/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2014-2018 Chelsio Communications. * All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "t4_regs.h" #include "t4_msg.h" #include "cxgbe.h" #include "clip_tbl.h" #include "l2t.h" #include "mps_tcam.h" /** * Allocate a chunk of memory. The allocated memory is cleared. */ void *t4_alloc_mem(size_t size) { return rte_zmalloc(NULL, size, 0); } /** * Free memory allocated through t4_alloc_mem(). */ void t4_free_mem(void *addr) { rte_free(addr); } /* * Response queue handler for the FW event queue. */ static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, __rte_unused const struct pkt_gl *gl) { u8 opcode = ((const struct rss_header *)rsp)->opcode; rsp++; /* skip RSS header */ /* * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. */ if (unlikely(opcode == CPL_FW4_MSG && ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { rsp++; opcode = ((const struct rss_header *)rsp)->opcode; rsp++; if (opcode != CPL_SGE_EGR_UPDATE) { dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n", opcode); goto out; } } if (likely(opcode == CPL_SGE_EGR_UPDATE)) { /* do nothing */ } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { const struct cpl_fw6_msg *msg = (const void *)rsp; t4_handle_fw_rpl(q->adapter, msg->data); } else if (opcode == CPL_ABORT_RPL_RSS) { const struct cpl_abort_rpl_rss *p = (const void *)rsp; hash_del_filter_rpl(q->adapter, p); } else if (opcode == CPL_SET_TCB_RPL) { const struct cpl_set_tcb_rpl *p = (const void *)rsp; filter_rpl(q->adapter, p); } else if (opcode == CPL_ACT_OPEN_RPL) { const struct cpl_act_open_rpl *p = (const void *)rsp; hash_filter_rpl(q->adapter, p); } else if (opcode == CPL_L2T_WRITE_RPL) { const struct cpl_l2t_write_rpl *p = (const void *)rsp; do_l2t_write_rpl(q->adapter, p); } else { dev_err(adapter, "unexpected CPL %#x on FW event queue\n", opcode); } out: return 0; } /** * Setup sge control queues to pass control information. */ int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter) { struct sge *s = &adapter->sge; int err = 0, i = 0; for_each_port(adapter, i) { struct port_info *pi = adap2pinfo(adapter, i); char name[RTE_ETH_NAME_MAX_LEN]; struct sge_ctrl_txq *q = &s->ctrlq[i]; q->q.size = 1024; err = t4_sge_alloc_ctrl_txq(adapter, q, adapter->eth_dev, i, s->fw_evtq.cntxt_id, rte_socket_id()); if (err) { dev_err(adapter, "Failed to alloc ctrl txq. Err: %d", err); goto out; } snprintf(name, sizeof(name), "%s_ctrl_pool_%d", pi->eth_dev->device->driver->name, pi->eth_dev->data->port_id); q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size, RTE_CACHE_LINE_SIZE, RTE_MBUF_PRIV_ALIGN, RTE_MBUF_DEFAULT_BUF_SIZE, SOCKET_ID_ANY); if (!q->mb_pool) { err = -rte_errno; dev_err(adapter, "Can't create ctrl pool for port %d. Err: %d\n", pi->eth_dev->data->port_id, err); goto out; } } return 0; out: t4_free_sge_resources(adapter); return err; } /** * cxgbe_poll_for_completion: Poll rxq for completion * @q: rxq to poll * @ms: milliseconds to delay * @cnt: number of times to poll * @c: completion to check for 'done' status * * Polls the rxq for reples until completion is done or the count * expires. */ int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms, unsigned int cnt, struct t4_completion *c) { unsigned int i; unsigned int work_done, budget = 32; if (!c) return -EINVAL; for (i = 0; i < cnt; i++) { cxgbe_poll(q, NULL, budget, &work_done); t4_os_lock(&c->lock); if (c->done) { t4_os_unlock(&c->lock); return 0; } t4_os_unlock(&c->lock); rte_delay_ms(ms); } return -ETIMEDOUT; } int cxgbe_setup_sge_fwevtq(struct adapter *adapter) { struct sge *s = &adapter->sge; int err = 0; int msi_idx = 0; err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev, msi_idx, NULL, fwevtq_handler, -1, NULL, 0, rte_socket_id()); return err; } static int closest_timer(const struct sge *s, int time) { unsigned int i, match = 0; int delta, min_delta = INT_MAX; for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { delta = time - s->timer_val[i]; if (delta < 0) delta = -delta; if (delta < min_delta) { min_delta = delta; match = i; } } return match; } static int closest_thres(const struct sge *s, int thres) { unsigned int i, match = 0; int delta, min_delta = INT_MAX; for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { delta = thres - s->counter_val[i]; if (delta < 0) delta = -delta; if (delta < min_delta) { min_delta = delta; match = i; } } return match; } /** * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters * @q: the Rx queue * @us: the hold-off time in us, or 0 to disable timer * @cnt: the hold-off packet count, or 0 to disable counter * * Sets an Rx queue's interrupt hold-off time and packet count. At least * one of the two needs to be enabled for the queue to generate interrupts. */ int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us, unsigned int cnt) { struct adapter *adap = q->adapter; unsigned int timer_val; if (cnt) { int err; u32 v, new_idx; new_idx = closest_thres(&adap->sge, cnt); if (q->desc && q->pktcnt_idx != new_idx) { /* the queue has already been created, update it */ v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | V_FW_PARAMS_PARAM_X( FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | V_FW_PARAMS_PARAM_YZ(q->cntxt_id); err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &v, &new_idx); if (err) return err; } q->pktcnt_idx = new_idx; } timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER : closest_timer(&adap->sge, us); if ((us | cnt) == 0) q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX); else q->intr_params = V_QINTR_TIMER_IDX(timer_val) | V_QINTR_CNT_EN(cnt > 0); return 0; } /** * Allocate an active-open TID and set it to the supplied