/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2015 6WIND S.A. * Copyright 2015 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mlx5_defs.h" #include "mlx5_utils.h" #include "mlx5.h" #include "mlx5_tx.h" #include "mlx5_rxtx.h" #include "mlx5_autoconf.h" /** * Allocate TX queue elements. * * @param txq_ctrl * Pointer to TX queue structure. */ void txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl) { const unsigned int elts_n = 1 << txq_ctrl->txq.elts_n; unsigned int i; for (i = 0; (i != elts_n); ++i) txq_ctrl->txq.elts[i] = NULL; DRV_LOG(DEBUG, "port %u Tx queue %u allocated and configured %u WRs", PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx, elts_n); txq_ctrl->txq.elts_head = 0; txq_ctrl->txq.elts_tail = 0; txq_ctrl->txq.elts_comp = 0; } /** * Free TX queue elements. * * @param txq_ctrl * Pointer to TX queue structure. */ void txq_free_elts(struct mlx5_txq_ctrl *txq_ctrl) { const uint16_t elts_n = 1 << txq_ctrl->txq.elts_n; const uint16_t elts_m = elts_n - 1; uint16_t elts_head = txq_ctrl->txq.elts_head; uint16_t elts_tail = txq_ctrl->txq.elts_tail; struct rte_mbuf *(*elts)[elts_n] = &txq_ctrl->txq.elts; DRV_LOG(DEBUG, "port %u Tx queue %u freeing WRs", PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx); txq_ctrl->txq.elts_head = 0; txq_ctrl->txq.elts_tail = 0; txq_ctrl->txq.elts_comp = 0; while (elts_tail != elts_head) { struct rte_mbuf *elt = (*elts)[elts_tail & elts_m]; MLX5_ASSERT(elt != NULL); rte_pktmbuf_free_seg(elt); #ifdef RTE_LIBRTE_MLX5_DEBUG /* Poisoning. */ memset(&(*elts)[elts_tail & elts_m], 0x77, sizeof((*elts)[elts_tail & elts_m])); #endif ++elts_tail; } } /** * Returns the per-port supported offloads. * * @param dev * Pointer to Ethernet device. * * @return * Supported Tx offloads. */ uint64_t mlx5_get_tx_port_offloads(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; uint64_t offloads = (RTE_ETH_TX_OFFLOAD_MULTI_SEGS | RTE_ETH_TX_OFFLOAD_VLAN_INSERT); struct mlx5_dev_config *config = &priv->config; if (config->hw_csum) offloads |= (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM); if (config->tso) offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO; if (config->tx_pp) offloads |= RTE_ETH_TX_OFFLOAD_SEND_ON_TIMESTAMP; if (config->swp) { if (config->swp & MLX5_SW_PARSING_CSUM_CAP) offloads |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM; if (config->swp & MLX5_SW_PARSING_TSO_CAP) offloads |= (RTE_ETH_TX_OFFLOAD_IP_TNL_TSO | RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO); } if (config->tunnel_en) { if (config->hw_csum) offloads |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM; if (config->tso) { if (config->tunnel_en & MLX5_TUNNELED_OFFLOADS_VXLAN_CAP) offloads |= RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO; if (config->tunnel_en & MLX5_TUNNELED_OFFLOADS_GRE_CAP) offloads |= RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO; if (config->tunnel_en & MLX5_TUNNELED_OFFLOADS_GENEVE_CAP) offloads |= RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO; } } if (!config->mprq.enabled) offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; return offloads; } /* Fetches and drops all SW-owned and error CQEs to synchronize CQ. */ static void txq_sync_cq(struct mlx5_txq_data *txq) { volatile struct mlx5_cqe *cqe; int ret, i; i = txq->cqe_s; do { cqe = &txq->cqes[txq->cq_ci & txq->cqe_m]; ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci); if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) { if (likely(ret != MLX5_CQE_STATUS_ERR)) { /* No new CQEs in completion queue. */ MLX5_ASSERT(ret == MLX5_CQE_STATUS_HW_OWN); break; } } ++txq->cq_ci; } while (--i); /* Move all CQEs to HW ownership. */ for (i = 0; i < txq->cqe_s; i++) { cqe = &txq->cqes[i]; cqe->op_own = MLX5_CQE_INVALIDATE; } /* Resync CQE and WQE (WQ in reset state). */ rte_io_wmb(); *txq->cq_db = rte_cpu_to_be_32(txq->cq_ci); txq->cq_pi = txq->cq_ci; rte_io_wmb(); } /** * Tx queue stop. Device queue goes to the idle state, * all involved mbufs are freed from elts/WQ. * * @param dev * Pointer to Ethernet device structure. * @param idx * Tx queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_tx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_data *txq = (*priv->txqs)[idx]; struct mlx5_txq_ctrl *txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); int ret; MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); /* Move QP to RESET state. */ ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj, MLX5_TXQ_MOD_RDY2RST, (uint8_t)priv->dev_port); if (ret) return ret; /* Handle all send completions. */ txq_sync_cq(txq); /* Free elts stored in the SQ. */ txq_free_elts(txq_ctrl); /* Prevent writing new pkts to SQ by setting no free WQE.