/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2017 6WIND S.A. * Copyright 2017 Mellanox Technologies, Ltd */ /** * @file * Data plane functions for mlx4 driver. */ #include #include #include #include /* Verbs headers do not support -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-Wpedantic" #endif #include #ifdef PEDANTIC #pragma GCC diagnostic error "-Wpedantic" #endif #include #include #include #include #include #include #include "mlx4.h" #include "mlx4_prm.h" #include "mlx4_rxtx.h" #include "mlx4_utils.h" /** * Pointer-value pair structure used in tx_post_send for saving the first * DWORD (32 byte) of a TXBB. */ struct pv { union { volatile struct mlx4_wqe_data_seg *dseg; volatile uint32_t *dst; }; uint32_t val; }; /** A helper structure for TSO packet handling. */ struct tso_info { /** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */ struct pv *pv; /** Current entry in the pv array. */ int pv_counter; /** Total size of the WQE including padding. */ uint32_t wqe_size; /** Size of TSO header to prepend to each packet to send. */ uint16_t tso_header_size; /** Total size of the TSO segment in the WQE. */ uint16_t wqe_tso_seg_size; /** Raw WQE size in units of 16 Bytes and without padding. */ uint8_t fence_size; }; /** A table to translate Rx completion flags to packet type. */ uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = { /* * The index to the array should have: * bit[7] - MLX4_CQE_L2_TUNNEL * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4 * bit[5] - MLX4_CQE_STATUS_UDP * bit[4] - MLX4_CQE_STATUS_TCP * bit[3] - MLX4_CQE_STATUS_IPV4OPT * bit[2] - MLX4_CQE_STATUS_IPV6 * bit[1] - MLX4_CQE_STATUS_IPF * bit[0] - MLX4_CQE_STATUS_IPV4 * giving a total of up to 256 entries. */ /* L2 */ [0x00] = RTE_PTYPE_L2_ETHER, /* L3 */ [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG, [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG, [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG, [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG, [0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG, [0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_NONFRAG, [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_NONFRAG, [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_FRAG, [0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_FRAG, /* TCP */ [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP, [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP, [0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG, [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP, [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP, /* UDP */ [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP, [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP, [0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG, [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP, [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP, /* Tunneled - L3 IPV6 */ [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG, [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG, [0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_NONFRAG, [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_NONFRAG, [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG, [0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG, /* Tunneled - L3 IPV6, TCP */ [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP, [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP, [0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP, [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP, /* Tunneled - L3 IPV6, UDP */ [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP, [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP, [0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP, [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP, /* Tunneled - L3 IPV4 */ [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG, [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG, [0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_NONFRAG, [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_NONFRAG, [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG, [0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG, /* Tunneled - L3 IPV4, TCP */ [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP, [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP, [0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP, [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP, /* Tunneled - L3 IPV4, UDP */ [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP, [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP, [0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG, [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP, [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP, }; /** * Stamp TXBB burst so it won't be reused by the HW. * * Routine is used when freeing WQE used by the chip or when failing * building an WQ entry has failed leaving partial information on the queue. * * @param sq * Pointer to the SQ structure. * @param start * Pointer to the first TXBB to stamp. * @param end * Pointer to the followed end TXBB to stamp. * * @return * Stamping burst size in byte units. */ static uint32_t mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start, volatile uint32_t *end) { uint32_t stamp = sq->stamp; int32_t size = (intptr_t)end - (intptr_t)start; assert(start != end); /* Hold SQ ring wrap around. */ if (size < 0) { size = (int32_t)sq->size + size; do { *start = stamp; start += MLX4_SQ_STAMP_DWORDS; } while (start != (volatile uint32_t *)sq->eob); start = (volatile uint32_t *)sq->buf; /* Flip invalid stamping ownership. */ stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT); sq->stamp = stamp; if (start == end) return size; } do { *start = stamp; start += MLX4_SQ_STAMP_DWORDS; } while (start != end); return (uint32_t)size; } /** * Manage Tx completions. * * When sending a burst, mlx4_tx_burst() posts several WRs. * To improve performance, a completion event is only required once every * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information * for other WRs, but this information would not be used anyway. * * @param txq * Pointer to Tx queue structure. * @param elts_m * Tx elements number mask. * @param sq * Pointer to the SQ structure. */ static void mlx4_txq_complete(struct txq *txq, const unsigned int elts_m, struct mlx4_sq *sq) { unsigned int elts_tail = txq->elts_tail; struct mlx4_cq *cq = &txq->mcq; volatile struct mlx4_cqe *cqe; uint32_t completed; uint32_t cons_index = cq->cons_index; volatile uint32_t *first_txbb; /* * Traverse over all CQ entries reported and handle each WQ entry * reported by them. */ do { cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index); if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^ !!(cons_index & cq->cqe_cnt))) break; #ifndef NDEBUG /* * Make sure we read the CQE after we read the ownership bit. */ rte_io_rmb(); if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == MLX4_CQE_OPCODE_ERROR)) { volatile struct mlx4_err_cqe *cqe_err = (volatile struct mlx4_err_cqe *)cqe; ERROR("%p CQE error - vendor syndrome: 0x%x" " syndrome: 0x%x\n", (void *)txq, cqe_err->vendor_err, cqe_err->syndrome); break; } #endif /* NDEBUG */ cons_index++; } while (1); completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init; if (unlikely(!completed)) return; /* First stamping address is the end of the last one. */ first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb; elts_tail += completed; /* The new tail element holds the end address. */ sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb, (&(*txq->elts)[elts_tail & elts_m])->eocb); /* Update CQ consumer index. */ cq->cons_index = cons_index; *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK); txq->elts_tail = elts_tail; } /** * Write Tx data segment to the SQ. * * @param dseg * Pointer to data segment in SQ. * @param lkey * Memory region lkey. * @param addr * Data address. * @param byte_count * Big endian bytes count of the data to send. */ static inline void mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg, uint32_t lkey, uintptr_t addr, rte_be32_t byte_count) { dseg->addr = rte_cpu_to_be_64(addr); dseg->lkey = lkey; #if RTE_CACHE_LINE_SIZE < 64 /* * Need a barrier here before writing the byte_count * fields to make sure that all the data is visible * before the byte_count field is set. * Otherwise, if the segment begins a new cacheline, * the HCA prefetcher could grab the 64-byte chunk and * get a valid (!