value. */ int cxgbe_alloc_atid(struct tid_info *t, void *data) { int atid = -1; t4_os_lock(&t->atid_lock); if (t->afree) { union aopen_entry *p = t->afree; atid = p - t->atid_tab; t->afree = p->next; p->data = data; t->atids_in_use++; } t4_os_unlock(&t->atid_lock); return atid; } /** * Release an active-open TID. */ void cxgbe_free_atid(struct tid_info *t, unsigned int atid) { union aopen_entry *p = &t->atid_tab[atid]; t4_os_lock(&t->atid_lock); p->next = t->afree; t->afree = p; t->atids_in_use--; t4_os_unlock(&t->atid_lock); } /** * Populate a TID_RELEASE WR. Caller must properly size the skb. */ static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid) { struct cpl_tid_release *req; req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *); INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); } /** * Release a TID and inform HW. If we are unable to allocate the release * message we defer to a work queue. */ void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, unsigned short family) { struct rte_mbuf *mbuf; struct adapter *adap = container_of(t, struct adapter, tids); WARN_ON(tid >= t->ntids); if (t->tid_tab[tid]) { t->tid_tab[tid] = NULL; rte_atomic32_dec(&t->conns_in_use); if (t->hash_base && tid >= t->hash_base) { if (family == FILTER_TYPE_IPV4) rte_atomic32_dec(&t->hash_tids_in_use); } else { if (family == FILTER_TYPE_IPV4) rte_atomic32_dec(&t->tids_in_use); } } mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool); if (mbuf) { mbuf->data_len = sizeof(struct cpl_tid_release); mbuf->pkt_len = mbuf->data_len; mk_tid_release(mbuf, tid); t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf); } } /** * Insert a TID. */ void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid, unsigned short family) { t->tid_tab[tid] = data; if (t->hash_base && tid >= t->hash_base) { if (family == FILTER_TYPE_IPV4) rte_atomic32_inc(&t->hash_tids_in_use); } else { if (family == FILTER_TYPE_IPV4) rte_atomic32_inc(&t->tids_in_use); } rte_atomic32_inc(&t->conns_in_use); } /** * Free TID tables. */ static void tid_free(struct tid_info *t) { if (t->tid_tab) { if (t->ftid_bmap) rte_bitmap_free(t->ftid_bmap); if (t->ftid_bmap_array) t4_os_free(t->ftid_bmap_array); t4_os_free(t->tid_tab); } memset(t, 0, sizeof(struct tid_info)); } /** * Allocate and initialize the TID tables. Returns 0 on success. */ static int tid_init(struct tid_info *t) { size_t size; unsigned int ftid_bmap_size; unsigned int natids = t->natids; unsigned int max_ftids = t->nftids; ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids); size = t->ntids * sizeof(*t->tid_tab) + max_ftids * sizeof(*t->ftid_tab) + natids * sizeof(*t->atid_tab); t->tid_tab = t4_os_alloc(size); if (!t->tid_tab) return -ENOMEM; t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids]; t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size); if (!t->ftid_bmap_array) { tid_free(t); return -ENOMEM; } t4_os_lock_init(&t->atid_lock); t4_os_lock_init(&t->ftid_lock); t->afree = NULL; t->atids_in_use = 0; rte_atomic32_init(&t->tids_in_use); rte_atomic32_set(&t->tids_in_use, 0); rte_atomic32_init(&t->conns_in_use); rte_atomic32_set(&t->conns_in_use, 0); /* Setup the free list for atid_tab and clear the stid bitmap. */ if (natids) { while (--natids) t->atid_tab[natids - 1].next = &t->atid_tab[natids]; t->afree = t->atid_tab; } t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array, ftid_bmap_size); if (!t->ftid_bmap) { tid_free(t); return -ENOMEM; } return 0; } static inline bool is_x_1g_port(const struct link_config *lc) { return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0; } static inline bool is_x_10g_port(const struct link_config *lc) { unsigned int speeds, high_speeds; speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps)); high_speeds = speeds & ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); return high_speeds != 0; } static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, unsigned int us, unsigned int cnt, unsigned int size, unsigned int iqe_size) { q->adapter = adap; cxgb4_set_rspq_intr_params(q, us, cnt); q->iqe_len = iqe_size; q->size = size; } int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev) { struct port_info *pi = eth_dev->data->dev_private; struct adapter *adap = pi->adapter; struct sge *s = &adap->sge; unsigned int max_queues = s->max_ethqsets / adap->params.nports; if ((eth_dev->data->nb_rx_queues < 1) || (eth_dev->data->nb_tx_queues < 1)) return -EINVAL; if ((eth_dev->data->nb_rx_queues > max_queues) || (eth_dev->data->nb_tx_queues > max_queues)) return -EINVAL; if (eth_dev->data->nb_rx_queues > pi->rss_size) return -EINVAL; /* We must configure RSS, since config has changed*/ pi->flags &= ~PORT_RSS_DONE; pi->n_rx_qsets = eth_dev->data->nb_rx_queues; pi->n_tx_qsets = eth_dev->data->nb_tx_queues; return 0; } void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev) { struct port_info *pi = eth_dev->data->dev_private; struct adapter *adap = pi->adapter; struct sge *s = &adap->sge; unsigned int i, nb_ports = 0, qidx = 0; unsigned int q_per_port = 0; if (!(adap->flags & CFG_QUEUES)) { for_each_port(adap, i) { struct port_info *tpi = adap2pinfo(adap, i); nb_ports += (is_x_10g_port(&tpi->link_cfg)) || is_x_1g_port(&tpi->link_cfg) ? 1 : 0; } /* * We default up to # of cores queues per 1G/10G port. */ if (nb_ports) q_per_port = (s->max_ethqsets - (adap->params.nports - nb_ports)) / nb_ports; if (q_per_port > rte_lcore_count()) q_per_port = rte_lcore_count(); for_each_port(adap, i) { struct port_info *pi = adap2pinfo(adap, i); pi->first_qset = qidx; /* Initially n_rx_qsets == n_tx_qsets */ pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) || is_x_1g_port(&pi->link_cfg)) ? q_per_port : 1; pi->n_tx_qsets = pi->n_rx_qsets; if (pi->n_rx_qsets > pi->rss_size) pi->n_rx_qsets = pi->rss_size; qidx += pi->n_rx_qsets; } for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { struct sge_eth_rxq *r = &s->ethrxq[i]; init_rspq(adap, &r->rspq, 5, 32, 1024, 64); r->usembufs = 1; r->fl.size = (r->usembufs ? 