*/ txq->wqe_ci = txq->wqe_s; txq->wqe_pi = 0; txq->elts_comp = 0; /* Set the actual queue state. */ dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } /** * Tx queue stop. Device queue goes to the idle state, * all involved mbufs are freed from elts/WQ. * * @param dev * Pointer to Ethernet device structure. * @param idx * Tx queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_tx_queue_stop(struct rte_eth_dev *dev, uint16_t idx) { int ret; if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) { DRV_LOG(ERR, "Hairpin queue can't be stopped"); rte_errno = EINVAL; return -EINVAL; } if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STOPPED) return 0; if (rte_eal_process_type() == RTE_PROC_SECONDARY) { ret = mlx5_mp_os_req_queue_control(dev, idx, MLX5_MP_REQ_QUEUE_TX_STOP); } else { ret = mlx5_tx_queue_stop_primary(dev, idx); } return ret; } /** * Rx queue start. Device queue goes to the ready state, * all required mbufs are allocated and WQ is replenished. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_tx_queue_start_primary(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_data *txq = (*priv->txqs)[idx]; struct mlx5_txq_ctrl *txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); int ret; MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj, MLX5_TXQ_MOD_RST2RDY, (uint8_t)priv->dev_port); if (ret) return ret; txq_ctrl->txq.wqe_ci = 0; txq_ctrl->txq.wqe_pi = 0; txq_ctrl->txq.elts_comp = 0; /* Set the actual queue state. */ dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } /** * Rx queue start. Device queue goes to the ready state, * all required mbufs are allocated and WQ is replenished. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_tx_queue_start(struct rte_eth_dev *dev, uint16_t idx) { int ret; if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) { DRV_LOG(ERR, "Hairpin queue can't be started"); rte_errno = EINVAL; return -EINVAL; } if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED) return 0; if (rte_eal_process_type() == RTE_PROC_SECONDARY) { ret = mlx5_mp_os_req_queue_control(dev, idx, MLX5_MP_REQ_QUEUE_TX_START); } else { ret = mlx5_tx_queue_start_primary(dev, idx); } return ret; } /** * Tx queue presetup checks. * * @param dev * Pointer to Ethernet device structure. * @param idx * Tx queue index. * @param desc * Number of descriptors to configure in queue. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_tx_queue_pre_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t *desc) { struct mlx5_priv *priv = dev->data->dev_private; if (*desc <= MLX5_TX_COMP_THRESH) { DRV_LOG(WARNING, "port %u number of descriptors requested for Tx queue" " %u must be higher than MLX5_TX_COMP_THRESH, using %u" " instead of %u", dev->data->port_id, idx, MLX5_TX_COMP_THRESH + 1, *desc); *desc = MLX5_TX_COMP_THRESH + 1; } if (!rte_is_power_of_2(*desc)) { *desc = 1 << log2above(*desc); DRV_LOG(WARNING, "port %u increased number of descriptors in Tx queue" " %u to the next power of two (%d)", dev->data->port_id, idx, *desc); } DRV_LOG(DEBUG, "port %u configuring queue %u for %u descriptors", dev->data->port_id, idx, *desc); if (idx >= priv->txqs_n) { DRV_LOG(ERR, "port %u Tx queue index out of range (%u >= %u)", dev->data->port_id, idx, priv->txqs_n); rte_errno = EOVERFLOW; return -rte_errno; } if (!mlx5_txq_releasable(dev, idx)) { rte_errno = EBUSY; DRV_LOG(ERR, "port %u unable to release queue index %u", dev->data->port_id, idx); return -rte_errno; } mlx5_txq_release(dev, idx); return 0; } /** * DPDK callback to configure a TX queue. * * @param dev * Pointer to Ethernet device structure. * @param idx * TX queue index. