/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation. * Copyright(c) 2013 6WIND S.A. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES #include #include #endif #include #include #include #include #include #include #include #include #include #include #include "eal_private.h" #include "eal_memalloc.h" #include "eal_internal_cfg.h" #include "eal_filesystem.h" #include "eal_hugepages.h" #include "eal_options.h" #define PFN_MASK_SIZE 8 /** * @file * Huge page mapping under linux * * To reserve a big contiguous amount of memory, we use the hugepage * feature of linux. For that, we need to have hugetlbfs mounted. This * code will create many files in this directory (one per page) and * map them in virtual memory. For each page, we will retrieve its * physical address and remap it in order to have a virtual contiguous * zone as well as a physical contiguous zone. */ static bool phys_addrs_available = true; #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space" static void test_phys_addrs_available(void) { uint64_t tmp = 0; phys_addr_t physaddr; if (!rte_eal_has_hugepages()) { RTE_LOG(ERR, EAL, "Started without hugepages support, physical addresses not available\n"); phys_addrs_available = false; return; } physaddr = rte_mem_virt2phy(&tmp); if (physaddr == RTE_BAD_PHYS_ADDR) { if (rte_eal_iova_mode() == RTE_IOVA_PA) RTE_LOG(ERR, EAL, "Cannot obtain physical addresses: %s. " "Only vfio will function.\n", strerror(errno)); phys_addrs_available = false; } } /* * Get physical address of any mapped virtual address in the current process. */ phys_addr_t rte_mem_virt2phy(const void *virtaddr) { int fd, retval; uint64_t page, physaddr; unsigned long virt_pfn; int page_size; off_t offset; /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */ if (!phys_addrs_available) return RTE_BAD_IOVA; /* standard page size */ page_size = getpagesize(); fd = open("/proc/self/pagemap", O_RDONLY); if (fd < 0) { RTE_LOG(INFO, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", __func__, strerror(errno)); return RTE_BAD_IOVA; } virt_pfn = (unsigned long)virtaddr / page_size; offset = sizeof(uint64_t) * virt_pfn; if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { RTE_LOG(INFO, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", __func__, strerror(errno)); close(fd); return RTE_BAD_IOVA; } retval = read(fd, &page, PFN_MASK_SIZE); close(fd); if (retval < 0) { RTE_LOG(INFO, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", __func__, strerror(errno)); return RTE_BAD_IOVA; } else if (retval != PFN_MASK_SIZE) { RTE_LOG(INFO, EAL, "%s(): read %d bytes from /proc/self/pagemap " "but expected %d:\n", __func__, retval, PFN_MASK_SIZE); return RTE_BAD_IOVA; } /* * the pfn (page frame number) are bits 0-54 (see * pagemap.txt in linux Documentation) */ if ((page & 0x7fffffffffffffULL) == 0) return RTE_BAD_IOVA; physaddr = ((page & 0x7fffffffffffffULL) * page_size) + ((unsigned long)virtaddr % page_size); return physaddr; } rte_iova_t rte_mem_virt2iova(const void *virtaddr) { if (rte_eal_iova_mode() == RTE_IOVA_VA) return (uintptr_t)virtaddr; return rte_mem_virt2phy(virtaddr); } /* * For each hugepage in hugepg_tbl, fill the physaddr value. We find * it by browsing the /proc/self/pagemap special file. */ static int find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { unsigned int i; phys_addr_t addr; for (i = 0; i < hpi->num_pages[0]; i++) { addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va); if (addr == RTE_BAD_PHYS_ADDR) return -1; hugepg_tbl[i].physaddr = addr; } return 0; } /* * For each hugepage in hugepg_tbl, fill the physaddr value sequentially. */ static int set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { unsigned int i; static phys_addr_t addr; for (i = 0; i < hpi->num_pages[0]; i++) { hugepg_tbl[i].physaddr = addr; addr += hugepg_tbl[i].size; } return 0; } /* * Check whether address-space layout randomization is enabled in * the kernel. This is important for multi-process as it can prevent * two processes mapping data to the same virtual address * Returns: * 0 - address space randomization disabled * 1/2 - address space randomization enabled * negative error code on error */ static int aslr_enabled(void) { char c; int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY); if (fd < 0) return -errno; retval = read(fd, &c, 1); close(fd); if (retval < 0) return -errno; if (retval == 0) return -EIO; switch (c) { case '0' : return 0; case '1' : return 1; case '2' : return 2; default: return -EINVAL; } } static sigjmp_buf huge_jmpenv; static void huge_sigbus_handler(int signo __rte_unused) { siglongjmp(huge_jmpenv, 1); } /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile, * non-static local variable in the stack frame calling sigsetjmp might be * clobbered by a call to longjmp. */ static int huge_wrap_sigsetjmp(void) { return sigsetjmp(huge_jmpenv, 1); } #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES /* Callback for numa library. */ void numa_error(char *where) { RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno)); } #endif /* * Mmap all hugepages of hugepage table: it first open a file in * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to * map contiguous physical blocks in contiguous virtual blocks. */ static unsigned map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, uint64_t *essential_memory __rte_unused) { int fd; unsigned i; void *virtaddr; #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES int node_id = -1; int essential_prev = 0; int oldpolicy; struct bitmask *oldmask = NULL; bool have_numa = true; unsigned long maxnode = 0; /* Check if kernel supports NUMA. */ if (numa_available() != 0) { RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n"); have_numa = false; } if (have_numa) { RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n"); oldmask = numa_allocate_nodemask(); if (get_mempolicy(&oldpolicy, oldmask->maskp, oldmask->size + 1, 0, 0) < 0) { RTE_LOG(ERR, EAL, "Failed to get current mempolicy: %s. " "Assuming MPOL_DEFAULT.\n", strerror(errno)); oldpolicy = MPOL_DEFAULT; } for (i = 0; i < RTE_MAX_NUMA_NODES; i++) if (internal_config.socket_mem[i]) maxnode = i + 1; } #endif for (i = 0; i < hpi->num_pages[0]; i++) { struct hugepage_file *hf = &hugepg_tbl[i]; uint64_t hugepage_sz = hpi->hugepage_sz; #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES if (maxnode) { unsigned int j; for (j = 0; j < maxnode; j++) if (essential_memory[j]) break; if (j == maxnode) { node_id = (node_id + 1) % maxnode; while (!internal_config.socket_mem[node_id]) { node_id++; node_id %= maxnode; } essential_prev = 0; } else { node_id = j; essential_prev = essential_memory[j]; if (essential_memory[j] < hugepage_sz) essential_memory[j] = 0; else essential_memory[j] -= hugepage_sz; } RTE_LOG(DEBUG, EAL, "Setting policy MPOL_PREFERRED for socket %d\n", node_id); numa_set_preferred(node_id); } #endif hf->file_id = i; hf->size = hugepage_sz; eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath), hpi->hugedir, hf->file_id); hf->filepath[sizeof(hf->filepath) - 1] = '\0'; /* try to create hugepage file */ fd = open(hf->filepath, O_CREAT | O_RDWR, 0600); if (fd < 0) { RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); goto out; } /* map the segment, and populate page tables, * the kernel fills this segment with zeros. we don't care where * this gets mapped - we already have contiguous memory areas * ready for us to map into. */ virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd, 