock(&sp->spinlock); } static inline void idpf_destroy_lock(__rte_unused struct idpf_lock *sp) { } struct idpf_hw; static inline void * idpf_alloc_dma_mem(__rte_unused struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size) { const struct rte_memzone *mz = NULL; char z_name[RTE_MEMZONE_NAMESIZE]; if (!mem) return NULL; snprintf(z_name, sizeof(z_name), "idpf_dma_%"PRIu64, rte_rand()); mz = rte_memzone_reserve_aligned(z_name, size, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG, RTE_PGSIZE_4K); if (!mz) return NULL; mem->size = size; mem->va = mz->addr; mem->pa = mz->iova; mem->zone = (const void *)mz; memset(mem->va, 0, size); return mem->va; } static inline void idpf_free_dma_mem(__rte_unused struct idpf_hw *hw, struct idpf_dma_mem *mem) { rte_memzone_free((const struct rte_memzone *)mem->zone); mem->size = 0; mem->va = NULL; mem->pa = 0; } static inline u8 idpf_hweight8(u32 num) { u8 bits = 0; u32 i; for (i = 0; i < 8; i++) { bits += (u8)(num & 0x1); num >>= 1; } return bits; } static inline u8 idpf_hweight32(u32 num) { u8 bits = 0; u32 i; for (i = 0; i < 32; i++) { bits += (u8)(num & 0x1); num >>= 1; } return bits; } #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) #define DELAY(x) rte_delay_us(x) #define idpf_usec_delay(x) rte_delay_us(x) #define idpf_msec_delay(x, y) rte_delay_us(1000 * (x)) #define udelay(x) DELAY(x) #define msleep(x) DELAY(1000 * (x)) #define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000)) #ifndef IDPF_DBG_TRACE #define IDPF_DBG_TRACE BIT_ULL(0) #endif #ifndef DIVIDE_AND_ROUND_UP #define DIVIDE_AND_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) #endif #ifndef IDPF_INTEL_VENDOR_ID #define IDPF_INTEL_VENDOR_ID 0x8086 #endif #ifndef IS_UNICAST_ETHER_ADDR #define IS_UNICAST_ETHER_ADDR(addr) \ ((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 0)) #endif #ifndef IS_MULTICAST_ETHER_ADDR #define IS_MULTICAST_ETHER_ADDR(addr) \ ((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 1)) #endif #ifndef IS_BROADCAST_ETHER_ADDR /* Check whether an address is broadcast. */ #define IS_BROADCAST_ETHER_ADDR(addr) \ ((bool)((((u16 *)(addr))[0] == ((u16)0xffff)))) #endif #ifndef IS_ZERO_ETHER_ADDR #define IS_ZERO_ETHER_ADDR(addr) \ (((bool)((((u16 *)(addr))[0] == ((u16)0x0)))) && \ ((bool)((((u16 *)(addr))[1] == ((u16)0x0)))) && \ ((bool)((((u16 *)(addr))[2] == ((u16)0x0))))) #endif #ifndef LIST_HEAD_TYPE #define LIST_HEAD_TYPE(list_name, type) LIST_HEAD(list_name, type) #endif #ifndef LIST_ENTRY_TYPE #define LIST_ENTRY_TYPE(type) LIST_ENTRY(type) #endif #ifndef LIST_FOR_EACH_ENTRY_SAFE #define LIST_FOR_EACH_ENTRY_SAFE(pos, temp, head, entry_type, list) \ LIST_FOREACH(pos, head, list) #endif #ifndef LIST_FOR_EACH_ENTRY #define LIST_FOR_EACH_ENTRY(pos, head, entry_type, list) \ LIST_FOREACH(pos, head, list) #endif #endif /* _IDPF_OSDEP_H_ */