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_txconf *conf) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_data *txq = (*priv->txqs)[idx]; struct mlx5_txq_ctrl *txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); int res; res = mlx5_tx_queue_pre_setup(dev, idx, &desc); if (res) return res; txq_ctrl = mlx5_txq_new(dev, idx, desc, socket, conf); if (!txq_ctrl) { DRV_LOG(ERR, "port %u unable to allocate queue index %u", dev->data->port_id, idx); return -rte_errno; } DRV_LOG(DEBUG, "port %u adding Tx queue %u to list", dev->data->port_id, idx); (*priv->txqs)[idx] = &txq_ctrl->txq; return 0; } /** * DPDK callback to configure a TX hairpin queue. * * @param dev * Pointer to Ethernet device structure. * @param idx * TX queue index. * @param desc * Number of descriptors to configure in queue. * @param[in] hairpin_conf * The hairpin binding configuration. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_tx_hairpin_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, const struct rte_eth_hairpin_conf *hairpin_conf) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_data *txq = (*priv->txqs)[idx]; struct mlx5_txq_ctrl *txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); int res; res = mlx5_tx_queue_pre_setup(dev, idx, &desc); if (res) return res; if (hairpin_conf->peer_count != 1) { rte_errno = EINVAL; DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue index %u" " peer count is %u", dev->data->port_id, idx, hairpin_conf->peer_count); return -rte_errno; } if (hairpin_conf->peers[0].port == dev->data->port_id) { if (hairpin_conf->peers[0].queue >= priv->rxqs_n) { rte_errno = EINVAL; DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue" " index %u, Rx %u is larger than %u", dev->data->port_id, idx, hairpin_conf->peers[0].queue, priv->txqs_n); return -rte_errno; } } else { if (hairpin_conf->manual_bind == 0 || hairpin_conf->tx_explicit == 0) { rte_errno = EINVAL; DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue" " index %u peer port %u with attributes %u %u", dev->data->port_id, idx, hairpin_conf->peers[0].port, hairpin_conf->manual_bind, hairpin_conf->tx_explicit); return -rte_errno; } } txq_ctrl = mlx5_txq_hairpin_new(dev, idx, desc, hairpin_conf); if (!txq_ctrl) { DRV_LOG(ERR, "port %u unable to allocate queue index %u", dev->data->port_id, idx); return -rte_errno; } DRV_LOG(DEBUG, "port %u adding Tx queue %u to list", dev->data->port_id, idx); (*priv->txqs)[idx] = &txq_ctrl->txq; dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_HAIRPIN; return 0; } /** * DPDK callback to release a TX queue. * * @param dev * Pointer to Ethernet device structure. * @param qid * Transmit queue index. */ void mlx5_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid) { struct mlx5_txq_data *txq = dev->data->tx_queues[qid]; if (txq == NULL) return; DRV_LOG(DEBUG, "port %u removing Tx queue %u from list", dev->data->port_id, qid); mlx5_txq_release(dev, qid); } /** * Remap UAR register of a Tx queue for secondary process. * * Remapped address is stored at the table in the process private structure of * the device, indexed by queue index. * * @param txq_ctrl * Pointer to Tx queue control structure. * @param fd * Verbs file descriptor to map UAR pages. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int txq_uar_init_secondary(struct mlx5_txq_ctrl *txq_ctrl, int fd) { struct mlx5_priv *priv = txq_ctrl->priv; struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(priv)); struct mlx5_proc_priv *primary_ppriv = priv->sh->pppriv; struct mlx5_txq_data *txq = &txq_ctrl->txq; void *addr; uintptr_t uar_va; uintptr_t offset; const size_t page_size = rte_mem_page_size(); if (page_size == (size_t)-1) { DRV_LOG(ERR, "Failed to get mem page size"); rte_errno = ENOMEM; return -rte_errno; } if (txq_ctrl->type != MLX5_TXQ_TYPE_STANDARD) return 0; MLX5_ASSERT(ppriv); /* * As rdma-core, UARs are mapped in size of OS page * size. Ref to libmlx5 function: mlx5_init_context() */ uar_va = (uintptr_t)primary_ppriv->uar_table[txq->idx].db; offset = uar_va & (page_size - 1); /* Offset in page. */ addr = rte_mem_map(NULL, page_size, RTE_PROT_WRITE, RTE_MAP_SHARED, fd, txq_ctrl->uar_mmap_offset); if (!addr) { DRV_LOG(ERR, "Port %u mmap failed for BF reg of txq %u.", txq->port_id, txq->idx); rte_errno = ENXIO; return -rte_errno; } addr = RTE_PTR_ADD(addr, offset); ppriv->uar_table[txq->idx].db = addr; #ifndef RTE_ARCH_64 ppriv->uar_table[txq->idx].sl_p = primary_ppriv->uar_table[txq->idx].sl_p; #endif return 0; } /** * Unmap UAR register of a Tx queue for secondary process. * * @param txq_ctrl * Pointer to Tx queue control structure. */ static void txq_uar_uninit_secondary(struct mlx5_txq_ctrl *txq_ctrl) { struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(txq_ctrl->priv)); void *addr; const size_t page_size = rte_mem_page_size(); if (page_size == (size_t)-1) { DRV_LOG(ERR, "Failed to get mem page size"); rte_errno = ENOMEM; } if (txq_ctrl->type != MLX5_TXQ_TYPE_STANDARD) return; addr = ppriv->uar_table[txq_ctrl->txq.idx].db; rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size); } /** * Deinitialize Tx UAR registers for secondary process. * * @param dev * Pointer to Ethernet device. */ void mlx5_tx_uar_uninit_secondary(struct rte_eth_dev *dev) { struct mlx5_proc_priv *ppriv = (struct mlx5_proc_priv *) dev->process_private; const size_t page_size = rte_mem_page_size(); void *addr; unsigned int i; if (page_size == (size_t)-1) { DRV_LOG(ERR, "Failed to get mem page size"); return; } MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY); for (i = 0; i != ppriv->uar_table_sz; ++i) { if (!ppriv->uar_table[i].db) continue; addr = ppriv->uar_table[i].db; rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size); } } /** * Initialize Tx UAR registers for secondary process. * * @param dev * Pointer to Ethernet device. * @param fd * Verbs file descriptor to map UAR pages. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_tx_uar_init_secondary(struct rte_eth_dev *dev, int fd) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_data *txq; struct mlx5_txq_ctrl *txq_ctrl; unsigned int i; int ret; MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY); for (i = 0; i != priv->txqs_n; ++i) { if (!(*priv->txqs)[i]) continue; txq = (*priv->txqs)[i]; txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); if (txq_ctrl->type != MLX5_TXQ_TYPE_STANDARD) continue; MLX5_ASSERT(txq->idx == (uint16_t)i); ret = txq_uar_init_secondary(txq_ctrl, fd); if (ret) goto error; } return 0; error: /* Rollback. */ do { if (!(*priv->txqs)[i]) continue; txq = (*priv->txqs)[i]; txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); txq_uar_uninit_secondary(txq_ctrl); } while (i--); return -rte_errno; } /** * Verify the Verbs Tx queue list is empty * * @param dev * Pointer to Ethernet device. * * @return * The number of object not released. */ int mlx5_txq_obj_verify(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; int ret = 0; struct mlx5_txq_obj *txq_obj; LIST_FOREACH(txq_obj, &priv->txqsobj, next) { DRV_LOG(DEBUG, "port %u Verbs Tx queue %u still referenced", dev->data->port_id, txq_obj->txq_ctrl->txq.idx); ++ret; } return ret; } /** * Calculate the total number of WQEBB for Tx queue. * * Simplified version of calc_sq_size() in rdma-core. * * @param txq_ctrl * Pointer to Tx queue control structure. * * @return * The number of WQEBB. */ static int txq_calc_wqebb_cnt(struct mlx5_txq_ctrl *txq_ctrl) { unsigned int wqe_size; const unsigned int desc = 1 << txq_ctrl->txq.elts_n; wqe_size = MLX5_WQE_CSEG_SIZE + MLX5_WQE_ESEG_SIZE + MLX5_WSEG_SIZE - MLX5_ESEG_MIN_INLINE_SIZE + txq_ctrl->max_inline_data; return rte_align32pow2(wqe_size * desc) / MLX5_WQE_SIZE; } /** * Calculate the maximal inline data size for Tx queue. * * @param txq_ctrl * Pointer to Tx queue control structure. * * @return * The maximal inline data size. */ static unsigned int txq_calc_inline_max(struct mlx5_txq_ctrl *txq_ctrl) { const unsigned int desc = 1 << txq_ctrl->txq.elts_n; struct mlx5_priv *priv = txq_ctrl->priv; unsigned int