1024 : 72); } for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) s->ethtxq[i].q.size = 1024; init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64); adap->flags |= CFG_QUEUES; } } void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats) { t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats, &pi->stats_base); } void cxgbe_stats_reset(struct port_info *pi) { t4_clr_port_stats(pi->adapter, pi->tx_chan); } static void setup_memwin(struct adapter *adap) { u32 mem_win0_base; /* For T5, only relative offset inside the PCIe BAR is passed */ mem_win0_base = MEMWIN0_BASE; /* * Set up memory window for accessing adapter memory ranges. (Read * back MA register to ensure that changes propagate before we attempt * to use the new values.) */ t4_write_reg(adap, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, MEMWIN_NIC), mem_win0_base | V_BIR(0) | V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT)); t4_read_reg(adap, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, MEMWIN_NIC)); } int cxgbe_init_rss(struct adapter *adap) { unsigned int i; if (is_pf4(adap)) { int err; err = t4_init_rss_mode(adap, adap->mbox); if (err) return err; } for_each_port(adap, i) { struct port_info *pi = adap2pinfo(adap, i); pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0); if (!pi->rss) return -ENOMEM; pi->rss_hf = CXGBE_RSS_HF_ALL; } return 0; } /** * Dump basic information about the adapter. */ void cxgbe_print_adapter_info(struct adapter *adap) { /** * Hardware/Firmware/etc. Version/Revision IDs. */ t4_dump_version_info(adap); } void cxgbe_print_port_info(struct adapter *adap) { int i; char buf[80]; struct rte_pci_addr *loc = &adap->pdev->addr; for_each_port(adap, i) { const struct port_info *pi = adap2pinfo(adap, i); char *bufp = buf; if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) bufp += sprintf(bufp, "100M/"); if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) bufp += sprintf(bufp, "1G/"); if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) bufp += sprintf(bufp, "10G/"); if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) bufp += sprintf(bufp, "25G/"); if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) bufp += sprintf(bufp, "40G/"); if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) bufp += sprintf(bufp, "50G/"); if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) bufp += sprintf(bufp, "100G/"); if (bufp != buf) --bufp; sprintf(bufp, "BASE-%s", t4_get_port_type_description( (enum fw_port_type)pi->port_type)); dev_info(adap, " " PCI_PRI_FMT " Chelsio rev %d %s %s\n", loc->domain, loc->bus, loc->devid, loc->function, CHELSIO_CHIP_RELEASE(adap->params.chip), buf, (adap->flags & USING_MSIX) ? " MSI-X" : (adap->flags & USING_MSI) ? " MSI" : ""); } } static int check_devargs_handler(__rte_unused const char *key, const char *value, __rte_unused void *opaque) { if (strcmp(value, "1")) return -1; return 0; } int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key) { struct rte_kvargs *kvlist; if (!devargs) return 0; kvlist = rte_kvargs_parse(devargs->args, NULL); if (!kvlist) return 0; if (!rte_kvargs_count(kvlist, key)) { rte_kvargs_free(kvlist); return 0; } if (rte_kvargs_process(kvlist, key, check_devargs_handler, NULL) < 0) { rte_kvargs_free(kvlist); return 0; } rte_kvargs_free(kvlist); return 1; } static void configure_vlan_types(struct adapter *adapter) { struct rte_pci_device *pdev = adapter->pdev; int i; for_each_port(adapter, i) { /* OVLAN Type 0x88a8 */ t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0), V_OVLAN_MASK(M_OVLAN_MASK) | V_OVLAN_ETYPE(M_OVLAN_ETYPE), V_OVLAN_MASK(M_OVLAN_MASK) | V_OVLAN_ETYPE(0x88a8)); /* OVLAN Type 0x9100 */ t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1), V_OVLAN_MASK(M_OVLAN_MASK) | V_OVLAN_ETYPE(M_OVLAN_ETYPE), V_OVLAN_MASK(M_OVLAN_MASK) | V_OVLAN_ETYPE(0x9100)); /* OVLAN Type 0x8100 */ t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2), V_OVLAN_MASK(M_OVLAN_MASK) | V_OVLAN_ETYPE(M_OVLAN_ETYPE), V_OVLAN_MASK(M_OVLAN_MASK) | V_OVLAN_ETYPE(0x8100)); /* IVLAN 0X8100 */ t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i), V_IVLAN_ETYPE(M_IVLAN_ETYPE), V_IVLAN_ETYPE(0x8100)); t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i), F_OVLAN_EN0 | F_OVLAN_EN1 | F_OVLAN_EN2 | F_IVLAN_EN, F_OVLAN_EN0 | F_OVLAN_EN1 | F_OVLAN_EN2 | F_IVLAN_EN); } if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN)) t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1), V_RM_OVLAN(0)); } static void configure_pcie_ext_tag(struct adapter *adapter) { u16 v; int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); if (!pos) return; if (pos > 0) { t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v); v |= PCI_EXP_DEVCTL_EXT_TAG; t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v); if (is_t6(adapter->params.chip)) { t4_set_reg_field(adapter, A_PCIE_CFG2, V_T6_TOTMAXTAG(M_T6_TOTMAXTAG), V_T6_TOTMAXTAG(7)); t4_set_reg_field(adapter, A_PCIE_CMD_CFG, V_T6_MINTAG(M_T6_MINTAG), V_T6_MINTAG(8)); } else { t4_set_reg_field(adapter, A_PCIE_CFG2, V_TOTMAXTAG(M_TOTMAXTAG), V_TOTMAXTAG(3)); t4_set_reg_field(adapter, A_PCIE_CMD_CFG, V_MINTAG(M_MINTAG), V_MINTAG(8)); } } } /* Figure out how many Queue Sets we can support */ void cxgbe_configure_max_ethqsets(struct adapter *adapter) { unsigned int ethqsets; /* * We need to reserve an Ingress Queue for the Asynchronous