0); if (virtaddr == MAP_FAILED) { RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); close(fd); goto out; } hf->orig_va = virtaddr; /* In linux, hugetlb limitations, like cgroup, are * enforced at fault time instead of mmap(), even * with the option of MAP_POPULATE. Kernel will send * a SIGBUS signal. To avoid to be killed, save stack * environment here, if SIGBUS happens, we can jump * back here. */ if (huge_wrap_sigsetjmp()) { RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more " "hugepages of size %u MB\n", (unsigned int)(hugepage_sz / 0x100000)); munmap(virtaddr, hugepage_sz); close(fd); unlink(hugepg_tbl[i].filepath); #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES if (maxnode) essential_memory[node_id] = essential_prev; #endif goto out; } *(int *)virtaddr = 0; /* set shared lock on the file. */ if (flock(fd, LOCK_SH) < 0) { RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n", __func__, strerror(errno)); close(fd); goto out; } close(fd); } out: #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES if (maxnode) { RTE_LOG(DEBUG, EAL, "Restoring previous memory policy: %d\n", oldpolicy); if (oldpolicy == MPOL_DEFAULT) { numa_set_localalloc(); } else if (set_mempolicy(oldpolicy, oldmask->maskp, oldmask->size + 1) < 0) { RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n", strerror(errno)); numa_set_localalloc(); } } if (oldmask != NULL) numa_free_cpumask(oldmask); #endif return i; } /* * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge * page. */ static int find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { int socket_id; char *end, *nodestr; unsigned i, hp_count = 0; uint64_t virt_addr; char buf[BUFSIZ]; char hugedir_str[PATH_MAX]; FILE *f; f = fopen("/proc/self/numa_maps", "r"); if (f == NULL) { RTE_LOG(NOTICE, EAL, "NUMA support not available" " consider that all memory is in socket_id 0\n"); return 0; } snprintf(hugedir_str, sizeof(hugedir_str), "%s/%s", hpi->hugedir, eal_get_hugefile_prefix()); /* parse numa map */ while (fgets(buf, sizeof(buf), f) != NULL) { /* ignore non huge page */ if (strstr(buf, " huge ") == NULL && strstr(buf, hugedir_str) == NULL) continue; /* get zone addr */ virt_addr = strtoull(buf, &end, 16); if (virt_addr == 0 || end == buf) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } /* get node id (socket id) */ nodestr = strstr(buf, " N"); if (nodestr == NULL) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } nodestr += 2; end = strstr(nodestr, "="); if (end == NULL) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } end[0] = '\0'; end = NULL; socket_id = strtoul(nodestr, &end, 0); if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) { RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); goto error; } /* if we find this page in our mappings, set socket_id */ for (i = 0; i < hpi->num_pages[0]; i++) { void *va = (void *)(unsigned long)virt_addr; if (hugepg_tbl[i].orig_va == va) { hugepg_tbl[i].socket_id = socket_id; hp_count++; #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES RTE_LOG(DEBUG, EAL, "Hugepage %s is on socket %d\n", hugepg_tbl[i].filepath, socket_id); #endif } } } if (hp_count < hpi->num_pages[0]) goto error; fclose(f); return 0; error: fclose(f); return -1; } static int cmp_physaddr(const void *a, const void *b) { #ifndef RTE_ARCH_PPC_64 const struct hugepage_file *p1 = a; const struct hugepage_file *p2 = b; #else /* PowerPC needs memory sorted in reverse order from x86 */ const struct hugepage_file *p1 = b; const struct hugepage_file *p2 = a; #endif if (p1->physaddr < p2->physaddr) return -1; else if (p1->physaddr > p2->physaddr) return 1; else return 0; } /* * Uses mmap to create a shared memory area for storage of data * Used in this file to store the hugepage file map on disk */ static void * create_shared_memory(const char *filename, const size_t mem_size) { void *retval; int fd; /* if no shared files mode is used, create anonymous memory instead */ if (internal_config.no_shconf) { retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (retval == MAP_FAILED) return NULL; return retval; } fd = open(filename, O_CREAT | O_RDWR, 0600); if (fd < 0) return NULL; if (ftruncate(fd, mem_size) < 0) { close(fd); return NULL; } retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); close(fd); if (retval == MAP_FAILED) return NULL; return retval; } /* * this copies *active* hugepages from one hugepage table to another. * destination is typically the shared memory. */ static int copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size, const struct hugepage_file * src, int src_size) { int src_pos, dst_pos = 0; for (src_pos = 0; src_pos < src_size; src_pos++) { if (src[src_pos].orig_va != NULL) { /* error on overflow attempt */ if (dst_pos == dest_size) return -1; memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file)); dst_pos++; } } return 0; } static int unlink_hugepage_files(struct hugepage_file *hugepg_tbl, unsigned num_hp_info) { unsigned socket, size; int page, nrpages = 0; /* get total number of hugepages */ for (size = 0; size < num_hp_info; size++) for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) nrpages += internal_config.hugepage_info[size].num_pages[socket]; for (page = 0; page < nrpages; page++) { struct hugepage_file *hp = &hugepg_tbl[page]; if (hp->orig_va != NULL && unlink(hp->filepath)) { RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n", __func__, hp->filepath, strerror(errno)); } } return 0; } /* * unmaps hugepages that are not going to be used. since we originally allocate * ALL hugepages (not just those we need), additional unmapping needs to be done. */ static int unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, unsigned num_hp_info) { unsigned socket, size; int page, nrpages = 0; /* get total number of hugepages */ for (size = 0; size < num_hp_info; size++) for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) nrpages += internal_config.hugepage_info[size].num_pages[socket]; for (size = 0; size < num_hp_info; size++) { for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { unsigned pages_found = 0; /* traverse until we have unmapped all the unused pages */ for (page = 0; page < nrpages; page++) { struct hugepage_file *hp = &hugepg_tbl[page]; /* find a page that matches the criteria */ if ((hp->size == hpi[size].hugepage_sz) && (hp->socket_id == (int) socket)) { /* if we skipped enough pages, unmap the rest */ if (pages_found == hpi[size].num_pages[socket]) { uint64_t unmap_len; unmap_len = hp->size; /* get start addr and len of the remaining segment */ munmap(hp->orig_va, (size_t)unmap_len); hp->orig_va = NULL; if (unlink(hp->filepath) == -1) { RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n", __func__, hp->filepath, strerror(errno)); return -1; } } else { /* lock the page and skip */ pages_found++; } } /* match page */ } /* foreach page */ } /* foreach socket */ } /* foreach pagesize */ return 0; } static int remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct rte_memseg_list *msl; struct rte_fbarray *arr; int cur_page, seg_len; unsigned int msl_idx; int ms_idx; uint64_t page_sz; size_t memseg_len; int socket_id; page_sz = hugepages[seg_start].size; socket_id = hugepages[seg_start].socket_id; seg_len = seg_end - seg_start; RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n", (seg_len * page_sz) >> 20ULL, socket_id); /* find free space in memseg lists */ for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { bool empty; msl = &mcfg->memsegs[msl_idx]; arr = &msl->memseg_arr; if (msl->page_sz != page_sz) continue; if (msl->socket_id != socket_id) continue; /* leave space for a hole if array is not empty */ empty = arr->count == 0; ms_idx = rte_fbarray_find_next_n_free(arr, 0, seg_len + (empty ? 