wqe_size; wqe_size = priv->sh->device_attr.max_qp_wr / desc; if (!wqe_size) return 0; /* * This calculation is derived from tthe source of * mlx5_calc_send_wqe() in rdma_core library. */ wqe_size = wqe_size * MLX5_WQE_SIZE - MLX5_WQE_CSEG_SIZE - MLX5_WQE_ESEG_SIZE - MLX5_WSEG_SIZE - MLX5_WSEG_SIZE + MLX5_DSEG_MIN_INLINE_SIZE; return wqe_size; } /** * Set Tx queue parameters from device configuration. * * @param txq_ctrl * Pointer to Tx queue control structure. */ static void txq_set_params(struct mlx5_txq_ctrl *txq_ctrl) { struct mlx5_priv *priv = txq_ctrl->priv; struct mlx5_dev_config *config = &priv->config; unsigned int inlen_send; /* Inline data for ordinary SEND.*/ unsigned int inlen_empw; /* Inline data for enhanced MPW. */ unsigned int inlen_mode; /* Minimal required Inline data. */ unsigned int txqs_inline; /* Min Tx queues to enable inline. */ uint64_t dev_txoff = priv->dev_data->dev_conf.txmode.offloads; bool tso = txq_ctrl->txq.offloads & (RTE_ETH_TX_OFFLOAD_TCP_TSO | RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO | RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO | RTE_ETH_TX_OFFLOAD_IP_TNL_TSO | RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO); bool vlan_inline; unsigned int temp; txq_ctrl->txq.fast_free = !!((txq_ctrl->txq.offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) && !(txq_ctrl->txq.offloads & RTE_ETH_TX_OFFLOAD_MULTI_SEGS) && !config->mprq.enabled); if (config->txqs_inline == MLX5_ARG_UNSET) txqs_inline = #if defined(RTE_ARCH_ARM64) (priv->pci_dev && priv->pci_dev->id.device_id == PCI_DEVICE_ID_MELLANOX_CONNECTX5BF) ? MLX5_INLINE_MAX_TXQS_BLUEFIELD : #endif MLX5_INLINE_MAX_TXQS; else txqs_inline = (unsigned int)config->txqs_inline; inlen_send = (config->txq_inline_max == MLX5_ARG_UNSET) ? MLX5_SEND_DEF_INLINE_LEN : (unsigned int)config->txq_inline_max; inlen_empw = (config->txq_inline_mpw == MLX5_ARG_UNSET) ? MLX5_EMPW_DEF_INLINE_LEN : (unsigned int)config->txq_inline_mpw; inlen_mode = (config->txq_inline_min == MLX5_ARG_UNSET) ? 0 : (unsigned int)config->txq_inline_min; if (config->mps != MLX5_MPW_ENHANCED && config->mps != MLX5_MPW) inlen_empw = 0; /* * If there is requested minimal amount of data to inline * we MUST enable inlining. This is a case for ConnectX-4 * which usually requires L2 inlined for correct operating * and ConnectX-4 Lx which requires L2-L4 inlined to * support E-Switch Flows. */ if (inlen_mode) { if (inlen_mode <= MLX5_ESEG_MIN_INLINE_SIZE) { /* * Optimize minimal inlining for single * segment packets to fill one WQEBB * without gaps. */ temp = MLX5_ESEG_MIN_INLINE_SIZE; } else { temp = inlen_mode - MLX5_ESEG_MIN_INLINE_SIZE; temp = RTE_ALIGN(temp, MLX5_WSEG_SIZE) + MLX5_ESEG_MIN_INLINE_SIZE; temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN); } if (temp != inlen_mode) { DRV_LOG(INFO, "port %u minimal required inline setting" " aligned from %u to %u", PORT_ID(priv), inlen_mode, temp); inlen_mode = temp; } } /* * If port is configured to support VLAN insertion and device * does not support this feature by HW (for NICs before ConnectX-5 * or in case of wqe_vlan_insert flag is not set) we must enable * data inline on all queues because it is supported by single * tx_burst routine. */ txq_ctrl->txq.vlan_en = config->hw_vlan_insert; vlan_inline = (dev_txoff & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) && !config->hw_vlan_insert; /* * If there are few Tx queues it is prioritized * to save CPU cycles and disable data inlining at all. */ if (inlen_send && priv->txqs_n >= txqs_inline) { /* * The data sent with ordinal MLX5_OPCODE_SEND * may be inlined in Ethernet Segment, align the * length accordingly to fit entire WQEBBs. */ temp = RTE_MAX(inlen_send, MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE); temp -= MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE; temp = RTE_ALIGN(temp, MLX5_WQE_SIZE); temp += MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE; temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX + MLX5_ESEG_MIN_INLINE_SIZE - MLX5_WQE_CSEG_SIZE - MLX5_WQE_ESEG_SIZE - MLX5_WQE_DSEG_SIZE * 2); temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN); temp = RTE_MAX(temp, inlen_mode); if (temp != inlen_send) { DRV_LOG(INFO, "port %u ordinary send inline setting" " aligned from %u to %u", PORT_ID(priv), inlen_send, temp); inlen_send = temp; } /* * Not aligned to cache lines, but to WQEs. * First bytes of data (initial alignment) * is going to be copied explicitly at the * beginning of inlining buffer in Ethernet * Segment. */ MLX5_ASSERT(inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE); MLX5_ASSERT(inlen_send <= MLX5_WQE_SIZE_MAX + MLX5_ESEG_MIN_INLINE_SIZE - MLX5_WQE_CSEG_SIZE - MLX5_WQE_ESEG_SIZE - MLX5_WQE_DSEG_SIZE * 2); } else if (inlen_mode) { /* * If minimal inlining is requested we must * enable inlining in general, despite the * number of configured queues. Ignore the * txq_inline_max devarg, this is not * full-featured inline. */ inlen_send = inlen_mode; inlen_empw = 0; } else if (vlan_inline) { /* * Hardware does not report offload for * VLAN insertion, we must enable data inline * to implement feature by software. */ inlen_send = MLX5_ESEG_MIN_INLINE_SIZE; inlen_empw = 0; } else { inlen_send = 0; inlen_empw = 0; } txq_ctrl->txq.inlen_send = inlen_send; txq_ctrl->txq.inlen_mode = inlen_mode; txq_ctrl->txq.inlen_empw = 0; if (inlen_send && inlen_empw && priv->txqs_n >= txqs_inline) { /* * The data sent with MLX5_OPCODE_ENHANCED_MPSW * may be inlined in Data Segment, align the * length accordingly to fit entire WQEBBs. */ temp = RTE_MAX(inlen_empw, MLX5_WQE_SIZE + MLX5_DSEG_MIN_INLINE_SIZE); temp -= MLX5_DSEG_MIN_INLINE_SIZE; temp = RTE_ALIGN(temp, MLX5_WQE_SIZE); temp += MLX5_DSEG_MIN_INLINE_SIZE; temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX + MLX5_DSEG_MIN_INLINE_SIZE - MLX5_WQE_CSEG_SIZE - MLX5_WQE_ESEG_SIZE - MLX5_WQE_DSEG_SIZE); temp = RTE_MIN(temp, MLX5_EMPW_MAX_INLINE_LEN); if (temp != inlen_empw) { DRV_LOG(INFO, "port %u enhanced empw inline setting" " aligned from %u to %u", PORT_ID(priv), inlen_empw, temp); inlen_empw = temp; } MLX5_ASSERT(inlen_empw >= MLX5_ESEG_MIN_INLINE_SIZE); MLX5_ASSERT(inlen_empw <= MLX5_WQE_SIZE_MAX + MLX5_DSEG_MIN_INLINE_SIZE - MLX5_WQE_CSEG_SIZE - MLX5_WQE_ESEG_SIZE - MLX5_WQE_DSEG_SIZE); txq_ctrl->txq.inlen_empw = inlen_empw; } txq_ctrl->max_inline_data = RTE_MAX(inlen_send, inlen_empw); if (tso) { txq_ctrl->max_tso_header = MLX5_MAX_TSO_HEADER; txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->max_inline_data, MLX5_MAX_TSO_HEADER); txq_ctrl->txq.tso_en = 1; } if (((RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO & txq_ctrl->txq.offloads) && (config->tunnel_en & MLX5_TUNNELED_OFFLOADS_VXLAN_CAP)) | ((RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO & txq_ctrl->txq.offloads) && (config->tunnel_en & MLX5_TUNNELED_OFFLOADS_GRE_CAP)) | ((RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO & txq_ctrl->txq.offloads) && (config->tunnel_en & MLX5_TUNNELED_OFFLOADS_GENEVE_CAP)) | (config->swp & MLX5_SW_PARSING_TSO_CAP)) txq_ctrl->txq.tunnel_en = 1; txq_ctrl->txq.swp_en = (((RTE_ETH_TX_OFFLOAD_IP_TNL_TSO | RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO) & txq_ctrl->txq.offloads) && (config->swp & MLX5_SW_PARSING_TSO_CAP)) | ((RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM & txq_ctrl->txq.offloads) && (config->swp & MLX5_SW_PARSING_CSUM_CAP)); } /** * Adjust Tx queue data inline parameters for large queue sizes. * The data inline feature requires multiple WQEs to fit the packets, * and if the large amount of Tx descriptors is requested by application * the total WQE amount may exceed the hardware capabilities. If the * default inline setting are used we can try to adjust these ones and * meet the hardware requirements and not exceed the queue size. * * @param txq_ctrl * Pointer to Tx queue control structure. * * @return * Zero on success, otherwise the parameters can not be adjusted. */ static int txq_adjust_params(struct mlx5_txq_ctrl *txq_ctrl) { struct mlx5_priv *priv = txq_ctrl->priv; struct mlx5_dev_config *config = &priv->config; unsigned int max_inline; max_inline = txq_calc_inline_max(txq_ctrl); if (!txq_ctrl->txq.inlen_send) { /* * Inline data feature is not engaged at all. * There is nothing to adjust. */ return 0; } if (txq_ctrl->max_inline_data <= max_inline) { /* * The requested inline data length does not * exceed queue capabilities. */ return 0; } if (txq_ctrl->txq.inlen_mode > max_inline) { DRV_LOG(ERR, "minimal data inline requirements (%u) are not" " satisfied (%u) on port %u, try the smaller" " Tx queue size (%d)", txq_ctrl->txq.inlen_mode, max_inline, priv->dev_data->port_id, priv->sh->device_attr.max_qp_wr); goto error; } if (txq_ctrl->txq.inlen_send > max_inline && config->txq_inline_max != MLX5_ARG_UNSET && config->txq_inline_max > (int)max_inline) { DRV_LOG(ERR, "txq_inline_max requirements (%u) are not" " satisfied (%u) on port %u, try the smaller" " Tx queue size (%d)", txq_ctrl->txq.inlen_send, max_inline, priv->dev_data->port_id, priv->sh->device_attr.max_qp_wr); goto error; } if (txq_ctrl->txq.inlen_empw > max_inline && config->txq_inline_mpw != MLX5_ARG_UNSET && config->txq_inline_mpw > (int)max_inline) { DRV_LOG(ERR, "txq_inline_mpw requirements (%u) are not" " satisfied (%u) on port %u, try the smaller" " Tx queue size (%d)", txq_ctrl->txq.inlen_empw, max_inline, priv->dev_data->port_id, priv->sh->device_attr.max_qp_wr); goto error; } if (txq_ctrl->txq.tso_en && max_inline < MLX5_MAX_TSO_HEADER) { DRV_LOG(ERR, "tso header inline requirements (%u) are not" " satisfied (%u) on port %u, try the smaller" " Tx queue size (%d)", MLX5_MAX_TSO_HEADER, max_inline, priv->dev_data->port_id, priv->sh->device_attr.max_qp_wr); goto error; } if (txq_ctrl->txq.inlen_send > max_inline) { DRV_LOG(WARNING, "adjust txq_inline_max (%u->%u)" " due to large Tx queue on port %u", txq_ctrl->txq.inlen_send, max_inline, priv->dev_data->port_id); txq_ctrl->txq.inlen_send = max_inline; } if (txq_ctrl->txq.inlen_empw > max_inline) { DRV_LOG(WARNING, "adjust txq_inline_mpw (%u->%u)" "due to large Tx queue on port %u", txq_ctrl->txq.inlen_empw, max_inline, priv->dev_data->port_id); txq_ctrl->txq.inlen_empw = max_inline; } txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->txq.inlen_send, txq_ctrl->txq.inlen_empw); MLX5_ASSERT(txq_ctrl->max_inline_data <= max_inline); MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= max_inline); MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_send); MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_empw || !txq_ctrl->txq.inlen_empw); return 0; error: rte_errno = ENOMEM; return -ENOMEM; } /** * Create a DPDK Tx queue. * * @param dev * Pointer to Ethernet device. * @param idx * TX queue index. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param[in] conf * Thresholds parameters. * * @return * A DPDK queue object on success, NULL otherwise and rte_errno is set. */ struct mlx5_txq_ctrl * mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_txconf *conf) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_ctrl *tmpl; tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl) + desc * sizeof(struct rte_mbuf *), 0, socket); if (!tmpl) { rte_errno = ENOMEM; return NULL; } if (mlx5_mr_ctrl_init(&tmpl->txq.mr_ctrl, &priv->sh->cdev->mr_scache.dev_gen, socket)) { /* rte_errno is already set. */ goto error; } MLX5_ASSERT(desc > MLX5_TX_COMP_THRESH); tmpl->txq.offloads = conf->offloads | dev->data->dev_conf.txmode.offloads; tmpl->priv = priv; tmpl->socket = socket; tmpl->txq.elts_n = log2above(desc); tmpl->txq.elts_s = desc; tmpl->txq.elts_m = desc - 1; tmpl->txq.port_id = dev->data->port_id; tmpl->txq.idx = idx; txq_set_params(tmpl); if (txq_adjust_params(tmpl)) goto error; if (txq_calc_wqebb_cnt(tmpl) > priv->sh->device_attr.max_qp_wr) { DRV_LOG(ERR, "port %u Tx WQEBB count (%d) exceeds the limit (%d)," " try smaller queue size", dev->data->port_id, txq_calc_wqebb_cnt(tmpl), priv->sh->device_attr.max_qp_wr); rte_errno = ENOMEM; goto error; } __atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED); tmpl->type = MLX5_TXQ_TYPE_STANDARD; LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next); return tmpl; error: mlx5_mr_btree_free(&tmpl->txq.mr_ctrl.cache_bh); mlx5_free(tmpl); return