Firmware * Event Queue. * * For each Queue Set, we'll need the ability to allocate two Egress * Contexts -- one for the Ingress Queue Free List and one for the TX * Ethernet Queue. */ if (is_pf4(adapter)) { struct pf_resources *pfres = &adapter->params.pfres; ethqsets = pfres->niqflint - 1; if (pfres->neq < ethqsets * 2) ethqsets = pfres->neq / 2; } else { struct vf_resources *vfres = &adapter->params.vfres; ethqsets = vfres->niqflint - 1; if (vfres->nethctrl != ethqsets) ethqsets = min(vfres->nethctrl, ethqsets); if (vfres->neq < ethqsets * 2) ethqsets = vfres->neq / 2; } if (ethqsets > MAX_ETH_QSETS) ethqsets = MAX_ETH_QSETS; adapter->sge.max_ethqsets = ethqsets; } /* * Tweak configuration based on system architecture, etc. Most of these have * defaults assigned to them by Firmware Configuration Files (if we're using * them) but need to be explicitly set if we're using hard-coded * initialization. So these are essentially common tweaks/settings for * Configuration Files and hard-coded initialization ... */ static int adap_init0_tweaks(struct adapter *adapter) { u8 rx_dma_offset; /* * Fix up various Host-Dependent Parameters like Page Size, Cache * Line Size, etc. The firmware default is for a 4KB Page Size and * 64B Cache Line Size ... */ t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES, T5_LAST_REV); /* * Keep the chip default offset to deliver Ingress packets into our * DMA buffers to zero */ rx_dma_offset = 0; t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT), V_PKTSHIFT(rx_dma_offset)); t4_set_reg_field(adapter, A_SGE_FLM_CFG, V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING, V_CREDITCNT(3) | V_CREDITCNTPACKING(1)); t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD, V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U)); t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U), V_IDMAARBROUNDROBIN(1U)); /* * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux * adds the pseudo header itself. */ t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, F_CSUM_HAS_PSEUDO_HDR, 0); return 0; } /* * Attempt to initialize the adapter via a Firmware Configuration File. */ static int adap_init0_config(struct adapter *adapter, int reset) { struct fw_caps_config_cmd caps_cmd; unsigned long mtype = 0, maddr = 0; u32 finiver, finicsum, cfcsum; int ret; int config_issued = 0; int cfg_addr; char config_name[20]; /* * Reset device if necessary. */ if (reset) { ret = t4_fw_reset(adapter, adapter->mbox, F_PIORSTMODE | F_PIORST); if (ret < 0) { dev_warn(adapter, "Firmware reset failed, error %d\n", -ret); goto bye; } } cfg_addr = t4_flash_cfg_addr(adapter); if (cfg_addr < 0) { ret = cfg_addr; dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n", -ret); goto bye; } strcpy(config_name, "On Flash"); mtype = FW_MEMTYPE_CF_FLASH; maddr = cfg_addr; /* * Issue a Capability Configuration command to the firmware to get it * to parse the Configuration File. We don't use t4_fw_config_file() * because we want the ability to modify various features after we've * processed the configuration file ... */ memset(&caps_cmd, 0, sizeof(caps_cmd)); caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps_cmd.cfvalid_to_len16 = cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID | V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); /* * If the CAPS_CONFIG failed with an ENOENT (for a Firmware * Configuration File in FLASH), our last gasp effort is to use the * Firmware Configuration File which is embedded in the firmware. A * very few early versions of the firmware didn't have one embedded * but we can ignore those. */ if (ret == -ENOENT) { dev_info(adapter, "%s: Going for embedded config in firmware..\n", __func__); memset(&caps_cmd, 0, sizeof(caps_cmd)); caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); strcpy(config_name, "Firmware Default"); } config_issued = 1; if (ret < 0) goto bye; finiver = be32_to_cpu(caps_cmd.finiver); finicsum = be32_to_cpu(caps_cmd.finicsum); cfcsum = be32_to_cpu(caps_cmd.cfcsum); if (finicsum != cfcsum) dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n", finicsum, cfcsum); /* * If we're a pure NIC driver then disable all offloading facilities. * This will allow the firmware to optimize aspects of the hardware * configuration which will result in improved performance. */ caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD); caps_cmd.toecaps = 0; caps_cmd.iscsicaps = 0; caps_cmd.rdmacaps = 0; caps_cmd.fcoecaps = 0; /* * And now tell the firmware to use the configuration we just loaded. */ caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), NULL); if (ret < 0) { dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n", -ret); goto bye; } /* * Tweak configuration based on system architecture, etc. */ ret = adap_init0_tweaks(adapter); if (ret < 0) { dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret); goto bye; } /* * And finally tell the firmware to initialize itself using the * parameters from the Configuration File. */ ret = t4_fw_initialize(adapter, adapter->mbox); if (ret < 0) { dev_warn(adapter, "Initializing Firmware failed, error %d\n", -ret); goto bye; } /* * Return successfully and note that we're operating with parameters * not supplied by the driver, rather than from hard-wired * initialization constants buried in the driver. */ dev_info(adapter, "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n", config_name, finiver, cfcsum); return 0; /* * Something bad happened. Return the error ... (If the "error" * is that there's no Configuration File on the adapter we don't * want to issue a warning since this is fairly common.) */ bye: if (config_issued && ret != -ENOENT) dev_warn(adapter, "\"%s\" configuration