/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "avf_log.h" #include "base/avf_prototype.h" #include "base/avf_adminq_cmd.h" #include "base/avf_type.h" #include "avf.h" #include "avf_rxtx.h" static int avf_dev_configure(struct rte_eth_dev *dev); static int avf_dev_start(struct rte_eth_dev *dev); static void avf_dev_stop(struct rte_eth_dev *dev); static void avf_dev_close(struct rte_eth_dev *dev); static void avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev); static int avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev); static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev); static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev); static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev); static int avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr, uint32_t index, uint32_t pool); static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index); static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask); static int avf_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int avf_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int avf_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf); static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev, struct ether_addr *mac_addr); static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); int avf_logtype_init; int avf_logtype_driver; static const struct rte_pci_id pci_id_avf_map[] = { { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) }, { .vendor_id = 0, /* sentinel */ }, }; static const struct eth_dev_ops avf_eth_dev_ops = { .dev_configure = avf_dev_configure, .dev_start = avf_dev_start, .dev_stop = avf_dev_stop, .dev_close = avf_dev_close, .dev_infos_get = avf_dev_info_get, .dev_supported_ptypes_get = avf_dev_supported_ptypes_get, .link_update = avf_dev_link_update, .stats_get = avf_dev_stats_get, .promiscuous_enable = avf_dev_promiscuous_enable, .promiscuous_disable = avf_dev_promiscuous_disable, .allmulticast_enable = avf_dev_allmulticast_enable, .allmulticast_disable = avf_dev_allmulticast_disable, .mac_addr_add = avf_dev_add_mac_addr, .mac_addr_remove = avf_dev_del_mac_addr, .vlan_filter_set = avf_dev_vlan_filter_set, .vlan_offload_set = avf_dev_vlan_offload_set, .rx_queue_start = avf_dev_rx_queue_start, .rx_queue_stop = avf_dev_rx_queue_stop, .tx_queue_start = avf_dev_tx_queue_start, .tx_queue_stop = avf_dev_tx_queue_stop, .rx_queue_setup = avf_dev_rx_queue_setup, .rx_queue_release = avf_dev_rx_queue_release, .tx_queue_setup = avf_dev_tx_queue_setup, .tx_queue_release = avf_dev_tx_queue_release, .mac_addr_set = avf_dev_set_default_mac_addr, .reta_update = avf_dev_rss_reta_update, .reta_query = avf_dev_rss_reta_query, .rss_hash_update = avf_dev_rss_hash_update, .rss_hash_conf_get = avf_dev_rss_hash_conf_get, .rxq_info_get = avf_dev_rxq_info_get, .txq_info_get = avf_dev_txq_info_get, .rx_queue_count = avf_dev_rxq_count, .rx_descriptor_status = avf_dev_rx_desc_status, .tx_descriptor_status = avf_dev_tx_desc_status, .mtu_set = avf_dev_mtu_set, .rx_queue_intr_enable = avf_dev_rx_queue_intr_enable, .rx_queue_intr_disable = avf_dev_rx_queue_intr_disable, }; static int avf_dev_configure(struct rte_eth_dev *dev) { struct avf_adapter *ad = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(ad); struct rte_eth_conf *dev_conf = &dev->data->dev_conf; ad->rx_bulk_alloc_allowed = true; #ifdef RTE_LIBRTE_AVF_INC_VECTOR /* Initialize to TRUE. If any of Rx queues doesn't meet the * vector Rx/Tx preconditions, it will be reset. */ ad->rx_vec_allowed = true; ad->tx_vec_allowed = true; #else ad->rx_vec_allowed = false; ad->tx_vec_allowed = false; #endif /* Vlan stripping setting */ if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) { if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP) avf_enable_vlan_strip(ad); else avf_disable_vlan_strip(ad); } return 0; } static int avf_init_rss(struct avf_adapter *adapter) { struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); struct rte_eth_rss_conf *rss_conf; uint8_t i, j, nb_q; int