0 : 1)); /* memseg list is full? */ if (ms_idx < 0) continue; /* leave some space between memsegs, they are not IOVA * contiguous, so they shouldn't be VA contiguous either. */ if (!empty) ms_idx++; break; } if (msl_idx == RTE_MAX_MEMSEG_LISTS) { RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n", RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE), RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE)); return -1; } #ifdef RTE_ARCH_PPC64 /* for PPC64 we go through the list backwards */ for (cur_page = seg_end - 1; cur_page >= seg_start; cur_page--, ms_idx++) { #else for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) { #endif struct hugepage_file *hfile = &hugepages[cur_page]; struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx); void *addr; int fd; fd = open(hfile->filepath, O_RDWR); if (fd < 0) { RTE_LOG(ERR, EAL, "Could not open '%s': %s\n", hfile->filepath, strerror(errno)); return -1; } /* set shared lock on the file. */ if (flock(fd, LOCK_SH) < 0) { RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n", hfile->filepath, strerror(errno)); close(fd); return -1; } memseg_len = (size_t)page_sz; addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len); /* we know this address is already mmapped by memseg list, so * using MAP_FIXED here is safe */ addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0); if (addr == MAP_FAILED) { RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n", hfile->filepath, strerror(errno)); close(fd); return -1; } /* we have a new address, so unmap previous one */ #ifndef RTE_ARCH_64 /* in 32-bit legacy mode, we have already unmapped the page */ if (!internal_config.legacy_mem) munmap(hfile->orig_va, page_sz); #else munmap(hfile->orig_va, page_sz); #endif hfile->orig_va = NULL; hfile->final_va = addr; /* rewrite physical addresses in IOVA as VA mode */ if (rte_eal_iova_mode() == RTE_IOVA_VA) hfile->physaddr = (uintptr_t)addr; /* set up memseg data */ ms->addr = addr; ms->hugepage_sz = page_sz; ms->len = memseg_len; ms->iova = hfile->physaddr; ms->socket_id = hfile->socket_id; ms->nchannel = rte_memory_get_nchannel(); ms->nrank = rte_memory_get_nrank(); rte_fbarray_set_used(arr, ms_idx); /* store segment fd internally */ if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0) RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n", rte_strerror(rte_errno)); } RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n", (seg_len * page_sz) >> 20, socket_id); return 0; } static uint64_t get_mem_amount(uint64_t page_sz, uint64_t max_mem) { uint64_t area_sz, max_pages; /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */ max_pages = RTE_MAX_MEMSEG_PER_LIST; max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem); area_sz = RTE_MIN(page_sz * max_pages, max_mem); /* make sure the list isn't smaller than the page size */ area_sz = RTE_MAX(area_sz, page_sz); return RTE_ALIGN(area_sz, page_sz); } static int free_memseg_list(struct rte_memseg_list *msl) { if (rte_fbarray_destroy(&msl->memseg_arr)) { RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n"); return -1; } memset(msl, 0, sizeof(*msl)); return 0; } #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i" static int alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz, int n_segs, int socket_id, int type_msl_idx) { char name[RTE_FBARRAY_NAME_LEN]; snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id, type_msl_idx); if (rte_fbarray_init(&msl->memseg_arr, name, n_segs, sizeof(struct rte_memseg))) { RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n", rte_strerror(rte_errno)); return -1; } msl->page_sz = page_sz; msl->socket_id = socket_id; msl->base_va = NULL; RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n", (size_t)page_sz >> 10, socket_id); return 0; } static int alloc_va_space(struct rte_memseg_list *msl) { uint64_t page_sz; size_t mem_sz; void *addr; int flags = 0; page_sz = msl->page_sz; mem_sz = page_sz * msl->memseg_arr.len; addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags); if (addr == NULL) { if (rte_errno == EADDRNOTAVAIL) RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n", (unsigned long long)mem_sz, msl->base_va); else RTE_LOG(ERR, EAL, "Cannot reserve memory\n"); return -1; } msl->base_va = addr; msl->len = mem_sz; return 0; } /* * Our VA space is not preallocated yet, so preallocate it here. We need to know * how many segments there are in order to map all pages into one address space, * and leave appropriate holes between segments so that rte_malloc does not * concatenate them into one big segment. * * we also need to unmap original pages to free up address space. */ static int __rte_unused prealloc_segments(struct hugepage_file *hugepages, int n_pages) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int cur_page, seg_start_page, end_seg, new_memseg; unsigned int hpi_idx, socket, i; int n_contig_segs, n_segs; int msl_idx; /* before we preallocate segments, we need to free up our VA space. * we're not removing files, and we already have information about * PA-contiguousness, so it is safe to unmap everything. */ for (cur_page = 0; cur_page < n_pages; cur_page++) { struct hugepage_file *hpi = &hugepages[cur_page]; munmap(hpi->orig_va, hpi->size); hpi->orig_va = NULL; } /* we cannot know how many page sizes and sockets we have discovered, so * loop over all of them */ for (hpi_idx = 0; hpi_idx < internal_config.num_hugepage_sizes; hpi_idx++) { uint64_t page_sz = internal_config.hugepage_info[hpi_idx].hugepage_sz; for (i = 0; i < rte_socket_count(); i++) { struct rte_memseg_list *msl; socket = rte_socket_id_by_idx(i); n_contig_segs = 0; n_segs = 0; seg_start_page = -1; for (cur_page = 0; cur_page < n_pages; cur_page++) { struct hugepage_file *prev, *cur; int prev_seg_start_page = -1; cur = &hugepages[cur_page]; prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1]; new_memseg = 0; end_seg = 0; if (cur->size == 0) end_seg = 1; else if (cur->socket_id != (int) socket) end_seg = 1; else if (cur->size != page_sz) end_seg = 1; else if (cur_page == 0) new_memseg = 1; #ifdef RTE_ARCH_PPC_64 /* On PPC64 architecture, the mmap always start * from higher address to lower address. Here, * physical addresses are in descending order. */ else if ((prev->physaddr - cur->physaddr) != cur->size) new_memseg = 1; #else else if ((cur->physaddr - prev->physaddr) != cur->size) new_memseg = 1; #endif if (new_memseg) { /* if we're already inside a segment, * new segment means end of current one */ if (seg_start_page != -1) { end_seg = 1; prev_seg_start_page = seg_start_page; } seg_start_page = cur_page; } if (end_seg) { if (prev_seg_start_page != -1) { /* we've found a new segment */ n_contig_segs++; n_segs += cur_page - prev_seg_start_page; } else if (seg_start_page != -1) { /* we didn't find new segment, * but did end current one */ n_contig_segs++; n_segs += cur_page - seg_start_page; seg_start_page = -1; continue; } else { /* we're skipping this page */ continue; } } /* segment continues */ } /* check if we missed last segment */ if (seg_start_page != -1) { n_contig_segs++; n_segs += cur_page - seg_start_page; } /* if no segments were found, do not preallocate */ if (n_segs == 