/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include "cperf_test_throughput.h" #include "cperf_ops.h" #include "cperf_test_common.h" struct cperf_throughput_ctx { uint8_t dev_id; uint16_t qp_id; uint8_t lcore_id; struct rte_mempool *pool; struct rte_cryptodev_sym_session *sess; cperf_populate_ops_t populate_ops; uint32_t src_buf_offset; uint32_t dst_buf_offset; const struct cperf_options *options; const struct cperf_test_vector *test_vector; }; static void cperf_throughput_test_free(struct cperf_throughput_ctx *ctx) { if (!ctx) return; if (ctx->sess) { #ifdef RTE_LIBRTE_SECURITY if (ctx->options->op_type == CPERF_PDCP) { struct rte_security_ctx *sec_ctx = (struct rte_security_ctx *) rte_cryptodev_get_sec_ctx(ctx->dev_id); rte_security_session_destroy(sec_ctx, (struct rte_security_session *)ctx->sess); } else #endif { rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); rte_cryptodev_sym_session_free(ctx->sess); } } if (ctx->pool) rte_mempool_free(ctx->pool); rte_free(ctx); } void * cperf_throughput_test_constructor(struct rte_mempool *sess_mp, struct rte_mempool *sess_priv_mp, uint8_t dev_id, uint16_t qp_id, const struct cperf_options *options, const struct cperf_test_vector *test_vector, const struct cperf_op_fns *op_fns) { struct cperf_throughput_ctx *ctx = NULL; ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0); if (ctx == NULL) goto err; ctx->dev_id = dev_id; ctx->qp_id = qp_id; ctx->populate_ops = op_fns->populate_ops; ctx->options = options; ctx->test_vector = test_vector; /* IV goes at the end of the crypto operation */ uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options, test_vector, iv_offset); if (ctx->sess == NULL) goto err; if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0, &ctx->src_buf_offset, &ctx->dst_buf_offset, &ctx->pool) < 0) goto err; return ctx; err: cperf_throughput_test_free(ctx); return NULL; } int cperf_throughput_test_runner(void *test_ctx) { struct cperf_throughput_ctx *ctx = test_ctx; uint16_t test_burst_size; uint8_t burst_size_idx = 0; uint32_t imix_idx = 0; static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0); struct rte_crypto_op *ops[ctx->options->max_burst_size]; struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; uint64_t i; uint32_t lcore = rte_lcore_id(); #ifdef CPERF_LINEARIZATION_ENABLE struct rte_cryptodev_info dev_info; int linearize = 0; /* Check if source mbufs require coalescing */ if (ctx->options->segment_sz < ctx->options->max_buffer_size) { rte_cryptodev_info_get(ctx->dev_id, &dev_info); if ((dev_info.feature_flags & RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) linearize = 1; } #endif /* CPERF_LINEARIZATION_ENABLE */ ctx->lcore_id = lcore; /* Warm up the host CPU before starting the test */ for (i = 0; i < ctx->options->total_ops; i++) rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* Get first size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size = ctx->options->min_burst_size; else test_burst_size = ctx->options->burst_size_list[0]; uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); while (test_burst_size <= ctx->options->max_burst_size) { uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; uint64_t tsc_start, tsc_end, tsc_duration; uint16_t ops_unused = 0; tsc_start = rte_rdtsc_precise(); while (ops_enqd_total < ctx->options->total_ops) { uint16_t burst_size = ((ops_enqd_total + test_burst_size) <= ctx->options->total_ops) ? test_burst_size : ctx->options->total_ops - ops_enqd_total; uint16_t ops_needed = burst_size - ops_unused; /* Allocate objects containing crypto operations and mbufs */ if (rte_mempool_get_bulk(ctx->pool, (void **)ops, ops_needed) != 0) { RTE_LOG(ERR, USER1, "Failed to allocate more crypto operations " "from the crypto operation pool.