file error %d\n", config_name, -ret); dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret); return ret; } static int adap_init0(struct adapter *adap) { struct fw_caps_config_cmd caps_cmd; int ret = 0; u32 v, port_vec; enum dev_state state; u32 params[7], val[7]; int reset = 1; int mbox = adap->mbox; /* * Contact FW, advertising Master capability. */ ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state); if (ret < 0) { dev_err(adap, "%s: could not connect to FW, error %d\n", __func__, -ret); goto bye; } CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__, adap->mbox, ret); if (ret == mbox) adap->flags |= MASTER_PF; if (state == DEV_STATE_INIT) { /* * Force halt and reset FW because a previous instance may have * exited abnormally without properly shutting down */ ret = t4_fw_halt(adap, adap->mbox, reset); if (ret < 0) { dev_err(adap, "Failed to halt. Exit.\n"); goto bye; } ret = t4_fw_restart(adap, adap->mbox, reset); if (ret < 0) { dev_err(adap, "Failed to restart. Exit.\n"); goto bye; } state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT); } t4_get_version_info(adap); ret = t4_get_core_clock(adap, &adap->params.vpd); if (ret < 0) { dev_err(adap, "%s: could not get core clock, error %d\n", __func__, -ret); goto bye; } /* * If the firmware is initialized already (and we're not forcing a * master initialization), note that we're living with existing * adapter parameters. Otherwise, it's time to try initializing the * adapter ... */ if (state == DEV_STATE_INIT) { dev_info(adap, "Coming up as %s: Adapter already initialized\n", adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); } else { dev_info(adap, "Coming up as MASTER: Initializing adapter\n"); ret = adap_init0_config(adap, reset); if (ret == -ENOENT) { dev_err(adap, "No Configuration File present on adapter. Using hard-wired configuration parameters.\n"); goto bye; } } if (ret < 0) { dev_err(adap, "could not initialize adapter, error %d\n", -ret); goto bye; } /* Now that we've successfully configured and initialized the adapter * (or found it already initialized), we can ask the Firmware what * resources it has provisioned for us. */ ret = t4_get_pfres(adap); if (ret) { dev_err(adap->pdev_dev, "Unable to retrieve resource provisioning info\n"); goto bye; } /* Find out what ports are available to us. */ v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); if (ret < 0) { dev_err(adap, "%s: failure in t4_query_params; error = %d\n", __func__, ret); goto bye; } adap->params.nports = hweight32(port_vec); adap->params.portvec = port_vec; dev_debug(adap, "%s: adap->params.nports = %u\n", __func__, adap->params.nports); /* * Give the SGE code a chance to pull in anything that it needs ... * Note that this must be called after we retrieve our VPD parameters * in order to know how to convert core ticks to seconds, etc. */ ret = t4_sge_init(adap); if (ret < 0) { dev_err(adap, "t4_sge_init failed with error %d\n", -ret); goto bye; } /* * Grab some of our basic fundamental operating parameters. */ #define FW_PARAM_DEV(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) #define FW_PARAM_PFVF(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \ V_FW_PARAMS_PARAM_Y(0) | \ V_FW_PARAMS_PARAM_Z(0)) params[0] = FW_PARAM_PFVF(L2T_START); params[1] = FW_PARAM_PFVF(L2T_END); params[2] = FW_PARAM_PFVF(FILTER_START); params[3] = FW_PARAM_PFVF(FILTER_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val); if (ret < 0) goto bye; adap->l2t_start = val[0]; adap->l2t_end = val[1]; adap->tids.ftid_base = val[2]; adap->tids.nftids = val[3] - val[2] + 1; params[0] = FW_PARAM_PFVF(CLIP_START); params[1] = FW_PARAM_PFVF(CLIP_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); if (ret < 0) goto bye; adap->clipt_start = val[0]; adap->clipt_end = val[1]; /* * Get device capabilities so we can determine what resources we need * to manage. */ memset(&caps_cmd, 0, sizeof(caps_cmd)); caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); if (ret < 0) goto bye; if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) && is_t6(adap->params.chip)) { if (init_hash_filter(adap) < 0) goto bye; } /* See if FW supports FW_FILTER2 work request */ if (is_t4(adap->params.chip)) { adap->params.filter2_wr_support = 0; } else { params[0] = FW_PARAM_DEV(FILTER2_WR); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); } /* query tid-related parameters */ params[0] = FW_PARAM_DEV(NTID); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); if (ret < 0) goto bye; adap->tids.ntids = val[0]; adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); /* If we're running on newer firmware, let it know that we're * prepared to deal with encapsulated CPL messages. Older * firmware won't understand this and we'll just get * unencapsulated messages ... */ params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); val[0] = 1; (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); /* * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL * capability. Earlier versions of the firmware didn't have the * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no * permission to use ULPTX MEMWRITE DSGL. */ if (is_t4(adap->params.chip)) { adap->params.ulptx_memwrite_dsgl = false; } else { params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); } /* * The MTU/MSS Table is initialized by now, so load their values. If * we're initializing the adapter, then we'll make any modifications * we want to the MTU/MSS Table and also initialize the congestion * parameters. */ t4_read_mtu_tbl(adap, adap->params.mtus, NULL); if (state != DEV_STATE_INIT) { int i; /* * The default MTU Table contains values 1492 and 1500. * However, for