0) continue; /* we now have total number of pages that we will * allocate for this segment list. add separator pages * to the total count, and preallocate VA space. */ n_segs += n_contig_segs - 1; /* now, preallocate VA space for these segments */ /* first, find suitable memseg list for this */ for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { msl = &mcfg->memsegs[msl_idx]; if (msl->base_va != NULL) continue; break; } if (msl_idx == RTE_MAX_MEMSEG_LISTS) { RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n", RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS)); return -1; } /* now, allocate fbarray itself */ if (alloc_memseg_list(msl, page_sz, n_segs, socket, msl_idx) < 0) return -1; /* finally, allocate VA space */ if (alloc_va_space(msl) < 0) return -1; } } return 0; } /* * We cannot reallocate memseg lists on the fly because PPC64 stores pages * backwards, therefore we have to process the entire memseg first before * remapping it into memseg list VA space. */ static int remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages) { int cur_page, seg_start_page, new_memseg, ret; seg_start_page = 0; for (cur_page = 0; cur_page < n_pages; cur_page++) { struct hugepage_file *prev, *cur; new_memseg = 0; cur = &hugepages[cur_page]; prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1]; /* if size is zero, no more pages left */ if (cur->size == 0) break; if (cur_page == 0) new_memseg = 1; else if (cur->socket_id != prev->socket_id) new_memseg = 1; else if (cur->size != prev->size) new_memseg = 1; #ifdef RTE_ARCH_PPC_64 /* On PPC64 architecture, the mmap always start from higher * address to lower address. Here, physical addresses are in * descending order. */ else if ((prev->physaddr - cur->physaddr) != cur->size) new_memseg = 1; #else else if ((cur->physaddr - prev->physaddr) != cur->size) new_memseg = 1; #endif if (new_memseg) { /* if this isn't the first time, remap segment */ if (cur_page != 0) { ret = remap_segment(hugepages, seg_start_page, cur_page); if (ret != 0) return -1; } /* remember where we started */ seg_start_page = cur_page; } /* continuation of previous memseg */ } /* we were stopped, but we didn't remap the last segment, do it now */ if (cur_page != 0) { ret = remap_segment(hugepages, seg_start_page, cur_page); if (ret != 0) return -1; } return 0; } __rte_unused /* function is unused on 32-bit builds */ static inline uint64_t get_socket_mem_size(int socket) { uint64_t size = 0; unsigned i; for (i = 0; i < internal_config.num_hugepage_sizes; i++){ struct hugepage_info *hpi = &internal_config.hugepage_info[i]; size += hpi->hugepage_sz * hpi->num_pages[socket]; } return size; } /* * This function is a NUMA-aware equivalent of calc_num_pages. * It takes in the list of hugepage sizes and the * number of pages thereof, and calculates the best number of * pages of each size to fulfill the request for ram */ static int calc_num_pages_per_socket(uint64_t * memory, struct hugepage_info *hp_info, struct hugepage_info *hp_used, unsigned num_hp_info) { unsigned socket, j, i = 0; unsigned requested, available; int total_num_pages = 0; uint64_t remaining_mem, cur_mem; uint64_t total_mem = internal_config.memory; if (num_hp_info == 0) return -1; /* if specific memory amounts per socket weren't requested */ if (internal_config.force_sockets == 0) { size_t total_size; #ifdef RTE_ARCH_64 int cpu_per_socket[RTE_MAX_NUMA_NODES]; size_t default_size; unsigned lcore_id; /* Compute number of cores per socket */ memset(cpu_per_socket, 0, sizeof(cpu_per_socket)); RTE_LCORE_FOREACH(lcore_id) { cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++; } /* * Automatically spread requested memory amongst detected sockets according * to number of cores from cpu mask present on each socket */ total_size = internal_config.memory; for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { /* Set memory amount per socket */ default_size = (internal_config.memory * cpu_per_socket[socket]) / rte_lcore_count(); /* Limit to maximum available memory on socket */ default_size = RTE_MIN(default_size, get_socket_mem_size(socket)); /* Update sizes */ memory[socket] = default_size; total_size -= default_size; } /* * If some memory is remaining, try to allocate it by getting all * available memory from sockets, one after the other */ for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { /* take whatever is available */ default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket], total_size); /* Update sizes */ memory[socket] += default_size; total_size -= default_size; } #else /* in 32-bit mode, allocate all of the memory only on master * lcore socket */ total_size = internal_config.memory; for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { struct rte_config *cfg = rte_eal_get_configuration(); unsigned int master_lcore_socket; master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore); if (master_lcore_socket != socket) continue; /* Update sizes */ memory[socket] = total_size; break; } #endif } for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { /* skips if the memory on specific socket wasn't requested */ for (i = 0; i < num_hp_info && memory[socket] != 0; i++){ strlcpy(hp_used[i].hugedir, hp_info[i].hugedir, sizeof(hp_used[i].hugedir)); hp_used[i].num_pages[socket] = RTE_MIN( memory[socket] / hp_info[i].hugepage_sz, hp_info[i].num_pages[socket]); cur_mem = hp_used[i].num_pages[socket] * hp_used[i].hugepage_sz; memory[socket] -= cur_mem; total_mem -= cur_mem; total_num_pages += hp_used[i].num_pages[socket]; /* check if we have met all memory requests */ if (memory[socket] == 0) break; /* check if we have any more pages left at this size, if so * move on to next size */ if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket]) continue; /* At this point we know that there are more pages available that are * bigger than the memory we want, so lets see if we can get enough * from other page sizes. */ remaining_mem = 0; for (j = i+1; j < num_hp_info; j++) remaining_mem += hp_info[j].hugepage_sz * hp_info[j].num_pages[socket]; /* is there enough other memory, if not allocate another page and quit */ if (remaining_mem < memory[socket]){ cur_mem = RTE_MIN(memory[socket], hp_info[i].hugepage_sz); memory[socket] -= cur_mem; total_mem -= cur_mem; hp_used[i].num_pages[socket]++; total_num_pages++; break; /* we are done with this socket*/ } } /* if we didn't satisfy all memory requirements per socket */ if (memory[socket] > 0 && internal_config.socket_mem[socket] != 0) { /* to prevent icc errors */ requested = (unsigned) (internal_config.socket_mem[socket] / 0x100000); available = requested - ((unsigned) (memory[socket] / 0x100000)); RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! " "Requested: %uMB, available: %uMB\n", socket, requested, available); return -1; } } /* if we didn't satisfy total memory requirements */ if (total_mem > 0) { requested = (unsigned) (internal_config.memory / 0x100000); available = requested - (unsigned) (total_mem / 0x100000); RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB," " available: %uMB\n", requested, available); return -1; } return total_num_pages; } static inline size_t eal_get_hugepage_mem_size(void) { uint64_t size = 0; unsigned i, j; for (i = 0; i < internal_config.num_hugepage_sizes; i++) { struct hugepage_info *hpi = &internal_config.hugepage_info[i]; if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) { for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { size += hpi->hugepage_sz * hpi->num_pages[j]; } } } return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX; } static struct sigaction huge_action_old; static int huge_need_recover; static void huge_register_sigbus(void) { sigset_t mask; struct sigaction action; sigemptyset(&mask); sigaddset(&mask, SIGBUS); action.sa_flags = 0; action.sa_mask = mask; action.sa_handler = huge_sigbus_handler; huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old); } static void huge_recover_sigbus(void) { if (huge_need_recover) { sigaction(SIGBUS, &huge_action_old, NULL); huge_need_recover = 0; } } /* * Prepare physical memory mapping: fill configuration structure with * these infos, return 0 on success. * 1. map N huge pages in separate files in hugetlbfs * 2. find associated physical addr * 3. find associated NUMA socket ID * 4. sort all huge pages by physical address * 5. remap these N huge pages in the correct order * 6. unmap the first mapping * 7. fill memsegs in configuration with contiguous zones */ static int eal_legacy_hugepage_init(void) { struct rte_mem_config *mcfg; struct hugepage_file *hugepage = NULL, *tmp_hp = NULL; struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; struct rte_fbarray *arr; struct rte_memseg *ms; uint64_t memory[RTE_MAX_NUMA_NODES]; unsigned hp_offset; int i, j; int nr_hugefiles, nr_hugepages = 0; void *addr; test_phys_addrs_available(); memset(used_hp, 0, sizeof(used_hp)); /* get pointer to global configuration */ mcfg = rte_eal_get_configuration()->mem_config; /* hugetlbfs can be disabled */ if (internal_config.no_hugetlbfs) { struct rte_memseg_list *msl; uint64_t page_sz; int n_segs, cur_seg; /* nohuge mode is legacy mode */ internal_config.legacy_mem = 1; /* create a memseg list */ msl = &mcfg->memsegs[0]; page_sz = RTE_PGSIZE_4K; n_segs = internal_config.memory / page_sz; if (rte_fbarray_init(&msl->memseg_arr, "nohugemem", n_segs, sizeof(struct rte_memseg))) { RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n"); return -1; } addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (addr == MAP_FAILED) { RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__, strerror(errno)); return -1; } msl->base_va = addr; msl->page_sz = page_sz; msl->socket_id = 0; msl->len = internal_config.memory; /* populate memsegs. each memseg is one page long */ for (cur_seg = 0; cur_seg < n_segs; cur_seg++) { arr = &msl->memseg_arr; ms = rte_fbarray_get(arr, cur_seg); if (rte_eal_iova_mode() == RTE_IOVA_VA) ms->iova = (uintptr_t)addr; else ms->iova = RTE_BAD_IOVA; ms->addr = addr; ms->hugepage_sz = page_sz; ms->socket_id = 0; ms->len = page_sz; rte_fbarray_set_used(arr, cur_seg); addr = RTE_PTR_ADD(addr, (size_t)page_sz); } if (mcfg->dma_maskbits && rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { RTE_LOG(ERR, EAL, "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n", __func__); if (rte_eal_iova_mode() == RTE_IOVA_VA && rte_eal_using_phys_addrs()) RTE_LOG(ERR, EAL, "%s(): Please try initializing EAL with --iova-mode=pa parameter.\n", __func__); goto fail; } return 0; } /* calculate total number of hugepages available. at this point we haven't * yet started sorting them so they all are on socket 0 */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz; nr_hugepages += internal_config.hugepage_info[i].num_pages[0]; } /* * allocate a memory area for hugepage table. * this isn't shared memory yet. due to the fact that we need some * processing done on these pages, shared memory will be created * at a later stage. */ tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file)); if (tmp_hp == NULL) goto fail; memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file)); hp_offset = 0; /* where we start the current page size entries */ huge_register_sigbus(); /* make a copy of socket_mem, needed for balanced allocation. */ for (i = 0; i < RTE_MAX_NUMA_NODES; i++) memory[i] = internal_config.socket_mem[i]; /* map all hugepages and sort them */ for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){ unsigned pages_old, pages_new; struct hugepage_info *hpi; /* * we don't yet mark hugepages as used at this stage, so * we just map all hugepages available to the system * all hugepages are still located on socket 0 */ hpi = &internal_config.hugepage_info[i]; if (hpi->num_pages[0] == 0) continue; /* map all hugepages available */ pages_old = hpi->num_pages[0]; pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory); if (pages_new < pages_old) { RTE_LOG(DEBUG, EAL, "%d not %d hugepages of size %u MB allocated\n", pages_new, pages_old, (unsigned)(hpi->hugepage_sz / 0x100000)); int pages = pages_old - pages_new; nr_hugepages -= pages; hpi->num_pages[0] = pages_new; if (pages_new == 0) continue; } if (phys_addrs_available && rte_eal_iova_mode() != RTE_IOVA_VA) { /* find physical addresses for each hugepage */ if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { RTE_LOG(DEBUG, EAL, "Failed to find phys addr " "for %u MB pages\n", (unsigned int)(hpi->hugepage_sz / 0x100000)); goto fail; } } else { /* set physical addresses for each hugepage */ if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { RTE_LOG(DEBUG, EAL, "Failed to set phys addr " "for %u MB pages\n", (unsigned int)(hpi->hugepage_sz / 0x100000)); goto fail; } } if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } qsort(&tmp_hp[hp_offset], hpi->num_pages[0], sizeof(struct hugepage_file), cmp_physaddr); /* we have processed a num of hugepages of this size, so inc offset */ hp_offset += hpi->num_pages[0]; } huge_recover_sigbus(); if (internal_config.memory == 0 && internal_config.force_sockets == 0) internal_config.memory = eal_get_hugepage_mem_size(); nr_hugefiles = nr_hugepages; /* clean out the numbers of pages */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) for (j = 0; j < RTE_MAX_NUMA_NODES; j++) internal_config.hugepage_info[i].num_pages[j] = 0; /* get hugepages for each socket */ for (i = 0; i < nr_hugefiles; i++) { int socket = tmp_hp[i].socket_id; /* find a hugepage info with right size and increment num_pages */ const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES, (int)internal_config.num_hugepage_sizes); for (j = 0; j < nb_hpsizes; j++) { if (tmp_hp[i].size == internal_config.hugepage_info[j].hugepage_sz) { internal_config.hugepage_info[j].num_pages[socket]++; } } } /* make a copy of socket_mem, needed for number of pages calculation */ for (i = 0; i < RTE_MAX_NUMA_NODES; i++) memory[i] = internal_config.socket_mem[i]; /* calculate final number of pages */ nr_hugepages = calc_num_pages_per_socket(memory, internal_config.hugepage_info, used_hp, internal_config.num_hugepage_sizes); /* error if not enough memory available */ if (nr_hugepages < 0) goto fail; /* reporting in! */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { if (used_hp[i].num_pages[j] > 0) { RTE_LOG(DEBUG, EAL, "Requesting %u pages of size %uMB" " from socket %i\n", used_hp[i].num_pages[j], (unsigned) (used_hp[i].hugepage_sz / 0x100000), j); } } } /* create shared memory */ hugepage = create_shared_memory(eal_hugepage_data_path(), nr_hugefiles * sizeof(struct hugepage_file)); if (hugepage == NULL) { RTE_LOG(ERR, EAL, "Failed to create shared memory!