/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_memalloc.h" #include "eal_private.h" #include "eal_internal_cfg.h" /* * Try to mmap *size bytes in /dev/zero. If it is successful, return the * pointer to the mmap'd area and keep *size unmodified. Else, retry * with a smaller zone: decrease *size by hugepage_sz until it reaches * 0. In this case, return NULL. Note: this function returns an address * which is a multiple of hugepage size. */ #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i" static void *next_baseaddr; static uint64_t system_page_sz; #ifdef RTE_ARCH_64 /* * Linux kernel uses a really high address as starting address for serving * mmaps calls. If there exists addressing limitations and IOVA mode is VA, * this starting address is likely too high for those devices. However, it * is possible to use a lower address in the process virtual address space * as with 64 bits there is a lot of available space. * * Current known limitations are 39 or 40 bits. Setting the starting address * at 4GB implies there are 508GB or 1020GB for mapping the available * hugepages. This is likely enough for most systems, although a device with * addressing limitations should call rte_mem_check_dma_mask for ensuring all * memory is within supported range. */ static uint64_t baseaddr = 0x100000000; #endif #define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5 void * eal_get_virtual_area(void *requested_addr, size_t *size, size_t page_sz, int flags, int mmap_flags) { bool addr_is_hint, allow_shrink, unmap, no_align; uint64_t map_sz; void *mapped_addr, *aligned_addr; uint8_t try = 0; if (system_page_sz == 0) system_page_sz = sysconf(_SC_PAGESIZE); mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS; RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0; allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0; unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0; if (next_baseaddr == NULL && internal_config.base_virtaddr != 0 && rte_eal_process_type() == RTE_PROC_PRIMARY) next_baseaddr = (void *) internal_config.base_virtaddr; #ifdef RTE_ARCH_64 if (next_baseaddr == NULL && internal_config.base_virtaddr == 0 && rte_eal_process_type() == RTE_PROC_PRIMARY) next_baseaddr = (void *) baseaddr; #endif if (requested_addr == NULL && next_baseaddr != NULL) { requested_addr = next_baseaddr; requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz); addr_is_hint = true; } /* we don't need alignment of resulting pointer in the following cases: * * 1. page size is equal to system size * 2. we have a requested address, and it is page-aligned, and we will * be discarding the address if we get a different one. * * for all other cases, alignment is potentially necessary. */ no_align = (requested_addr != NULL && requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) && !addr_is_hint) || page_sz == system_page_sz; do { map_sz = no_align ? *size : *size + page_sz; if (map_sz > SIZE_MAX) { RTE_LOG(ERR, EAL, "Map size too big\n"); rte_errno = E2BIG; return NULL; } mapped_addr = mmap(requested_addr, (size_t)map_sz, PROT_READ, mmap_flags, -1, 0); if (mapped_addr == MAP_FAILED && allow_shrink) *size -= page_sz; if (mapped_addr != MAP_FAILED && addr_is_hint && mapped_addr != requested_addr) { try++; next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz); if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) { /* hint was not used. Try with another offset */ munmap(mapped_addr, map_sz); mapped_addr = MAP_FAILED; requested_addr = next_baseaddr; } } } while ((allow_shrink || addr_is_hint) && mapped_addr == MAP_FAILED && *size > 0); /* align resulting address - if map failed, we will ignore the value * anyway, so no need to add additional checks. */ aligned_addr = no_align ? mapped_addr : RTE_PTR_ALIGN(mapped_addr, page_sz); if (*size == 0) { RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n", strerror(errno)); rte_errno = errno; return NULL; } else if (mapped_addr == MAP_FAILED) { RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n", strerror(errno)); /* pass errno up the call chain */ rte_errno = errno; return NULL; } else if (requested_addr != NULL && !addr_is_hint && aligned_addr != requested_addr) { RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n", requested_addr, aligned_addr); munmap(mapped_addr, map_sz); rte_errno = EADDRNOTAVAIL; return NULL; } else if (requested_addr != NULL && addr_is_hint && aligned_addr != requested_addr) { RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n", requested_addr, aligned_addr); RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n"); } else if (next_baseaddr != NULL) { next_baseaddr = RTE_PTR_ADD(aligned_addr, *size); } RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n", aligned_addr, *size); if (unmap) { munmap(mapped_addr, map_sz); } else if (!no_align) { void *map_end, *aligned_end; size_t before_len, after_len; /* when we reserve space with alignment, we add alignment to * mapping size. On 32-bit, if 1GB alignment was requested, this * would waste 1GB of address space, which is a luxury we cannot * afford. so, if alignment was performed, check if any unneeded * address space can be unmapped back. */ map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz); aligned_end = RTE_PTR_ADD(aligned_addr, *size); /* unmap space before aligned mmap address */ before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr); if (before_len > 0) munmap(mapped_addr, before_len); /* unmap space after aligned end mmap address */ after_len = RTE_PTR_DIFF(map_end, aligned_end); if (after_len > 0) munmap(aligned_end, after_len); } return aligned_addr; } static struct rte_memseg * virt2memseg(const void *addr, const struct rte_memseg_list *msl) { const struct rte_fbarray *arr; void *start, *end; int ms_idx; if (msl == NULL) return NULL; /* a memseg list was specified, check if it's the right one */ start = msl->base_va; end = RTE_PTR_ADD(start, msl->len); if (addr < start || addr >= end) return NULL; /* now, calculate index */ arr = &msl->memseg_arr; ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz; return rte_fbarray_get(arr, ms_idx); } static struct rte_memseg_list * virt2memseg_list(const void *addr) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct rte_memseg_list *msl; int msl_idx; for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { void *start, *end; msl = &mcfg->memsegs[msl_idx]; start = msl->base_va; end = RTE_PTR_ADD(start, msl->len); if (addr >= start && addr < end) break; } /* if we didn't find our memseg list */ if (msl_idx == RTE_MAX_MEMSEG_LISTS) return NULL; return msl; } __rte_experimental struct rte_memseg_list * rte_mem_virt2memseg_list(const void *addr) { return virt2memseg_list(addr); } struct virtiova { rte_iova_t iova; void *virt; }; static int find_virt(const struct rte_memseg_list *msl __rte_unused, const struct rte_memseg *ms, void *arg) { struct virtiova *vi = arg; if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) { size_t offset = vi->iova - ms->iova; vi->virt = RTE_PTR_ADD(ms->addr, offset); /* stop the walk */ return 1; } return 0; } static int find_virt_legacy(const struct rte_memseg_list *msl __rte_unused, const struct rte_memseg *ms, size_t len, void *arg) { struct virtiova *vi = arg; if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) { size_t offset = vi->iova - ms->iova; vi->virt = RTE_PTR_ADD(ms->addr, offset); /* stop the walk */ return 1; } return 0; } __rte_experimental void * rte_mem_iova2virt(rte_iova_t iova) { struct virtiova vi; memset(&vi, 0, sizeof(vi)); vi.iova = iova; /* for legacy mem, we can get away with scanning VA-contiguous segments, * as we know they are PA-contiguous as well */ if (internal_config.legacy_mem) rte_memseg_contig_walk(find_virt_legacy, &vi); else rte_memseg_walk(find_virt, &vi); return vi.virt; } __rte_experimental struct rte_memseg * rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl) { return virt2memseg(addr, msl != NULL ? msl : rte_mem_virt2memseg_list(addr)); } static int physmem_size(const struct rte_memseg_list *msl, void *arg) { uint64_t *total_len = arg; if (msl->external) return 0; *total_len += msl->memseg_arr.count * msl->page_sz; return 0; } /* get the total size of memory */ uint64_t rte_eal_get_physmem_size(void) { uint64_t total_len = 0; rte_memseg_list_walk(physmem_size, &total_len); return total_len; } static int dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int msl_idx, ms_idx, fd; FILE *f = arg; msl_idx = msl - mcfg->memsegs; if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS) return -1; ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); if (ms_idx < 0) return -1; fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx); fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, " "virt:%p, socket_id:%"PRId32", " "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", " "nrank:%"PRIx32" fd:%i\n", msl_idx, ms_idx, ms->iova, ms->len, ms->addr, ms->socket_id, ms->hugepage_sz, ms->nchannel, ms->nrank, fd); return 0; } /* * Defining here because declared in rte_memory.h, but the actual implementation * is in eal_common_memalloc.c, like all other memalloc internals. */ int __rte_experimental rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb, void *arg) { /* FreeBSD boots with legacy mem enabled by default */ if (internal_config.legacy_mem) { RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n"); rte_errno = ENOTSUP; return -1; } return