TCP, it's better to have two values which are * a multiple of 8 +/- 4 bytes apart near this popular MTU. * This allows us to have a TCP Data Payload which is a * multiple of 8 regardless of what combination of TCP Options * are in use (always a multiple of 4 bytes) which is * important for performance reasons. For instance, if no * options are in use, then we have a 20-byte IP header and a * 20-byte TCP header. In this case, a 1500-byte MSS would * result in a TCP Data Payload of 1500 - 40 == 1460 bytes * which is not a multiple of 8. So using an MSS of 1488 in * this case results in a TCP Data Payload of 1448 bytes which * is a multiple of 8. On the other hand, if 12-byte TCP Time * Stamps have been negotiated, then an MTU of 1500 bytes * results in a TCP Data Payload of 1448 bytes which, as * above, is a multiple of 8 bytes ... */ for (i = 0; i < NMTUS; i++) if (adap->params.mtus[i] == 1492) { adap->params.mtus[i] = 1488; break; } t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, adap->params.b_wnd); } t4_init_sge_params(adap); t4_init_tp_params(adap); configure_pcie_ext_tag(adap); configure_vlan_types(adap); cxgbe_configure_max_ethqsets(adap); adap->params.drv_memwin = MEMWIN_NIC; adap->flags |= FW_OK; dev_debug(adap, "%s: returning zero..\n", __func__); return 0; /* * Something bad happened. If a command timed out or failed with EIO * FW does not operate within its spec or something catastrophic * happened to HW/FW, stop issuing commands. */ bye: if (ret != -ETIMEDOUT && ret != -EIO) t4_fw_bye(adap, adap->mbox); return ret; } /** * t4_os_portmod_changed - handle port module changes * @adap: the adapter associated with the module change * @port_id: the port index whose module status has changed * * This is the OS-dependent handler for port module changes. It is * invoked when a port module is removed or inserted for any OS-specific * processing. */ void t4_os_portmod_changed(const struct adapter *adap, int port_id) { static const char * const mod_str[] = { NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" }; const struct port_info *pi = adap2pinfo(adap, port_id); if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) dev_info(adap, "Port%d: port module unplugged\n", pi->port_id); else if (pi->mod_type < ARRAY_SIZE(mod_str)) dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id, mod_str[pi->mod_type]); else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) dev_info(adap, "Port%d: unsupported port module inserted\n", pi->port_id); else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) dev_info(adap, "Port%d: unknown port module inserted\n", pi->port_id); else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) dev_info(adap, "Port%d: transceiver module error\n", pi->port_id); else dev_info(adap, "Port%d: unknown module type %d inserted\n", pi->port_id, pi->mod_type); } bool cxgbe_force_linkup(struct adapter *adap) { struct rte_pci_device *pdev = adap->pdev; if (is_pf4(adap)) return false; /* force_linkup not required for pf driver*/ if (!cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_FORCE_LINK_UP)) return false; return true; } /** * link_start - enable a port * @dev: the port to enable * * Performs the MAC and PHY actions needed to enable a port. */ int cxgbe_link_start(struct port_info *pi) { struct adapter *adapter = pi->adapter; u64 conf_offloads; unsigned int mtu; int ret; mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len - (ETHER_HDR_LEN + ETHER_CRC_LEN); conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads; /* * We do not set address filters and promiscuity here, the stack does * that step explicitly. */ ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1, !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP), true); if (ret == 0) { ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt, (u8 *)&pi->eth_dev->data->mac_addrs[0]); if (ret >= 0) { pi->xact_addr_filt = ret; ret = 0; } } if (ret == 0 && is_pf4(adapter)) ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan, &pi->link_cfg); if (ret == 0) { /* * Enabling a Virtual Interface can result in an interrupt * during the processing of the VI Enable command and, in some * paths, result in an attempt to issue another command in the * interrupt context. Thus, we disable interrupts during the * course of the VI Enable command ... */ ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid, true, true, false); } if (ret == 0 && cxgbe_force_linkup(adapter)) pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP; return ret; } /** * cxgbe_write_rss_conf - flash the RSS configuration for a given port * @pi: the port * @rss_hf: Hash configuration to apply */ int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf) { struct adapter *adapter = pi->adapter; const struct sge_eth_rxq *rxq; u64 flags = 0; u16 rss; int err; /* Should never be called before setting up sge eth rx queues */ if (!(adapter->flags & FULL_INIT_DONE)) { dev_err(adap, "%s No RXQs available on port %d\n", __func__, pi->port_id); return -EINVAL; } /* Don't allow unsupported hash functions */ if (rss_hf & ~CXGBE_RSS_HF_ALL) return -EINVAL; if (rss_hf & CXGBE_RSS_HF_IPV4_MASK) flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; if (rss_hf & CXGBE_RSS_HF_IPV6_MASK) flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK) flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK) flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; rxq = &adapter->sge.ethrxq[pi->first_qset]; rss = rxq[0].rspq.abs_id; /* If Tunnel All Lookup isn't specified in the global RSS * Configuration, then we need to specify a default Ingress * Queue for any ingress packets which aren't hashed. We'll * use our first ingress queue ... */ err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, flags, rss); return err; } /** * cxgbe_write_rss - write the RSS table for a given port * @pi: the port * @queues: array of queue indices for RSS * * Sets up the portion of the HW RSS table for the port's VI to distribute * packets to the Rx queues in @queues. */ int cxgbe_write_rss(const struct port_info *pi, const u16 *queues) { u16 *rss; int i, err; struct adapter *adapter = pi->adapter; const struct sge_eth_rxq *rxq; /* Should never be called before setting up sge eth rx queues */ BUG_ON(!