= 0xffffffff) byte count but stale * data, and end up sending the wrong data. */ rte_io_wmb(); #endif /* RTE_CACHE_LINE_SIZE */ dseg->byte_count = byte_count; } /** * Obtain and calculate TSO information needed for assembling a TSO WQE. * * @param buf * Pointer to the first packet mbuf. * @param txq * Pointer to Tx queue structure. * @param tinfo * Pointer to a structure to fill the info with. * * @return * 0 on success, negative value upon error. */ static inline int mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf, struct txq *txq, struct tso_info *tinfo) { struct mlx4_sq *sq = &txq->msq; const uint8_t tunneled = txq->priv->hw_csum_l2tun && (buf->ol_flags & PKT_TX_TUNNEL_MASK); tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len; if (tunneled) tinfo->tso_header_size += buf->outer_l2_len + buf->outer_l3_len; if (unlikely(buf->tso_segsz == 0 || tinfo->tso_header_size == 0 || tinfo->tso_header_size > MLX4_MAX_TSO_HEADER || tinfo->tso_header_size > buf->data_len)) return -EINVAL; /* * Calculate the WQE TSO segment size * Note: * 1. An LSO segment must be padded such that the subsequent data * segment is 16-byte aligned. * 2. The start address of the TSO segment is always 16 Bytes aligned. */ tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) + tinfo->tso_header_size, sizeof(struct mlx4_wqe_data_seg)); tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) + tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) + buf->nb_segs; tinfo->wqe_size = RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT), MLX4_TXBB_SIZE); /* Validate WQE size and WQE space in the send queue. */ if (sq->remain_size < tinfo->wqe_size || tinfo->wqe_size > MLX4_MAX_WQE_SIZE) return -ENOMEM; /* Init pv. */ tinfo->pv = (struct pv *)txq->bounce_buf; tinfo->pv_counter = 0; return 0; } /** * Fill the TSO WQE data segments with info on buffers to transmit . * * @param buf * Pointer to the first packet mbuf. * @param txq * Pointer to Tx queue structure. * @param tinfo * Pointer to TSO info to use. * @param dseg * Pointer to the first data segment in the TSO WQE. * @param ctrl * Pointer to the control segment in the TSO WQE. * * @return * 0 on success, negative value upon error. */ static inline volatile struct mlx4_wqe_ctrl_seg * mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf, struct txq *txq, struct tso_info *tinfo, volatile struct mlx4_wqe_data_seg *dseg, volatile struct mlx4_wqe_ctrl_seg *ctrl) { uint32_t lkey; int nb_segs = buf->nb_segs; int nb_segs_txbb; struct mlx4_sq *sq = &txq->msq; struct rte_mbuf *sbuf = buf; struct pv *pv = tinfo->pv; int *pv_counter = &tinfo->pv_counter; volatile struct mlx4_wqe_ctrl_seg *ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *) ((volatile uint8_t *)ctrl + tinfo->wqe_size); uint16_t data_len = sbuf->data_len - tinfo->tso_header_size; uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t, tinfo->tso_header_size); do { /* how many dseg entries do we have in the current TXBB ? */ nb_segs_txbb = (MLX4_TXBB_SIZE - ((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >> MLX4_SEG_SHIFT; switch (nb_segs_txbb) { #ifndef NDEBUG default: /* Should never happen. */ rte_panic("%p: Invalid number of SGEs(%d) for a TXBB", (void *)txq, nb_segs_txbb); /* rte_panic never returns. */ break; #endif /* NDEBUG */ case 4: /* Memory region key for this memory pool. */ lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) goto err; dseg->addr = rte_cpu_to_be_64(data_addr); dseg->lkey = lkey; /* * This data segment starts at the beginning of a new * TXBB, so we need to postpone its byte_count writing * for later. */ pv[*pv_counter].dseg = dseg; /* * Zero length segment is treated as inline segment * with zero data. */ pv[(*pv_counter)++].val = rte_cpu_to_be_32(data_len ? data_len : 0x80000000); if (--nb_segs == 0) return ctrl_next; /* Prepare next buf info */ sbuf = sbuf->next; dseg++; data_len = sbuf->data_len; data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t); /* fallthrough */ case 3: lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) goto