eal_memalloc_mem_event_callback_register(name, clb, arg); } int __rte_experimental rte_mem_event_callback_unregister(const char *name, void *arg) { /* FreeBSD boots with legacy mem enabled by default */ if (internal_config.legacy_mem) { RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n"); rte_errno = ENOTSUP; return -1; } return eal_memalloc_mem_event_callback_unregister(name, arg); } int __rte_experimental rte_mem_alloc_validator_register(const char *name, rte_mem_alloc_validator_t clb, int socket_id, size_t limit) { /* FreeBSD boots with legacy mem enabled by default */ if (internal_config.legacy_mem) { RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n"); rte_errno = ENOTSUP; return -1; } return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id, limit); } int __rte_experimental rte_mem_alloc_validator_unregister(const char *name, int socket_id) { /* FreeBSD boots with legacy mem enabled by default */ if (internal_config.legacy_mem) { RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n"); rte_errno = ENOTSUP; return -1; } return eal_memalloc_mem_alloc_validator_unregister(name, socket_id); } /* Dump the physical memory layout on console */ void rte_dump_physmem_layout(FILE *f) { rte_memseg_walk(dump_memseg, f); } static int check_iova(const struct rte_memseg_list *msl __rte_unused, const struct rte_memseg *ms, void *arg) { uint64_t *mask = arg; rte_iova_t iova; /* higher address within segment */ iova = (ms->iova + ms->len) - 1; if (!(iova & *mask)) return 0; RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n", ms->iova, ms->len); RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask); return 1; } #define MAX_DMA_MASK_BITS 63 /* check memseg iovas are within the required range based on dma mask */ static int check_dma_mask(uint8_t maskbits, bool thread_unsafe) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; uint64_t mask; int ret; /* Sanity check. We only check width can be managed with 64 bits * variables. Indeed any higher value is likely wrong. */ if (maskbits > MAX_DMA_MASK_BITS) { RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n", maskbits, MAX_DMA_MASK_BITS); return -1; } /* create dma mask */ mask = ~((1ULL << maskbits) - 1); if (thread_unsafe) ret = rte_memseg_walk_thread_unsafe(check_iova, &mask); else ret = rte_memseg_walk(check_iova, &mask); if (ret) /* * Dma mask precludes hugepage usage. * This device can not be used and we do not need to keep * the dma mask. */ return 1; /* * we need to keep the more restricted maskbit for checking * potential dynamic memory allocation in the future. */ mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : RTE_MIN(mcfg->dma_maskbits, maskbits); return 0; } int __rte_experimental rte_mem_check_dma_mask(uint8_t maskbits) { return check_dma_mask(maskbits, false); } int __rte_experimental rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits) { return check_dma_mask(maskbits, true); } /* * Set dma mask to use when memory initialization is done. * * This function should ONLY be used by code executed before the memory * initialization. PMDs should use rte_mem_check_dma_mask if addressing * limitations by the device. */ void __rte_experimental rte_mem_set_dma_mask(uint8_t maskbits) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : RTE_MIN(mcfg->dma_maskbits, maskbits); } /* return the number of memory channels */ unsigned rte_memory_get_nchannel(void) { return rte_eal_get_configuration()->mem_config->nchannel; } /* return the number of memory rank */ unsigned rte_memory_get_nrank(void) { return rte_eal_get_configuration()->mem_config->nrank; } static int rte_eal_memdevice_init(void) { struct rte_config *config; if (rte_eal_process_type() == RTE_PROC_SECONDARY) return 0; config = rte_eal_get_configuration(); config->mem_config->nchannel = internal_config.force_nchannel; config->mem_config->nrank = internal_config.force_nrank; return 0; } /* Lock page in physical memory and prevent from swapping. */ int rte_mem_lock_page(const void *virt) { unsigned long virtual = (unsigned long)virt; int page_size = getpagesize(); unsigned long aligned = (virtual & ~(page_size - 1)); return mlock((void *)aligned, page_size); } int __rte_experimental rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int i, ms_idx, ret = 0; for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { struct rte_memseg_list *msl = &mcfg->memsegs[i]; const struct rte_memseg *ms; struct rte_fbarray *arr; if (msl->memseg_arr.count == 0) continue; arr = &msl->memseg_arr; ms_idx = rte_fbarray_find_next_used(arr, 0); while (ms_idx >= 0) { int n_segs; size_t len; ms = rte_fbarray_get(arr, ms_idx); /* find how many more segments there are, starting with * this