\n"); goto fail; } memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file)); /* * unmap pages that we won't need (looks at used_hp). * also, sets final_va to NULL on pages that were unmapped. */ if (unmap_unneeded_hugepages(tmp_hp, used_hp, internal_config.num_hugepage_sizes) < 0) { RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n"); goto fail; } /* * copy stuff from malloc'd hugepage* to the actual shared memory. * this procedure only copies those hugepages that have orig_va * not NULL. has overflow protection. */ if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles, tmp_hp, nr_hugefiles) < 0) { RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n"); goto fail; } #ifndef RTE_ARCH_64 /* for legacy 32-bit mode, we did not preallocate VA space, so do it */ if (internal_config.legacy_mem && prealloc_segments(hugepage, nr_hugefiles)) { RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n"); goto fail; } #endif /* remap all pages we do need into memseg list VA space, so that those * pages become first-class citizens in DPDK memory subsystem */ if (remap_needed_hugepages(hugepage, nr_hugefiles)) { RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n"); goto fail; } /* free the hugepage backing files */ if (internal_config.hugepage_unlink && unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) { RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n"); goto fail; } /* free the temporary hugepage table */ free(tmp_hp); tmp_hp = NULL; munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); hugepage = NULL; /* we're not going to allocate more pages, so release VA space for * unused memseg lists */ for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { struct rte_memseg_list *msl = &mcfg->memsegs[i]; size_t mem_sz; /* skip inactive lists */ if (msl->base_va == NULL) continue; /* skip lists where there is at least one page allocated */ if (msl->memseg_arr.count > 0) continue; /* this is an unused list, deallocate it */ mem_sz = msl->len; munmap(msl->base_va, mem_sz); msl->base_va = NULL; /* destroy backing fbarray */ rte_fbarray_destroy(&msl->memseg_arr); } if (mcfg->dma_maskbits && rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { RTE_LOG(ERR, EAL, "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n", __func__); goto fail; } return 0; fail: huge_recover_sigbus(); free(tmp_hp); if (hugepage != NULL) munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); return -1; } static int __rte_unused hugepage_count_walk(const struct rte_memseg_list *msl, void *arg) { struct hugepage_info *hpi = arg; if (msl->page_sz != hpi->hugepage_sz) return 0; hpi->num_pages[msl->socket_id] += msl->memseg_arr.len; return 0; } static int limits_callback(int socket_id, size_t cur_limit, size_t new_len) { RTE_SET_USED(socket_id); RTE_SET_USED(cur_limit); RTE_SET_USED(new_len); return -1; } static int eal_hugepage_init(void) { struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; uint64_t memory[RTE_MAX_NUMA_NODES]; int hp_sz_idx, socket_id; test_phys_addrs_available(); memset(used_hp, 0, sizeof(used_hp)); for (hp_sz_idx = 0; hp_sz_idx < (int) internal_config.num_hugepage_sizes; hp_sz_idx++) { #ifndef RTE_ARCH_64 struct hugepage_info dummy; unsigned int i; #endif /* also initialize used_hp hugepage sizes in used_hp */ struct hugepage_info *hpi; hpi = &internal_config.hugepage_info[hp_sz_idx]; used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz; #ifndef RTE_ARCH_64 /* for 32-bit, limit number of pages on socket to whatever we've * preallocated, as we cannot allocate more. */ memset(&dummy, 0, sizeof(dummy)); dummy.hugepage_sz = hpi->hugepage_sz; if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0) return -1; for (i = 0; i < RTE_DIM(dummy.num_pages); i++) { hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i], dummy.num_pages[i]); } #endif } /* make a copy of socket_mem, needed for balanced allocation. */ for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++) memory[hp_sz_idx] = internal_config.socket_mem[hp_sz_idx]; /* calculate final number of pages */ if (calc_num_pages_per_socket(memory, internal_config.hugepage_info, used_hp, internal_config.num_hugepage_sizes) < 0) return -1; for (hp_sz_idx = 0; hp_sz_idx < (int)internal_config.num_hugepage_sizes; hp_sz_idx++) { for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++) { struct rte_memseg **pages; struct hugepage_info *hpi = &used_hp[hp_sz_idx]; unsigned int num_pages = hpi->num_pages[socket_id]; int num_pages_alloc, i; if (num_pages == 0) continue; pages = malloc(sizeof(*pages) * num_pages); RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M on socket %i\n", num_pages, hpi->hugepage_sz >> 20, socket_id); num_pages_alloc = eal_memalloc_alloc_seg_bulk(pages, num_pages, hpi->hugepage_sz, socket_id, true); if (num_pages_alloc < 0) { free(pages); return -1; } /* mark preallocated pages as unfreeable */ for (i = 0; i < num_pages_alloc; i++) { struct rte_memseg *ms = pages[i]; ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; } free(pages); } } /* if socket limits were specified, set them */ if (internal_config.force_socket_limits) { unsigned int i; for (i = 0; i < RTE_MAX_NUMA_NODES; i++) { uint64_t limit = internal_config.socket_limit[i]; if (limit == 0) continue; if (rte_mem_alloc_validator_register("socket-limit", limits_callback, i, limit)) RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n"); } } return 0; } /* * uses fstat to report the size of a file on disk */ static off_t getFileSize(int fd) { struct stat st; if (fstat(fd, &st) < 0) return 0; return st.st_size; } /* * This creates the memory mappings in the secondary process to match that of * the server process. It goes through each memory segment in the DPDK runtime * configuration and finds the hugepages which form that segment, mapping them * in order to form a contiguous block in the virtual memory space */ static int eal_legacy_hugepage_attach(void) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct hugepage_file *hp = NULL; unsigned int num_hp = 0; unsigned int i = 0; unsigned int cur_seg; off_t size = 0; int fd, fd_hugepage = -1; if (aslr_enabled() > 0) { RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization " "(ASLR) is enabled in the kernel.\n"); RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory " "into secondary processes\n"); } test_phys_addrs_available(); fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY); if (fd_hugepage < 0) { RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_data_path()); goto error; } size = getFileSize(fd_hugepage); hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); if (hp == MAP_FAILED) { RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_data_path()); goto error; } num_hp = size / sizeof(struct hugepage_file); RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp); /* map all segments into memory to make sure we get the addrs. the * segments themselves are already in memseg list (which is shared and * has its VA space already preallocated), so we just need to map * everything into correct addresses. */ for (i = 0; i < num_hp; i++) { struct hugepage_file *hf = &hp[i]; size_t map_sz = hf->size; void *map_addr = hf->final_va; int msl_idx, ms_idx; struct rte_memseg_list *msl; struct rte_memseg *ms; /* if size is zero, no more pages left */ if (map_sz == 0) break; fd = open(hf->filepath, O_RDWR); if (fd < 0) { RTE_LOG(ERR, EAL, "Could not open %s: %s\n", hf->filepath, strerror(errno)); goto error; } map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, fd, 0); if (map_addr == MAP_FAILED) { RTE_LOG(ERR, EAL, "Could not map %s: %s\n", hf->filepath, strerror(errno)); goto fd_error; } /* set shared lock on the file. */ if (flock(fd, LOCK_SH) < 0) { RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n", __func__, strerror(errno)); goto fd_error; } /* find segment data */ msl = rte_mem_virt2memseg_list(map_addr); if (msl == NULL) { RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n", __func__); goto fd_error; } ms = rte_mem_virt2memseg(map_addr, msl); if (ms == NULL) { RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n", __func__); goto fd_error; } msl_idx = msl - mcfg->memsegs; ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); if (ms_idx < 0) { RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n", __func__); goto fd_error; } /* store segment fd internally */ if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0) RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n", rte_strerror(rte_errno)); } /* unmap the hugepage config file, since we are done using it */ munmap(hp, size); close(fd_hugepage); return 0; fd_error: close(fd); error: /* map all segments into memory to make sure we get the addrs */ cur_seg = 0; for (cur_seg = 0; cur_seg < i; cur_seg++) { struct hugepage_file *hf = &hp[i]; size_t map_sz = hf->size; void *map_addr = hf->final_va; munmap(map_addr, map_sz); } if (hp != NULL && hp != MAP_FAILED) munmap(hp, size); if (fd_hugepage >= 0) close(fd_hugepage); return -1; } static int eal_hugepage_attach(void) { if (eal_memalloc_sync_with_primary()) { RTE_LOG(ERR, EAL, "Could not map memory from primary process\n"); if (aslr_enabled() > 0) RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n"); return -1; } return 0; } int rte_eal_hugepage_init(void) { return internal_config.legacy_mem ? eal_legacy_hugepage_init() : eal_hugepage_init(); } int rte_eal_hugepage_attach(void) { return internal_config.legacy_mem ? eal_legacy_hugepage_attach() : eal_hugepage_attach(); } int rte_eal_using_phys_addrs(void) { return phys_addrs_available; } static int __rte_unused memseg_primary_init_32(void) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int active_sockets, hpi_idx, msl_idx = 0; unsigned int socket_id, i; struct rte_memseg_list *msl; uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem; uint64_t max_mem; /* no-huge does not need this at all */ if (internal_config.no_hugetlbfs) return 0; /* this is a giant hack, but desperate times call for desperate * measures. in legacy 32-bit mode, we cannot preallocate VA space, * because having upwards of 2 gigabytes of VA space already mapped will * interfere with our ability to map and sort hugepages. * * therefore, in legacy 32-bit mode, we will be initializing memseg * lists much later - in eal_memory.c, right after we unmap all the * unneeded pages. this will not affect secondary processes, as those * should be able to mmap the space without (too many) problems. */ if (internal_config.legacy_mem) return 0; /* 32-bit mode is a very special case. we cannot know in advance where * the user will want to allocate their memory, so we have to do some * heuristics. */ active_sockets = 0; total_requested_mem = 0; if (internal_config.force_sockets) for (i = 0; i < rte_socket_count(); i++) { uint64_t mem; socket_id = rte_socket_id_by_idx(i); mem = internal_config.socket_mem[socket_id]; if (mem == 0) continue; active_sockets++; total_requested_mem += mem; } else total_requested_mem = internal_config.memory; max_mem = (uint64_t)RTE_MAX_MEM_MB << 20; if (total_requested_mem > max_mem) { RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n", (unsigned int)(max_mem >> 20)); return -1; } total_extra_mem = max_mem - total_requested_mem; extra_mem_per_socket = active_sockets == 0 ? total_extra_mem : total_extra_mem / active_sockets; /* the allocation logic is a little bit convoluted, but here's how it * works, in a nutshell: * - if user hasn't specified on which sockets to allocate memory via * --socket-mem, we allocate all of our memory on master core socket. * - if user has specified sockets to allocate memory on, there may be * some "unused" memory left (e.g. if user has specified --socket-mem * such that not all memory adds up to 2 gigabytes), so add it to all * sockets that are in use equally. * * page sizes are sorted by size in descending order, so we can safely * assume that we dispense with bigger page sizes first. */ /* create memseg lists */ for (i = 0; i < rte_socket_count(); i++) { int hp_sizes = (int) internal_config.num_hugepage_sizes; uint64_t max_socket_mem, cur_socket_mem; unsigned int master_lcore_socket; struct rte_config *cfg = rte_eal_get_configuration(); bool skip; socket_id = rte_socket_id_by_idx(i); #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES /* we can still sort pages by socket in legacy mode */ if (!internal_config.legacy_mem && socket_id > 0) break; #endif /* if we didn't specifically request memory on this socket */ skip = active_sockets != 0 && internal_config.socket_mem[socket_id] == 0; /* ...or if we didn't specifically request memory on *any* * socket, and this is not master lcore */ master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore); skip |= active_sockets == 0 && socket_id != master_lcore_socket; if (skip) { RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n", socket_id); continue; } /* max amount of memory on this socket */ max_socket_mem = (active_sockets != 0 ? internal_config.socket_mem[socket_id] : internal_config.memory) + extra_mem_per_socket; cur_socket_mem = 0; for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) { uint64_t max_pagesz_mem, cur_pagesz_mem = 0; uint64_t hugepage_sz; struct hugepage_info *hpi; int type_msl_idx, max_segs, total_segs = 0; hpi = &internal_config.hugepage_info[hpi_idx]; hugepage_sz = hpi->hugepage_sz; /* check if pages are actually available */ if (hpi->num_pages[socket_id] == 0) continue; max_segs = RTE_MAX_MEMSEG_PER_TYPE; max_pagesz_mem = max_socket_mem - cur_socket_mem; /* make it multiple of page size */ max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem, hugepage_sz); RTE_LOG(DEBUG, EAL, "Attempting to preallocate " "%" PRIu64 "M on socket %i\n", max_pagesz_mem >> 20, socket_id); type_msl_idx = 0; while (cur_pagesz_mem < max_pagesz_mem && total_segs < max_segs) { uint64_t cur_mem; unsigned int n_segs; if (msl_idx >= RTE_MAX_MEMSEG_LISTS) { RTE_LOG(ERR, EAL, "No more space in memseg lists, please increase %s\n", RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS)); return -1; } msl = &mcfg->memsegs[msl_idx]; cur_mem = get_mem_amount(hugepage_sz, max_pagesz_mem); n_segs = cur_mem / hugepage_sz; if (alloc_memseg_list(msl, hugepage_sz, n_segs, socket_id, type_msl_idx)) { /* failing to allocate a memseg list is * a serious error. */ RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n"); return -1; } if (alloc_va_space(msl)) { /* if we couldn't allocate VA space, we * can try with smaller page sizes. */ RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n"); /* deallocate memseg list */ if (free_memseg_list(msl)) return -1; break; } total_segs += msl->memseg_arr.len; cur_pagesz_mem = total_segs * hugepage_sz; type_msl_idx++; msl_idx++; } cur_socket_mem += cur_pagesz_mem; } if (cur_socket_mem == 0) { RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n", socket_id); return -1; } } return 0; } static int __rte_unused memseg_primary_init(void) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct memtype { uint64_t page_sz; int socket_id; } *memtypes = NULL; int i, hpi_idx, msl_idx, ret = -1; /* fail unless told to succeed */ struct rte_memseg_list *msl; uint64_t max_mem, max_mem_per_type; unsigned