err; mlx4_fill_tx_data_seg(dseg, lkey, data_addr, rte_cpu_to_be_32(data_len ? data_len : 0x80000000)); if (--nb_segs == 0) return ctrl_next; /* Prepare next buf info */ sbuf = sbuf->next; dseg++; data_len = sbuf->data_len; data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t); /* fallthrough */ case 2: lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) goto err; mlx4_fill_tx_data_seg(dseg, lkey, data_addr, rte_cpu_to_be_32(data_len ? data_len : 0x80000000)); if (--nb_segs == 0) return ctrl_next; /* Prepare next buf info */ sbuf = sbuf->next; dseg++; data_len = sbuf->data_len; data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t); /* fallthrough */ case 1: lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) goto err; mlx4_fill_tx_data_seg(dseg, lkey, data_addr, rte_cpu_to_be_32(data_len ? data_len : 0x80000000)); if (--nb_segs == 0) return ctrl_next; /* Prepare next buf info */ sbuf = sbuf->next; dseg++; data_len = sbuf->data_len; data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t); /* fallthrough */ } /* Wrap dseg if it points at the end of the queue. */ if ((volatile uint8_t *)dseg >= sq->eob) dseg = (volatile struct mlx4_wqe_data_seg *) ((volatile uint8_t *)dseg - sq->size); } while (true); err: return NULL; } /** * Fill the packet's l2, l3 and l4 headers to the WQE. * * This will be used as the header for each TSO segment that is transmitted. * * @param buf * Pointer to the first packet mbuf. * @param txq * Pointer to Tx queue structure. * @param tinfo * Pointer to TSO info to use. * @param ctrl * Pointer to the control segment in the TSO WQE. * * @return * 0 on success, negative value upon error. */ static inline volatile struct mlx4_wqe_data_seg * mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf, struct txq *txq, struct tso_info *tinfo, volatile struct mlx4_wqe_ctrl_seg *ctrl) { volatile struct mlx4_wqe_lso_seg *tseg = (volatile struct mlx4_wqe_lso_seg *)(ctrl + 1); struct mlx4_sq *sq = &txq->msq; struct pv *pv = tinfo->pv; int *pv_counter = &tinfo->pv_counter; int remain_size = tinfo->tso_header_size; char *from = rte_pktmbuf_mtod(buf, char *); uint16_t txbb_avail_space; /* Union to overcome volatile constraints when copying TSO header. */ union { volatile uint8_t *vto; uint8_t *to; } thdr = { .vto = (volatile uint8_t *)tseg->header, }; /* * TSO data always starts at offset 20 from the beginning of the TXBB * (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned * we can write the first 44 TSO header bytes without worry for TxQ * wrapping or overwriting the first TXBB 32bit word. */ txbb_avail_space = MLX4_TXBB_SIZE - (sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_lso_seg)); while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) { /* Copy to end of txbb. */ rte_memcpy(thdr.to, from, txbb_avail_space); from += txbb_avail_space; thdr.to += txbb_avail_space; /* New TXBB, Check for TxQ wrap. */ if (thdr.to >= sq->eob) thdr.vto = sq->buf; /* New TXBB, stash the first 32bits for later use. */ pv[*pv_counter].dst = (volatile uint32_t *)thdr.to; pv[(*pv_counter)++].val = *(uint32_t *)from, from += sizeof(uint32_t); thdr.to += sizeof(uint32_t); remain_size -= txbb_avail_space + sizeof(uint32_t); /* Avail space in new TXBB is TXBB size - 4 */ txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t); } if (remain_size > txbb_avail_space) { rte_memcpy(thdr.to, from, txbb_avail_space); from += txbb_avail_space; thdr.to += txbb_avail_space; remain_size -= txbb_avail_space; /* New TXBB, Check for TxQ wrap. */ if (thdr.to >= sq->eob) thdr.vto = sq->buf; pv[*pv_counter].dst = (volatile uint32_t *)thdr.to; rte_memcpy(&pv[*pv_counter].val, from, remain_size); (*pv_counter)++; } else if (remain_size) { rte_memcpy(thdr.to, from, remain_size); } tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) | tinfo->tso_header_size); /* Calculate data segment location */ return (volatile struct mlx4_wqe_data_seg *) ((uintptr_t)tseg + tinfo->wqe_tso_seg_size); } /** * Write data segments and header for TSO uni/multi segment packet. * * @param buf * Pointer to the first packet mbuf. * @param txq * Pointer to Tx queue structure. * @param ctrl * Pointer to the WQE control segment. * * @return * Pointer to the next WQE control