ret; rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf; nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues, AVF_MAX_NUM_QUEUES); if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) { PMD_DRV_LOG(DEBUG, "RSS is not supported"); return -ENOTSUP; } if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) { PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default"); /* set all lut items to default queue */ for (i = 0; i < vf->vf_res->rss_lut_size; i++) vf->rss_lut[i] = 0; ret = avf_configure_rss_lut(adapter); return ret; } /* In AVF, RSS enablement is set by PF driver. It is not supported * to set based on rss_conf->rss_hf. */ /* configure RSS key */ if (!rss_conf->rss_key) { /* Calculate the default hash key */ for (i = 0; i <= vf->vf_res->rss_key_size; i++) vf->rss_key[i] = (uint8_t)rte_rand(); } else rte_memcpy(vf->rss_key, rss_conf->rss_key, RTE_MIN(rss_conf->rss_key_len, vf->vf_res->rss_key_size)); /* init RSS LUT table */ for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) { if (j >= nb_q) j = 0; vf->rss_lut[i] = j; } /* send virtchnnl ops to configure rss*/ ret = avf_configure_rss_lut(adapter); if (ret) return ret; ret = avf_configure_rss_key(adapter); if (ret) return ret; return 0; } static int avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq) { struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_dev_data *dev_data = dev->data; uint16_t buf_size, max_pkt_len, len; buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM; /* Calculate the maximum packet length allowed */ len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS; max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len); /* Check if the jumbo frame and maximum packet length are set * correctly. */ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { if (max_pkt_len <= ETHER_MAX_LEN || max_pkt_len > AVF_FRAME_SIZE_MAX) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, " "as jumbo frame is enabled", (uint32_t)ETHER_MAX_LEN, (uint32_t)AVF_FRAME_SIZE_MAX); return -EINVAL; } } else { if (max_pkt_len < ETHER_MIN_LEN || max_pkt_len > ETHER_MAX_LEN) { PMD_DRV_LOG(ERR, "maximum packet length must be " "larger than %u and smaller than %u, " "as jumbo frame is disabled", (uint32_t)ETHER_MIN_LEN, (uint32_t)ETHER_MAX_LEN); return -EINVAL; } } rxq->max_pkt_len = max_pkt_len; if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) || (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) { dev_data->scattered_rx = 1; } AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); AVF_WRITE_FLUSH(hw); return 0; } static int avf_init_queues(struct rte_eth_dev *dev) { struct avf_rx_queue **rxq = (struct avf_rx_queue **)dev->data->rx_queues; int i, ret = AVF_SUCCESS; for (i = 0; i < dev->data->nb_rx_queues; i++) { if (!rxq[i] || !rxq[i]->q_set) continue; ret = avf_init_rxq(dev, rxq[i]); if (ret != AVF_SUCCESS) break; } /* set rx/tx function to vector/scatter/single-segment * according to parameters */ avf_set_rx_function(dev); avf_set_tx_function(dev); return ret; } static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter); uint16_t interval, i; int vec; if (rte_intr_cap_multiple(intr_handle) && dev->data->dev_conf.intr_conf.rxq) { if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues)) return -1; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (!intr_handle->intr_vec) { PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec", dev->data->nb_rx_queues); return -1; } } if (!dev->data->dev_conf.intr_conf.rxq || !rte_intr_dp_is_en(intr_handle)) { /* Rx interrupt disabled, Map interrupt only for writeback */ vf->nb_msix = 1; if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) { /* If WB_ON_ITR supports, enable it */ vf->msix_base = AVF_RX_VEC_START; AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1), AVFINT_DYN_CTLN1_ITR_INDX_MASK | AVFINT_DYN_CTLN1_WB_ON_ITR_MASK); } else { /* If no WB_ON_ITR offload flags, need to set * interrupt for descriptor write back. */ vf->msix_base = AVF_MISC_VEC_ID; /* set ITR to max */ interval = avf_calc_itr_interval( AVF_QUEUE_ITR_INTERVAL_MAX); AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK | (AVF_ITR_INDEX_DEFAULT << AVFINT_DYN_CTL01_ITR_INDX_SHIFT) | (interval << AVFINT_DYN_CTL01_INTERVAL_SHIFT)); } AVF_WRITE_FLUSH(hw); /* map all queues to the same interrupt */ for (i = 0; i < dev->data->nb_rx_queues; i++) vf->rxq_map[vf->msix_base] |= 1 << i; } else { if (!rte_intr_allow_others(intr_handle)) { vf->nb_msix = 1; vf->msix_base = AVF_MISC_VEC_ID; for (i = 0; i < dev->data->nb_rx_queues; i++) { vf->rxq_map[vf->msix_base] |= 1 << i; intr_handle->intr_vec[i] = AVF_MISC_VEC_ID; } PMD_DRV_LOG(DEBUG, "vector %u are mapping to all Rx queues", vf->msix_base); } else { /* If Rx interrupt is reuquired, and we can use * multi interrupts, then the vec is from 1 */ vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors, intr_handle->nb_efd); vf->msix_base = AVF_RX_VEC_START; vec = AVF_RX_VEC_START; for (i = 0; i < dev->data->nb_rx_queues; i++) { vf->rxq_map[vec] |= 1 << i; intr_handle->intr_vec[i] = vec++; if (vec >= vf->nb_msix) vec = AVF_RX_VEC_START; } PMD_DRV_LOG(DEBUG, "%u vectors are mapping to %u Rx queues", vf->nb_msix, dev->data->nb_rx_queues); } } if (avf_config_irq_map(adapter)) { PMD_DRV_LOG(ERR, "config interrupt mapping failed"); return -1; } return 0; } static int avf_start_queues(struct rte_eth_dev *dev) { struct avf_rx_queue *rxq; struct avf_tx_queue *txq; int i; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq->tx_deferred_start) continue; if (avf_dev_tx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", i); return -1; } } for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (rxq->rx_deferred_start) continue; if (avf_dev_rx_queue_start(dev, i) != 0) { PMD_DRV_LOG(ERR, "Fail to start queue %u", i); return -1; } } return 0; } static int avf_dev_start(struct rte_eth_dev *dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_intr_handle *intr_handle = dev->intr_handle; PMD_INIT_FUNC_TRACE(); hw->adapter_stopped = 0; vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len; vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues, dev->data->nb_tx_queues); if (avf_init_queues(dev) != 0) { PMD_DRV_LOG(ERR, "failed to do Queue init"); return -1; } if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { if (avf_init_rss(adapter) != 0) { PMD_DRV_LOG(ERR, "configure rss failed"); goto err_rss; } } if (avf_configure_queues(adapter) != 0) { PMD_DRV_LOG(ERR, "configure queues failed"); goto err_queue; } if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) { PMD_DRV_LOG(ERR, "configure irq failed"); goto err_queue; } /* re-enable intr again, because efd assign may change */ if (dev->data->dev_conf.intr_conf.rxq != 0) { rte_intr_disable(intr_handle); rte_intr_enable(intr_handle); } /* Set all mac addrs */ avf_add_del_all_mac_addr(adapter, TRUE); if (avf_start_queues(dev) != 0) { PMD_DRV_LOG(ERR, "enable queues failed"); goto err_mac; } return 0; err_mac: avf_add_del_all_mac_addr(adapter, FALSE); err_queue: err_rss: return -1; } static void avf_dev_stop(struct rte_eth_dev *dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_intr_handle *intr_handle = dev->intr_handle; PMD_INIT_FUNC_TRACE(); if (hw->adapter_stopped == 1) return; avf_stop_queues(dev); /* Disable the interrupt for Rx */ rte_intr_efd_disable(intr_handle); /* Rx interrupt vector mapping free */ if (intr_handle->intr_vec) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } /* remove all mac addrs */ avf_add_del_all_mac_addr(adapter, FALSE); hw->adapter_stopped = 1; } static void avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs; dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs; dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN; dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX; dev_info->hash_key_size = vf->vf_res->rss_key_size; dev_info->reta_size = vf->vf_res->rss_lut_size; dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL; dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_VLAN_FILTER; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_QINQ_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_IPIP_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO | DEV_TX_OFFLOAD_MULTI_SEGS; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, .offloads = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH, .