(adapter->flags & FULL_INIT_DONE)); rxq = &adapter->sge.ethrxq[pi->first_qset]; rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0); if (!rss) return -ENOMEM; /* map the queue indices to queue ids */ for (i = 0; i < pi->rss_size; i++, queues++) rss[i] = rxq[*queues].rspq.abs_id; err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, pi->rss_size, rss, pi->rss_size); rte_free(rss); return err; } /** * setup_rss - configure RSS * @adapter: the adapter * * Sets up RSS to distribute packets to multiple receive queues. We * configure the RSS CPU lookup table to distribute to the number of HW * receive queues, and the response queue lookup table to narrow that * down to the response queues actually configured for each port. * We always configure the RSS mapping for all ports since the mapping * table has plenty of entries. */ int cxgbe_setup_rss(struct port_info *pi) { int j, err; struct adapter *adapter = pi->adapter; dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n", __func__, pi->rss_size, pi->n_rx_qsets); if (!(pi->flags & PORT_RSS_DONE)) { if (adapter->flags & FULL_INIT_DONE) { /* Fill default values with equal distribution */ for (j = 0; j < pi->rss_size; j++) pi->rss[j] = j % pi->n_rx_qsets; err = cxgbe_write_rss(pi, pi->rss); if (err) return err; err = cxgbe_write_rss_conf(pi, pi->rss_hf); if (err) return err; pi->flags |= PORT_RSS_DONE; } } return 0; } /* * Enable NAPI scheduling and interrupt generation for all Rx queues. */ static void enable_rx(struct adapter *adap, struct sge_rspq *q) { /* 0-increment GTS to start the timer and enable interrupts */ t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) : T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS, V_SEINTARM(q->intr_params) | V_INGRESSQID(q->cntxt_id)); } void cxgbe_enable_rx_queues(struct port_info *pi) { struct adapter *adap = pi->adapter; struct sge *s = &adap->sge; unsigned int i; for (i = 0; i < pi->n_rx_qsets; i++) enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq); } /** * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps. * @port_type: Firmware Port Type * @fw_caps: Firmware Port Capabilities * @speed_caps: Device Info Speed Capabilities * * Translate a Firmware Port Capabilities specification to Device Info * Speed Capabilities. */ static void fw_caps_to_speed_caps(enum fw_port_type port_type, unsigned int fw_caps, u32 *speed_caps) { #define SET_SPEED(__speed_name) \ do { \ *speed_caps |= ETH_LINK_ ## __speed_name; \ } while (0) #define FW_CAPS_TO_SPEED(__fw_name) \ do { \ if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \ SET_SPEED(__fw_name); \ } while (0) switch (port_type) { case FW_PORT_TYPE_BT_SGMII: case FW_PORT_TYPE_BT_XFI: case FW_PORT_TYPE_BT_XAUI: FW_CAPS_TO_SPEED(SPEED_100M); FW_CAPS_TO_SPEED(SPEED_1G); FW_CAPS_TO_SPEED(SPEED_10G); break; case FW_PORT_TYPE_KX4: case FW_PORT_TYPE_KX: case FW_PORT_TYPE_FIBER_XFI: case FW_PORT_TYPE_FIBER_XAUI: case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_QSFP_10G: case FW_PORT_TYPE_QSA: FW_CAPS_TO_SPEED(SPEED_1G); FW_CAPS_TO_SPEED(SPEED_10G); break; case FW_PORT_TYPE_KR: SET_SPEED(SPEED_10G); break; case FW_PORT_TYPE_BP_AP: case FW_PORT_TYPE_BP4_AP: SET_SPEED(SPEED_1G); SET_SPEED(SPEED_10G); break; case FW_PORT_TYPE_BP40_BA: case FW_PORT_TYPE_QSFP: SET_SPEED(SPEED_40G); break; case FW_PORT_TYPE_CR_QSFP: case FW_PORT_TYPE_SFP28: case FW_PORT_TYPE_KR_SFP28: FW_CAPS_TO_SPEED(SPEED_1G); FW_CAPS_TO_SPEED(SPEED_10G); FW_CAPS_TO_SPEED(SPEED_25G); break; case FW_PORT_TYPE_CR2_QSFP: SET_SPEED(SPEED_50G); break; case FW_PORT_TYPE_KR4_100G: case FW_PORT_TYPE_CR4_QSFP: FW_CAPS_TO_SPEED(SPEED_25G); FW_CAPS_TO_SPEED(SPEED_40G); FW_CAPS_TO_SPEED(SPEED_50G); FW_CAPS_TO_SPEED(SPEED_100G); break; default: break; } #undef FW_CAPS_TO_SPEED #undef SET_SPEED } /** * cxgbe_get_speed_caps - Fetch supported speed capabilities * @pi: Underlying port's info * @speed_caps: Device Info speed capabilities * * Fetch supported speed capabilities of the underlying port. */ void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps) { *speed_caps = 0; fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps, speed_caps); if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)) *speed_caps |= ETH_LINK_SPEED_FIXED; } /** * cxgbe_set_link_status - Set device link up or down. * @pi: Underlying port's info * @status: 0 - down, 1 - up * * Set the device link up or down. */ int cxgbe_set_link_status(struct port_info *pi, bool status) { struct adapter *adapter = pi->adapter; int err = 0; err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status); if (err) { dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err); return err; } if (!status) t4_reset_link_config(adapter, pi->pidx); return 0; } /** * cxgb_up - enable the adapter * @adap: adapter being enabled * * Called when the first port is enabled, this function performs the * actions necessary to make an adapter operational, such as completing * the initialization of HW modules, and enabling interrupts. */ int cxgbe_up(struct adapter *adap) { enable_rx(adap, &adap->sge.fw_evtq); t4_sge_tx_monitor_start(adap); if (is_pf4(adap)) t4_intr_enable(adap); adap->flags |= FULL_INIT_DONE; /* TODO: deadman watchdog ?? */ return 0; } /* * Close the port */ int cxgbe_down(struct port_info *pi) { return cxgbe_set_link_status(pi, false); } /* * Release resources when all the ports have been stopped. */ void cxgbe_close(struct adapter *adapter) { struct port_info *pi; int i; if (adapter->flags & FULL_INIT_DONE) { tid_free(&adapter->tids); t4_cleanup_mpstcam(adapter); t4_cleanup_clip_tbl(adapter); t4_cleanup_l2t(adapter); if (is_pf4(adapter)) t4_intr_disable(adapter); t4_sge_tx_monitor_stop(adapter); t4_free_sge_resources(adapter); for_each_port(adapter, i) { pi = adap2pinfo(adapter, i); if (pi->viid != 0) t4_free_vi(adapter, adapter->mbox, adapter->pf, 0, pi->viid); rte_eth_dev_release_port(pi->eth_dev); } adapter->flags &= ~FULL_INIT_DONE; } if (is_pf4(adapter) && (adapter->flags & FW_OK)) t4_fw_bye(adapter, adapter->mbox); } int cxgbe_probe(struct adapter *adapter) { struct port_info *pi; int chip; int func, i; int err = 0; u32 whoami; whoami = t4_read_reg(adapter, A_PL_WHOAMI); chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id)); if (chip < 0) return chip; func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami); adapter->mbox = func; adapter->pf = func; t4_os_lock_init(&adapter->mbox_lock); TAILQ_INIT(&adapter->mbox_list); t4_os_lock_init(&adapter->win0_lock); err = t4_prep_adapter(adapter); if (err) return err; setup_memwin(adapter); err = adap_init0(adapter); if (err) { dev_err(adapter, "%s: Adapter initialization failed, error %d\n", __func__, err); goto out_free; } if (!is_t4(adapter->params.chip)) { /* * The userspace doorbell BAR is split evenly into doorbell * regions, each associated with an egress queue. If this * per-queue region is large enough (at least UDBS_SEG_SIZE) * then it can be used to submit a tx work request with an * implied doorbell. Enable write combining on the BAR if * there is room for such work requests. */ int s_qpp, qpp, num_seg; s_qpp = (S_QUEUESPERPAGEPF0 + (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf); qpp = 1 << ((t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp) & M_QUEUESPERPAGEPF0); num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE; if (qpp > num_seg) dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n"); adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr; if (!adapter->bar2) { dev_err(adapter, "cannot map device bar2 region\n"); err = -ENOMEM; goto out_free; } t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) | V_STATMODE(0)); } for_each_port(adapter, i) { const unsigned int numa_node = rte_socket_id(); char name[RTE_ETH_NAME_MAX_LEN]; struct rte_eth_dev *eth_dev; snprintf(name, sizeof(name), "%s_%d", adapter->pdev->device.name, i); if (i == 0) { /* First port is already allocated by DPDK */ eth_dev = adapter->eth_dev; goto allocate_mac; } /* * now do all data allocation - for eth_dev structure, * and internal (private) data for the remaining ports */ /* reserve an ethdev entry */ eth_dev = rte_eth_dev_allocate(name); if (!eth_dev) goto out_free; eth_dev->data->dev_private = rte_zmalloc_socket(name, sizeof(struct port_info), RTE_CACHE_LINE_SIZE, numa_node); if (!eth_dev->data->dev_private) goto out_free; allocate_mac: pi = eth_dev->data->dev_private; adapter->port[i] = pi; pi->eth_dev = eth_dev; pi->adapter = adapter; pi->xact_addr_filt = -1; pi->port_id = i; pi->pidx = i; pi->eth_dev->device = &adapter->pdev->device; pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops; pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst; pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst; rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev); pi->eth_dev->data->mac_addrs = rte_zmalloc(name, ETHER_ADDR_LEN, 0); if (!pi->eth_dev->data->mac_addrs) { dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n", __func__); err = -1; goto out_free; } if (i > 0) { /* First port will be notified by upper layer */ rte_eth_dev_probing_finish(eth_dev); } } if (adapter->flags & FW_OK) { err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0); if (err) { dev_err(adapter, "%s: t4_port_init failed with err %d\n", __func__, err); goto out_free; } } cxgbe_cfg_queues(adapter->eth_dev); cxgbe_print_adapter_info(adapter); cxgbe_print_port_info(adapter); adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, adapter->clipt_end); if (!adapter->clipt) { /* We tolerate a lack of clip_table, giving up some * functionality */ dev_warn(adapter, "could not allocate CLIP. Continuing\n"); } adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); if (!adapter->l2t) { /* We tolerate a lack of L2T, giving up some functionality */ dev_warn(adapter, "could not allocate L2T. Continuing\n"); } if (tid_init(&adapter->tids) < 0) { /* Disable filtering support */ dev_warn(adapter, "could not allocate TID table, " "filter support disabled. Continuing\n"); } adapter->mpstcam = t4_init_mpstcam(adapter); if (!adapter->mpstcam) dev_warn(adapter, "could not allocate mps tcam table." " Continuing\n"); if (is_hashfilter(adapter)) { if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) { u32 hash_base, hash_reg; hash_reg = A_LE_DB_TID_HASHBASE; hash_base = t4_read_reg(adapter, hash_reg); adapter->tids.hash_base = hash_base / 4; } } else { /* Disable hash filtering support */ dev_warn(adapter, "Maskless filter support disabled. Continuing\n"); } err = cxgbe_init_rss(adapter); if (err) goto out_free; return 0; out_free: for_each_port(adapter, i) { pi = adap2pinfo(adapter, i); if (pi->viid != 0) t4_free_vi(adapter, adapter->mbox, adapter->pf, 0, pi->viid); rte_eth_dev_release_port(pi->eth_dev); } if (adapter->flags & FW_OK) t4_fw_bye(adapter, adapter->mbox); return -err; }