int max_seglists_per_type; unsigned int n_memtypes, cur_type; /* no-huge does not need this at all */ if (internal_config.no_hugetlbfs) return 0; /* * figuring out amount of memory we're going to have is a long and very * involved process. the basic element we're operating with is a memory * type, defined as a combination of NUMA node ID and page size (so that * e.g. 2 sockets with 2 page sizes yield 4 memory types in total). * * deciding amount of memory going towards each memory type is a * balancing act between maximum segments per type, maximum memory per * type, and number of detected NUMA nodes. the goal is to make sure * each memory type gets at least one memseg list. * * the total amount of memory is limited by RTE_MAX_MEM_MB value. * * the total amount of memory per type is limited by either * RTE_MAX_MEM_MB_PER_TYPE, or by RTE_MAX_MEM_MB divided by the number * of detected NUMA nodes. additionally, maximum number of segments per * type is also limited by RTE_MAX_MEMSEG_PER_TYPE. this is because for * smaller page sizes, it can take hundreds of thousands of segments to * reach the above specified per-type memory limits. * * additionally, each type may have multiple memseg lists associated * with it, each limited by either RTE_MAX_MEM_MB_PER_LIST for bigger * page sizes, or RTE_MAX_MEMSEG_PER_LIST segments for smaller ones. * * the number of memseg lists per type is decided based on the above * limits, and also taking number of detected NUMA nodes, to make sure * that we don't run out of memseg lists before we populate all NUMA * nodes with memory. * * we do this in three stages. first, we collect the number of types. * then, we figure out memory constraints and populate the list of * would-be memseg lists. then, we go ahead and allocate the memseg * lists. */ /* create space for mem types */ n_memtypes = internal_config.num_hugepage_sizes * rte_socket_count(); memtypes = calloc(n_memtypes, sizeof(*memtypes)); if (memtypes == NULL) { RTE_LOG(ERR, EAL, "Cannot allocate space for memory types\n"); return -1; } /* populate mem types */ cur_type = 0; for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes; hpi_idx++) { struct hugepage_info *hpi; uint64_t hugepage_sz; hpi = &internal_config.hugepage_info[hpi_idx]; hugepage_sz = hpi->hugepage_sz; for (i = 0; i < (int) rte_socket_count(); i++, cur_type++) { int socket_id = rte_socket_id_by_idx(i); #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES /* we can still sort pages by socket in legacy mode */ if (!internal_config.legacy_mem && socket_id > 0) break; #endif memtypes[cur_type].page_sz = hugepage_sz; memtypes[cur_type].socket_id = socket_id; RTE_LOG(DEBUG, EAL, "Detected memory type: " "socket_id:%u hugepage_sz:%" PRIu64 "\n", socket_id, hugepage_sz); } } /* number of memtypes could have been lower due to no NUMA support */ n_memtypes = cur_type; /* set up limits for types */ max_mem = (uint64_t)RTE_MAX_MEM_MB << 20; max_mem_per_type = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20, max_mem / n_memtypes); /* * limit maximum number of segment lists per type to ensure there's * space for memseg lists for all NUMA nodes with all page sizes */ max_seglists_per_type = RTE_MAX_MEMSEG_LISTS / n_memtypes; if (max_seglists_per_type == 0) { RTE_LOG(ERR, EAL, "Cannot accommodate all memory types, please increase %s\n", RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS)); goto out; } /* go through all mem types and create segment lists */ msl_idx = 0; for (cur_type = 0; cur_type < n_memtypes; cur_type++) { unsigned int cur_seglist, n_seglists, n_segs; unsigned int max_segs_per_type, max_segs_per_list; struct memtype *type = &memtypes[cur_type]; uint64_t max_mem_per_list, pagesz; int socket_id; pagesz = type->page_sz; socket_id = type->socket_id; /* * we need to create segment lists for this type. we must take * into account the following things: * * 1. total amount of memory we can use for this memory type * 2. total amount of memory per memseg list allowed * 3. number of segments needed to fit the amount of memory * 4. number of segments allowed per type * 5. number of segments allowed per memseg list * 6. number of memseg lists we are allowed to take up */ /* calculate how much segments we will need in total */ max_segs_per_type = max_mem_per_type / pagesz; /* limit number of segments to maximum allowed per type */ max_segs_per_type = RTE_MIN(max_segs_per_type, (unsigned int)RTE_MAX_MEMSEG_PER_TYPE); /* limit number of segments to maximum allowed per list */ max_segs_per_list = RTE_MIN(max_segs_per_type, (unsigned int)RTE_MAX_MEMSEG_PER_LIST); /* calculate how much memory we can have per segment list */ max_mem_per_list = RTE_MIN(max_segs_per_list * pagesz, (uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20); /* calculate how many segments each segment list will have */ n_segs = RTE_MIN(max_segs_per_list, max_mem_per_list / pagesz); /* calculate how many segment lists we can have */ n_seglists = RTE_MIN(max_segs_per_type / n_segs, max_mem_per_type / max_mem_per_list); /* limit number of segment lists according to our maximum */ n_seglists = RTE_MIN(n_seglists, max_seglists_per_type); RTE_LOG(DEBUG, EAL, "Creating %i segment lists: " "n_segs:%i socket_id:%i hugepage_sz:%" PRIu64 "\n", n_seglists, n_segs, socket_id, pagesz); /* create all segment lists */ for (cur_seglist = 0; cur_seglist < n_seglists; cur_seglist++) { if (msl_idx >= RTE_MAX_MEMSEG_LISTS) { RTE_LOG(ERR, EAL, "No more space in memseg lists, please increase %s\n", RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS)); goto out; } msl = &mcfg->memsegs[msl_idx++]; if (alloc_memseg_list(msl, pagesz, n_segs, socket_id, cur_seglist)) goto out; if (alloc_va_space(msl)) { RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n"); goto out; } } } /* we're successful */ ret = 0; out: free(memtypes); return ret; } static int memseg_secondary_init(void) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int msl_idx = 0; struct rte_memseg_list *msl; for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { msl = &mcfg->memsegs[msl_idx]; /* skip empty memseg lists */ if (msl->memseg_arr.len == 0) continue; if (rte_fbarray_attach(&msl->memseg_arr)) { RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n"); return -1; } /* preallocate VA space */ if (alloc_va_space(msl)) { RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n"); return -1; } } return 0; } int rte_eal_memseg_init(void) { /* increase rlimit to maximum */ struct rlimit lim; if (getrlimit(RLIMIT_NOFILE, &lim) == 0) { /* set limit to maximum */ lim.rlim_cur = lim.rlim_max; if (setrlimit(RLIMIT_NOFILE, &lim) < 0) { RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n", strerror(errno)); } else { RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %" PRIu64 "\n", (uint64_t)lim.rlim_cur); } } else { RTE_LOG(ERR, EAL, "Cannot get current resource limits\n"); } #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES if (!internal_config.legacy_mem && rte_socket_count() > 1) { RTE_LOG(WARNING, EAL, "DPDK is running on a NUMA system, but is compiled without NUMA support.\n"); RTE_LOG(WARNING, EAL, "This will have adverse consequences for performance and usability.\n"); RTE_LOG(WARNING, EAL, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support.\n"); } #endif return rte_eal_process_type() == RTE_PROC_PRIMARY ? #ifndef RTE_ARCH_64 memseg_primary_init_32() : #else memseg_primary_init() : #endif memseg_secondary_init(); }