one. */ n_segs = rte_fbarray_find_contig_used(arr, ms_idx); len = n_segs * msl->page_sz; ret = func(msl, ms, len, arg); if (ret) return ret; ms_idx = rte_fbarray_find_next_used(arr, ms_idx + n_segs); } } return 0; } int __rte_experimental rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int ret = 0; /* do not allow allocations/frees/init while we iterate */ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); ret = rte_memseg_contig_walk_thread_unsafe(func, arg); rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } int __rte_experimental rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int i, ms_idx, ret = 0; for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { struct rte_memseg_list *msl = &mcfg->memsegs[i]; const struct rte_memseg *ms; struct rte_fbarray *arr; if (msl->memseg_arr.count == 0) continue; arr = &msl->memseg_arr; ms_idx = rte_fbarray_find_next_used(arr, 0); while (ms_idx >= 0) { ms = rte_fbarray_get(arr, ms_idx); ret = func(msl, ms, arg); if (ret) return ret; ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1); } } return 0; } int __rte_experimental rte_memseg_walk(rte_memseg_walk_t func, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int ret = 0; /* do not allow allocations/frees/init while we iterate */ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); ret = rte_memseg_walk_thread_unsafe(func, arg); rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } int __rte_experimental rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int i, ret = 0; for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { struct rte_memseg_list *msl = &mcfg->memsegs[i]; if (msl->base_va == NULL) continue; ret = func(msl, arg); if (ret) return ret; } return 0; } int __rte_experimental rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int ret = 0; /* do not allow allocations/frees/init while we iterate */ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); ret = rte_memseg_list_walk_thread_unsafe(func, arg); rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } int __rte_experimental rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct rte_memseg_list *msl; struct rte_fbarray *arr; int msl_idx, seg_idx, ret; if (ms == NULL) { rte_errno = EINVAL; return -1; } msl = rte_mem_virt2memseg_list(ms->addr); if (msl == NULL) { rte_errno = EINVAL; return -1; } arr = &msl->memseg_arr; msl_idx = msl - mcfg->memsegs; seg_idx = rte_fbarray_find_idx(arr, ms); if (!rte_fbarray_is_used(arr, seg_idx)) { rte_errno = ENOENT; return -1; } /* segment fd API is not supported for external segments */ if (msl->external) { rte_errno = ENOTSUP; return -1; } ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx); if (ret < 0) { rte_errno = -ret; ret = -1; } return ret; } int __rte_experimental rte_memseg_get_fd(const struct rte_memseg *ms) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int ret; rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); ret = rte_memseg_get_fd_thread_unsafe(ms); rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } int __rte_experimental rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms, size_t *offset) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct rte_memseg_list *msl; struct rte_fbarray *arr; int msl_idx, seg_idx, ret; if (ms == NULL || offset == NULL) { rte_errno = EINVAL; return -1; } msl = rte_mem_virt2memseg_list(ms->addr); if (msl == NULL) { rte_errno = EINVAL; return -1; } arr = &msl->memseg_arr; msl_idx = msl - mcfg->memsegs; seg_idx = rte_fbarray_find_idx(arr, ms); if (!rte_fbarray_is_used(arr, seg_idx)) { rte_errno = ENOENT; return -1; } /* segment fd API is not supported for external segments */ if (msl->external) { rte_errno = ENOTSUP; return -1; } ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset); if (ret < 0) { rte_errno = -ret; ret = -1; } return ret; } int __rte_experimental rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int ret; rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset); rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } /* init memory subsystem */ int rte_eal_memory_init(void) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int retval; RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n"); if (!mcfg) return -1; /* lock mem hotplug here, to prevent races while we init */ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); if (rte_eal_memseg_init() < 0) goto fail; if (eal_memalloc_init() < 0) goto fail; retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? rte_eal_hugepage_init() : rte_eal_hugepage_attach(); if (retval < 0) goto fail; if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0) goto fail; return 0; fail: rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return -1; }