NULL; } /** * Create a DPDK Tx hairpin queue. * * @param dev * Pointer to Ethernet device. * @param idx * TX queue index. * @param desc * Number of descriptors to configure in queue. * @param hairpin_conf * The hairpin configuration. * * @return * A DPDK queue object on success, NULL otherwise and rte_errno is set. */ struct mlx5_txq_ctrl * mlx5_txq_hairpin_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, const struct rte_eth_hairpin_conf *hairpin_conf) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_ctrl *tmpl; tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl), 0, SOCKET_ID_ANY); if (!tmpl) { rte_errno = ENOMEM; return NULL; } tmpl->priv = priv; tmpl->socket = SOCKET_ID_ANY; tmpl->txq.elts_n = log2above(desc); tmpl->txq.port_id = dev->data->port_id; tmpl->txq.idx = idx; tmpl->hairpin_conf = *hairpin_conf; tmpl->type = MLX5_TXQ_TYPE_HAIRPIN; __atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED); LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next); return tmpl; } /** * Get a Tx queue. * * @param dev * Pointer to Ethernet device. * @param idx * TX queue index. * * @return * A pointer to the queue if it exists. */ struct mlx5_txq_ctrl * mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_data *txq_data = (*priv->txqs)[idx]; struct mlx5_txq_ctrl *ctrl = NULL; if (txq_data) { ctrl = container_of(txq_data, struct mlx5_txq_ctrl, txq); __atomic_fetch_add(&ctrl->refcnt, 1, __ATOMIC_RELAXED); } return ctrl; } /** * Release a Tx queue. * * @param dev * Pointer to Ethernet device. * @param idx * TX queue index. * * @return * 1 while a reference on it exists, 0 when freed. */ int mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_ctrl *txq_ctrl; if (priv->txqs == NULL || (*priv->txqs)[idx] == NULL) return 0; txq_ctrl = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq); if (__atomic_sub_fetch(&txq_ctrl->refcnt, 1, __ATOMIC_RELAXED) > 1) return 1; if (txq_ctrl->obj) { priv->obj_ops.txq_obj_release(txq_ctrl->obj); LIST_REMOVE(txq_ctrl->obj, next); mlx5_free(txq_ctrl->obj); txq_ctrl->obj = NULL; } if (txq_ctrl->type == MLX5_TXQ_TYPE_STANDARD) { if (txq_ctrl->txq.fcqs) { mlx5_free(txq_ctrl->txq.fcqs); txq_ctrl->txq.fcqs = NULL; } txq_free_elts(txq_ctrl); dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED; } if (!__atomic_load_n(&txq_ctrl->refcnt, __ATOMIC_RELAXED)) { if (txq_ctrl->type == MLX5_TXQ_TYPE_STANDARD) mlx5_mr_btree_free(&txq_ctrl->txq.mr_ctrl.cache_bh); LIST_REMOVE(txq_ctrl, next); mlx5_free(txq_ctrl); (*priv->txqs)[idx] = NULL; } return 0; } /** * Verify if the queue can be released. * * @param dev * Pointer to Ethernet device. * @param idx * TX queue index. * * @return * 1 if the queue can be released. */ int mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_ctrl *txq; if (!(*priv->txqs)[idx]) return -1; txq = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq); return (__atomic_load_n(&txq->refcnt, __ATOMIC_RELAXED) == 1); } /** * Verify the Tx Queue list is empty * * @param dev * Pointer to Ethernet device. * * @return * The number of object not released. */ int mlx5_txq_verify(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_txq_ctrl *txq_ctrl; int ret = 0; LIST_FOREACH(txq_ctrl, &priv->txqsctrl, next) { DRV_LOG(DEBUG, "port %u Tx queue %u still referenced", dev->data->port_id, txq_ctrl->txq.idx); ++ret; } return ret; } /** * Set the Tx queue dynamic timestamp (mask and offset) * * @param[in] dev * Pointer to the Ethernet device structure. */ void mlx5_txq_dynf_timestamp_set(struct rte_eth_dev *dev) { struct mlx5_priv *priv = dev->data->dev_private; struct mlx5_dev_ctx_shared *sh = priv->sh; struct mlx5_txq_data *data; int off, nbit; unsigned int i; uint64_t mask = 0; nbit = rte_mbuf_dynflag_lookup (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL); off = rte_mbuf_dynfield_lookup (RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL); if (nbit >= 0 && off >= 0 && sh->txpp.refcnt) mask = 1ULL << nbit; for (i = 0; i != priv->txqs_n; ++i) { data = (*priv->txqs)[i]; if (!data) continue; data->sh = sh; data->ts_mask = mask; data->ts_offset = off; } }