segment on success, NULL otherwise. */ static volatile struct mlx4_wqe_ctrl_seg * mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq, volatile struct mlx4_wqe_ctrl_seg *ctrl) { volatile struct mlx4_wqe_data_seg *dseg; volatile struct mlx4_wqe_ctrl_seg *ctrl_next; struct mlx4_sq *sq = &txq->msq; struct tso_info tinfo; struct pv *pv; int pv_counter; int ret; ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo); if (unlikely(ret)) goto error; dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl); if (unlikely(dseg == NULL)) goto error; if ((uintptr_t)dseg >= (uintptr_t)sq->eob) dseg = (volatile struct mlx4_wqe_data_seg *) ((uintptr_t)dseg - sq->size); ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl); if (unlikely(ctrl_next == NULL)) goto error; /* Write the first DWORD of each TXBB save earlier. */ if (likely(tinfo.pv_counter)) { pv = tinfo.pv; pv_counter = tinfo.pv_counter; /* Need a barrier here before writing the first TXBB word. */ rte_io_wmb(); do { --pv_counter; *pv[pv_counter].dst = pv[pv_counter].val; } while (pv_counter > 0); } ctrl->fence_size = tinfo.fence_size; sq->remain_size -= tinfo.wqe_size; return ctrl_next; error: txq->stats.odropped++; return NULL; } /** * Write data segments of multi-segment packet. * * @param buf * Pointer to the first packet mbuf. * @param txq * Pointer to Tx queue structure. * @param ctrl * Pointer to the WQE control segment. * * @return * Pointer to the next WQE control segment on success, NULL otherwise. */ static volatile struct mlx4_wqe_ctrl_seg * mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq, volatile struct mlx4_wqe_ctrl_seg *ctrl) { struct pv *pv = (struct pv *)txq->bounce_buf; struct mlx4_sq *sq = &txq->msq; struct rte_mbuf *sbuf = buf; uint32_t lkey; int pv_counter = 0; int nb_segs = buf->nb_segs; uint32_t wqe_size; volatile struct mlx4_wqe_data_seg *dseg = (volatile struct mlx4_wqe_data_seg *)(ctrl + 1); ctrl->fence_size = 1 + nb_segs; wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT), MLX4_TXBB_SIZE); /* Validate WQE size and WQE space in the send queue. */ if (sq->remain_size < wqe_size || wqe_size > MLX4_MAX_WQE_SIZE) return NULL; /* * Fill the data segments with buffer information. * First WQE TXBB head segment is always control segment, * so jump to tail TXBB data segments code for the first * WQE data segments filling. */ goto txbb_tail_segs; txbb_head_seg: /* Memory region key (big endian) for this memory pool. */ lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) { DEBUG("%p: unable to get MP <-> MR association", (void *)txq); return NULL; } /* Handle WQE wraparound. */ if (dseg >= (volatile struct mlx4_wqe_data_seg *)sq->eob) dseg = (volatile struct mlx4_wqe_data_seg *) sq->buf; dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t)); dseg->lkey = lkey; /* * This data segment starts at the beginning of a new * TXBB, so we need to postpone its byte_count writing * for later. */ pv[pv_counter].dseg = dseg; /* * Zero length segment is treated as inline segment * with zero data. */ pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ? sbuf->data_len : 0x80000000); sbuf = sbuf->next; dseg++; nb_segs--; txbb_tail_segs: /* Jump to default if there are more than two segments remaining. */ switch (nb_segs) { default: lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) { DEBUG("%p: unable to get MP <-> MR association", (void *)txq); return NULL; } mlx4_fill_tx_data_seg(dseg, lkey, rte_pktmbuf_mtod(sbuf, uintptr_t), rte_cpu_to_be_32(sbuf->data_len ? sbuf->data_len : 0x80000000)); sbuf = sbuf->next; dseg++; nb_segs--; /* fallthrough */ case 2: lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) { DEBUG("%p: unable to get MP <-> MR association", (void *)txq); return NULL; } mlx4_fill_tx_data_seg(dseg, lkey, rte_pktmbuf_mtod(sbuf, uintptr_t), rte_cpu_to_be_32(sbuf->data_len ? sbuf->data_len : 0x80000000)); sbuf = sbuf->next; dseg++; nb_segs--; /* fallthrough */ case 1: lkey = mlx4_tx_mb2mr(txq, sbuf); if (unlikely(lkey == (uint32_t)-1)) { DEBUG("%p: unable to get MP <-> MR association", (void *)txq); return NULL; } mlx4_fill_tx_data_seg(dseg, lkey, rte_pktmbuf_mtod(sbuf, uintptr_t), rte_cpu_to_be_32(sbuf->data_len ? sbuf->data_len : 0x80000000)); nb_segs--; if (nb_segs) { sbuf = sbuf->next; dseg++; goto txbb_head_seg; } /* fallthrough */ case 0: break; } /* Write the first DWORD of each TXBB save earlier. */ if (pv_counter) { /* Need a barrier here before writing the byte_count. */ rte_io_wmb(); for (--pv_counter; pv_counter >= 0; pv_counter--) pv[pv_counter].dseg->byte_count = pv[pv_counter].val; } sq->remain_size -= wqe_size; /* Align next WQE address to the next TXBB. */ return (volatile struct mlx4_wqe_ctrl_seg *) ((volatile uint8_t *)ctrl + wqe_size); } /** * DPDK callback for Tx. * * @param dpdk_txq * Generic pointer to Tx queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ uint16_t mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct txq *txq = (struct txq *)dpdk_txq; unsigned int elts_head = txq->elts_head; const unsigned int elts_n = txq->elts_n; const unsigned int elts_m = elts_n - 1; unsigned int bytes_sent = 0; unsigned int i; unsigned int max = elts_head - txq->elts_tail; struct mlx4_sq *sq = &txq->msq; volatile struct mlx4_wqe_ctrl_seg *ctrl; struct txq_elt *elt; assert(txq->elts_comp_cd != 0); if (likely(max >= txq->elts_comp_cd_init)) mlx4_txq_complete(txq, elts_m, sq); max = elts_n - max; assert(max >= 1); assert(max <= elts_n); /* Always leave one free entry in the ring. */ --max; if (max > pkts_n) max = pkts_n; elt = &(*txq->elts)[elts_head & elts_m]; /* First Tx burst element saves the next WQE control segment. */ ctrl = elt->wqe; for (i = 0; (i != max); ++i) { struct rte_mbuf *buf = pkts[i]; struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m]; uint32_t owner_opcode = sq->owner_opcode; volatile struct mlx4_wqe_data_seg *dseg = (volatile struct mlx4_wqe_data_seg *)(ctrl + 1); volatile struct mlx4_wqe_ctrl_seg *ctrl_next; union { uint32_t flags; uint16_t flags16[2]; } srcrb; uint32_t lkey; bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG); /* Clean up old buffer. */ if (likely(elt->buf != NULL)) { struct rte_mbuf *tmp = elt->buf; /* Faster than rte_pktmbuf_free(). */ do { struct rte_mbuf *next = tmp->next; rte_pktmbuf_free_seg(tmp); tmp = next; } while (tmp != NULL); } RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf); if (tso) { /* Change opcode to TSO */ owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD; owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR; ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl); if (!ctrl_next) { elt->buf = NULL; break; } } else if (buf->nb_segs == 1) { /* Validate WQE space in the send queue. */ if (sq->remain_size < MLX4_TXBB_SIZE) { elt->buf = NULL; break; } lkey = mlx4_tx_mb2mr(txq, buf); if (unlikely(lkey == (uint32_t)-1)) { /* MR does not exist. */ DEBUG("%p: unable to get MP <-> MR association", (void *)txq); elt->buf = NULL; break; } mlx4_fill_tx_data_seg(dseg++, lkey, rte_pktmbuf_mtod(buf, uintptr_t), rte_cpu_to_be_32(buf->data_len)); /* Set WQE size in 16-byte units. */ ctrl->fence_size = 0x2; sq->remain_size -= MLX4_TXBB_SIZE; /* Align next WQE address to the next TXBB. */ ctrl_next = ctrl + 0x4; } else { ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl); if (!ctrl_next) { elt->buf = NULL; break; } } /* Hold SQ ring wrap around. */ if ((volatile uint8_t *)ctrl_next >= sq->eob) { ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *) ((volatile uint8_t *)ctrl_next - sq->size); /* Flip HW valid ownership. */ sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT; } /* * For raw Ethernet, the SOLICIT flag is used to indicate * that no ICRC should be calculated. */ if (--txq->elts_comp_cd == 0) { /* Save the completion burst end address. */ elt_next->eocb = (volatile uint32_t *)ctrl_next; txq->elts_comp_cd = txq->elts_comp_cd_init; srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT | MLX4_WQE_CTRL_CQ_UPDATE); } else { srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT); } /* Enable HW checksum offload if requested */ if (txq->csum && (buf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) { const uint64_t is_tunneled = (buf->ol_flags & (PKT_TX_TUNNEL_GRE | PKT_TX_TUNNEL_VXLAN)); if (is_tunneled && txq->csum_l2tun) { owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM | MLX4_WQE_CTRL_IL4_HDR_CSUM; if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM) srcrb.flags |= RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM); } else { srcrb.flags |= RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM | MLX4_WQE_CTRL_TCP_UDP_CSUM); } } if (txq->lb) { /* * Copy destination MAC address to the WQE, this allows * loopback in eSwitch, so that VFs and PF can * communicate with each other. */ srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *)); ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *, sizeof(uint16_t))); } else { ctrl->imm = 0; } ctrl->srcrb_flags = srcrb.flags; /* * Make sure descriptor is fully written before * setting ownership bit (because HW can start * executing as soon as we do). */ rte_io_wmb(); ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode); elt->buf = buf; bytes_sent += buf->pkt_len; ctrl = ctrl_next; elt = elt_next; } /* Take a shortcut if nothing must be sent. */ if (unlikely(i == 0)) return 0; /* Save WQE address of the next Tx burst element. */ elt->wqe = ctrl; /* Increment send statistics counters. */ txq->stats.opackets += i; txq->stats.obytes += bytes_sent; /* Make sure that descriptors are written before doorbell record. */ rte_wmb(); /* Ring QP doorbell. */ rte_write32(txq->msq.doorbell_qpn, MLX4_TX_BFREG(txq)); txq->elts_head += i; return i; } /** * Translate Rx completion flags to packet type. * * @param[in] cqe * Pointer to CQE. * * @return * Packet type for struct rte_mbuf. */ static inline uint32_t rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe, uint32_t l2tun_offload) { uint8_t idx = 0; uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn); uint32_t status = rte_be_to_cpu_32(cqe->status); /* * The index to the array should have: * bit[7] - MLX4_CQE_L2_TUNNEL * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4 */ if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL)) idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) | ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19); /* * The index to the array should have: * bit[5] - MLX4_CQE_STATUS_UDP * bit[4] - MLX4_CQE_STATUS_TCP * bit[3] - MLX4_CQE_STATUS_IPV4OPT * bit[2] - MLX4_CQE_STATUS_IPV6 * bit[1] - MLX4_CQE_STATUS_IPF * bit[0] - MLX4_CQE_STATUS_IPV4 * giving a total of up to 256 entries. */ idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22); if (status & MLX4_CQE_STATUS_IPV6) idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11); return mlx4_ptype_table[idx]; } /** * Translate Rx completion flags to offload flags. * * @param flags * Rx completion flags returned by mlx4_cqe_flags(). * @param csum * Whether Rx checksums are enabled. * @param csum_l2tun * Whether Rx L2 tunnel checksums are enabled. * * @return * Offload flags (ol_flags) in mbuf format. */ static inline uint32_t rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun) { uint32_t ol_flags = 0; if (csum) ol_flags |= mlx4_transpose(flags, MLX4_CQE_STATUS_IP_HDR_CSUM_OK, PKT_RX_IP_CKSUM_GOOD) | mlx4_transpose(flags, MLX4_CQE_STATUS_TCP_UDP_CSUM_OK, PKT_RX_L4_CKSUM_GOOD); if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun) ol_flags |= mlx4_transpose(flags, MLX4_CQE_L2_TUNNEL_IPOK, PKT_RX_IP_CKSUM_GOOD) | mlx4_transpose(flags, MLX4_CQE_L2_TUNNEL_L4_CSUM, PKT_RX_L4_CKSUM_GOOD); return ol_flags; } /** * Extract checksum information from CQE flags. * * @param cqe * Pointer to CQE structure. * @param csum * Whether Rx checksums are enabled. * @param csum_l2tun * Whether Rx L2 tunnel checksums are enabled. * * @return * CQE checksum information. */ static inline uint32_t mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun) { uint32_t flags = 0; /* * The relevant bits are in different locations on their * CQE fields therefore we can join them in one 32bit * variable. */ if (csum) flags = (rte_be_to_cpu_32(cqe->status) & MLX4_CQE_STATUS_IPV4_CSUM_OK); if (csum_l2tun) flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) & (MLX4_CQE_L2_TUNNEL | MLX4_CQE_L2_TUNNEL_IPOK | MLX4_CQE_L2_TUNNEL_L4_CSUM | MLX4_CQE_L2_TUNNEL_IPV4)); return flags; } /** * Poll one CQE from CQ. * * @param rxq * Pointer to the receive queue structure. * @param[out] out * Just polled CQE. * * @return * Number of bytes of the CQE, 0 in case there is no completion. */ static unsigned int mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out) { int ret = 0; volatile struct mlx4_cqe *cqe = NULL; struct mlx4_cq *cq = &rxq->mcq; cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index); if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^ !!