\n" "Consider increasing the pool size " "with --pool-sz\n"); return -1; } /* Setup crypto op, attach mbuf etc */ (ctx->populate_ops)(ops, ctx->src_buf_offset, ctx->dst_buf_offset, ops_needed, ctx->sess, ctx->options, ctx->test_vector, iv_offset, &imix_idx); /** * When ops_needed is smaller than ops_enqd, the * unused ops need to be moved to the front for * next round use. */ if (unlikely(ops_enqd > ops_needed)) { size_t nb_b_to_mov = ops_unused * sizeof( struct rte_crypto_op *); memmove(&ops[ops_needed], &ops[ops_enqd], nb_b_to_mov); } #ifdef CPERF_LINEARIZATION_ENABLE if (linearize) { /* PMD doesn't support scatter-gather and source buffer * is segmented. * We need to linearize it before enqueuing. */ for (i = 0; i < burst_size; i++) rte_pktmbuf_linearize(ops[i]->sym->m_src); } #endif /* CPERF_LINEARIZATION_ENABLE */ /* Enqueue burst of ops on crypto device */ ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, ops, burst_size); if (ops_enqd < burst_size) ops_enqd_failed++; /** * Calculate number of ops not enqueued (mainly for hw * accelerators whose ingress queue can fill up). */ ops_unused = burst_size - ops_enqd; ops_enqd_total += ops_enqd; /* Dequeue processed burst of ops from crypto device */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); if (likely(ops_deqd)) { /* Free crypto ops so they can be reused. */ rte_mempool_put_bulk(ctx->pool, (void **)ops_processed, ops_deqd); ops_deqd_total += ops_deqd; } else { /** * Count dequeue polls which didn't return any * processed operations. This statistic is mainly * relevant to hw accelerators. */ ops_deqd_failed++; } } /* Dequeue any operations still in the crypto device */ while (ops_deqd_total < ctx->options->total_ops) { /* Sending 0 length burst to flush sw crypto device */ rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* dequeue burst */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); if (ops_deqd == 0) ops_deqd_failed++; else { rte_mempool_put_bulk(ctx->pool, (void **)ops_processed, ops_deqd); ops_deqd_total += ops_deqd; } } tsc_end = rte_rdtsc_precise(); tsc_duration = (tsc_end - tsc_start); /* Calculate average operations processed per second */ double ops_per_second = ((double)ctx->options->total_ops / tsc_duration) * rte_get_tsc_hz(); /* Calculate average throughput (Gbps) in bits per second */ double throughput_gbps = ((ops_per_second * ctx->options->test_buffer_size * 8) / 1000000000); /* Calculate average cycles per packet */ double cycles_per_packet = ((double)tsc_duration / ctx->options->total_ops); if (!ctx->options->csv) { if (rte_atomic16_test_and_set(&display_once)) printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n", "lcore id", "Buf Size", "Burst Size", "Enqueued", "Dequeued", "Failed Enq", "Failed Deq", "MOps", "Gbps", "Cycles/Buf"); printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 "%12"PRIu64"%12.4f%12.4f%12.2f\n", ctx->lcore_id, ctx->options->test_buffer_size, test_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_per_second/1000000, throughput_gbps, cycles_per_packet); } else { if (rte_atomic16_test_and_set(&display_once)) printf("#lcore id,Buffer Size(B)," "Burst Size,Enqueued,Dequeued,Failed Enq," "Failed Deq,Ops(Millions),Throughput(Gbps)," "Cycles/Buf\n\n"); printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64"," "%.3f,%.3f,%.3f\n", ctx->lcore_id, ctx->options->test_buffer_size, test_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_per_second/1000000, throughput_gbps, cycles_per_packet); } /* Get next size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size += ctx->options->inc_burst_size; else { if (++burst_size_idx == ctx->options->burst_size_count) break; test_burst_size = ctx->options->burst_size_list[burst_size_idx]; } } return 0; } void cperf_throughput_test_destructor(void *arg) { struct cperf_throughput_ctx *ctx = arg; if (ctx == NULL) return; cperf_throughput_test_free(ctx); }