(cq->cons_index & cq->cqe_cnt)) goto out; /* * Make sure we read CQ entry contents after we've checked the * ownership bit. */ rte_rmb(); assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK)); assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) != MLX4_CQE_OPCODE_ERROR); ret = rte_be_to_cpu_32(cqe->byte_cnt); ++cq->cons_index; out: *out = cqe; return ret; } /** * DPDK callback for Rx with scattered packets support. * * @param dpdk_rxq * Generic pointer to Rx queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct rxq *rxq = dpdk_rxq; const uint32_t wr_cnt = (1 << rxq->elts_n) - 1; const uint16_t sges_n = rxq->sges_n; struct rte_mbuf *pkt = NULL; struct rte_mbuf *seg = NULL; unsigned int i = 0; uint32_t rq_ci = rxq->rq_ci << sges_n; int len = 0; while (pkts_n) { volatile struct mlx4_cqe *cqe; uint32_t idx = rq_ci & wr_cnt; struct rte_mbuf *rep = (*rxq->elts)[idx]; volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx]; /* Update the 'next' pointer of the previous segment. */ if (pkt) seg->next = rep; seg = rep; rte_prefetch0(seg); rte_prefetch0(scat); rep = rte_mbuf_raw_alloc(rxq->mp); if (unlikely(rep == NULL)) { ++rxq->stats.rx_nombuf; if (!pkt) { /* * No buffers before we even started, * bail out silently. */ break; } while (pkt != seg) { assert(pkt != (*rxq->elts)[idx]); rep = pkt->next; pkt->next = NULL; pkt->nb_segs = 1; rte_mbuf_raw_free(pkt); pkt = rep; } break; } if (!pkt) { /* Looking for the new packet. */ len = mlx4_cq_poll_one(rxq, &cqe); if (!len) { rte_mbuf_raw_free(rep); break; } if (unlikely(len < 0)) { /* Rx error, packet is likely too large. */ rte_mbuf_raw_free(rep); ++rxq->stats.idropped; goto skip; } pkt = seg; assert(len >= (rxq->crc_present << 2)); /* Update packet information. */ pkt->packet_type = rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload); pkt->ol_flags = PKT_RX_RSS_HASH; pkt->hash.rss = cqe->immed_rss_invalid; if (rxq->crc_present) len -= RTE_ETHER_CRC_LEN; pkt->pkt_len = len; if (rxq->csum | rxq->csum_l2tun) { uint32_t flags = mlx4_cqe_flags(cqe, rxq->csum, rxq->csum_l2tun); pkt->ol_flags = rxq_cq_to_ol_flags(flags, rxq->csum, rxq->csum_l2tun); } } rep->nb_segs = 1; rep->port = rxq->port_id; rep->data_len = seg->data_len; rep->data_off = seg->data_off; (*rxq->elts)[idx] = rep; /* * Fill NIC descriptor with the new buffer. The lkey and size * of the buffers are already known, only the buffer address * changes. */ scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t)); /* If there's only one MR, no need to replace LKey in WQE. */ if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1)) scat->lkey = mlx4_rx_mb2mr(rxq, rep); if (len > seg->data_len) { len -= seg->data_len; ++pkt->nb_segs; ++rq_ci; continue; } /* The last segment. */ seg->data_len = len; /* Increment bytes counter. */ rxq->stats.ibytes += pkt->pkt_len; /* Return packet. */ *(pkts++) = pkt; pkt = NULL; --pkts_n; ++i; skip: /* Align consumer index to the next stride. */ rq_ci >>= sges_n; ++rq_ci; rq_ci <<= sges_n; } if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci)) return 0; /* Update the consumer index. */ rxq->rq_ci = rq_ci >> sges_n; rte_wmb(); *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci); *rxq->mcq.set_ci_db = rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK); /* Increment packets counter. */ rxq->stats.ipackets += i; return i; } /** * Dummy DPDK callback for Tx. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_txq * Generic pointer to Tx queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ uint16_t mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n) { (void)dpdk_txq; (void)pkts; (void)pkts_n; rte_mb(); return 0; } /** * Dummy DPDK callback for Rx. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_rxq * Generic pointer to Rx queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { (void)dpdk_rxq; (void)pkts; (void)pkts_n; rte_mb(); return 0; }