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH, .offloads = 0, }; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = AVF_MAX_RING_DESC, .nb_min = AVF_MIN_RING_DESC, .nb_align = AVF_ALIGN_RING_DESC, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = AVF_MAX_RING_DESC, .nb_min = AVF_MIN_RING_DESC, .nb_align = AVF_ALIGN_RING_DESC, }; } static const uint32_t * avf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_ICMP, RTE_PTYPE_L4_NONFRAG, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_UNKNOWN }; return ptypes; } int avf_dev_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete) { struct rte_eth_link new_link; struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); /* Only read status info stored in VF, and the info is updated * when receive LINK_CHANGE evnet from PF by Virtchnnl. */ switch (vf->link_speed) { case VIRTCHNL_LINK_SPEED_100MB: new_link.link_speed = ETH_SPEED_NUM_100M; break; case VIRTCHNL_LINK_SPEED_1GB: new_link.link_speed = ETH_SPEED_NUM_1G; break; case VIRTCHNL_LINK_SPEED_10GB: new_link.link_speed = ETH_SPEED_NUM_10G; break; case VIRTCHNL_LINK_SPEED_20GB: new_link.link_speed = ETH_SPEED_NUM_20G; break; case VIRTCHNL_LINK_SPEED_25GB: new_link.link_speed = ETH_SPEED_NUM_25G; break; case VIRTCHNL_LINK_SPEED_40GB: new_link.link_speed = ETH_SPEED_NUM_40G; break; default: new_link.link_speed = ETH_SPEED_NUM_NONE; break; } new_link.link_duplex = ETH_LINK_FULL_DUPLEX; new_link.link_status = vf->link_up ? ETH_LINK_UP : ETH_LINK_DOWN; new_link.link_autoneg = !(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED); if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link, *(uint64_t *)&dev->data->dev_link, *(uint64_t *)&new_link) == 0) return -1; return 0; } static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); int ret; if (vf->promisc_unicast_enabled) return; ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled); if (!ret) vf->promisc_unicast_enabled = TRUE; } static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); int ret; if (!vf->promisc_unicast_enabled) return; ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled); if (!ret) vf->promisc_unicast_enabled = FALSE; } static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); int ret; if (vf->promisc_multicast_enabled) return; ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE); if (!ret) vf->promisc_multicast_enabled = TRUE; } static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); int ret; if (!vf->promisc_multicast_enabled) return; ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE); if (!ret) vf->promisc_multicast_enabled = FALSE; } static int avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr, __rte_unused uint32_t index, __rte_unused uint32_t pool) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); int err; if (is_zero_ether_addr(addr)) { PMD_DRV_LOG(ERR, "Invalid Ethernet Address"); return -EINVAL; } err = avf_add_del_eth_addr(adapter, addr, TRUE); if (err) { PMD_DRV_LOG(ERR, "fail to add MAC address"); return -EIO; } vf->mac_num++; return 0; } static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); struct ether_addr *addr; int err; addr = &dev->data->mac_addrs[index]; err = avf_add_del_eth_addr(adapter, addr, FALSE); if (err) PMD_DRV_LOG(ERR, "fail to delete MAC address"); vf->mac_num--; } static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); int err; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) return -ENOTSUP; err = avf_add_del_vlan(adapter, vlan_id, on); if (err) return -EIO; return 0; } static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); struct rte_eth_conf *dev_conf = &dev->data->dev_conf; int err; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) return -ENOTSUP; /* Vlan stripping setting */ if (mask & ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP) err = avf_enable_vlan_strip(adapter); else err = avf_disable_vlan_strip(adapter); if (err) return -EIO; } return 0; } static int avf_dev_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); uint8_t *lut; uint16_t i, idx, shift; int ret; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; if (reta_size != vf->vf_res->rss_lut_size) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, vf->vf_res->rss_lut_size); return -EINVAL; } lut = rte_zmalloc("rss_lut", reta_size, 0); if (!lut) { PMD_DRV_LOG(ERR, "No memory can be allocated"); return -ENOMEM; } /* store the old lut table temporarily */ rte_memcpy(lut, vf->rss_lut, reta_size); for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) lut[i] = reta_conf[idx].reta[shift]; } rte_memcpy(vf->rss_lut, lut, reta_size); /* send virtchnnl ops to configure rss*/ ret = avf_configure_rss_lut(adapter); if (ret) /* revert back */ rte_memcpy(vf->rss_lut, lut, reta_size); rte_free(lut); return ret; } static int avf_dev_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); uint16_t i, idx, shift; if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; if (reta_size != vf->vf_res->rss_lut_size) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, vf->vf_res->rss_lut_size); return -EINVAL; } for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) reta_conf[idx].reta[shift] = vf->rss_lut[i]; } return 0; } static int avf_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; /* HENA setting, it is enabled by default, no change */ if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) { PMD_DRV_LOG(DEBUG, "No key to be configured"); return 0; } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) { PMD_DRV_LOG(ERR, "The size of hash key configured " "(%d) doesn't match the size of hardware can " "support (%d)", rss_conf->rss_key_len, vf->vf_res->rss_key_size); return -EINVAL; } rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len); return avf_configure_rss_key(adapter); } static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter); if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) return -ENOTSUP; /* Just set it to default value now. */ rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL; if (!rss_conf->rss_key) return 0; rss_conf->rss_key_len = vf->vf_res->rss_key_size; rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len); return 0; } static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { uint32_t frame_size = mtu + AVF_ETH_OVERHEAD; int ret = 0; if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX) return -EINVAL; /* mtu setting is forbidden if port is start */ if (dev->data->dev_started) { PMD_DRV_LOG(ERR, "port must be stopped before configuration"); return -EBUSY; } if (frame_size > ETHER_MAX_LEN) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; else dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; return ret; } static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev, struct ether_addr *mac_addr) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter); struct ether_addr *perm_addr, *old_addr; int ret; old_addr = (struct ether_addr *)hw->mac.addr; perm_addr = (struct ether_addr *)hw->mac.perm_addr; if (is_same_ether_addr(mac_addr, old_addr)) return 0; /* If the MAC address is configured by host, skip the setting */ if (is_valid_assigned_ether_addr(perm_addr)) return -EPERM; ret = avf_add_del_eth_addr(adapter, old_addr, FALSE); if (ret) PMD_DRV_LOG(ERR, "Fail to delete old MAC:" " %02X:%02X:%02X:%02X:%02X:%02X", old_addr->addr_bytes[0], old_addr->addr_bytes[1], old_addr->addr_bytes[2], old_addr->addr_bytes[3], old_addr->addr_bytes[4], old_addr->addr_bytes[5]); ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE); if (ret) PMD_DRV_LOG(ERR, "Fail to add new MAC:" " %02X:%02X:%02X:%02X:%02X:%02X", mac_addr->addr_bytes[0], mac_addr->addr_bytes[1], mac_addr->addr_bytes[2], mac_addr->addr_bytes[3], mac_addr->addr_bytes[4], mac_addr->addr_bytes[5]); if (ret) return -EIO; ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr); return 0; } static int avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct virtchnl_eth_stats *pstats = NULL; int ret; ret = avf_query_stats(adapter, &pstats); if (ret == 0) { stats->ipackets = pstats->rx_unicast + pstats->rx_multicast + pstats->rx_broadcast; stats->opackets = pstats->tx_broadcast + pstats->tx_multicast + pstats->tx_unicast; stats->imissed = pstats->rx_discards; stats->oerrors = pstats->tx_errors + pstats->tx_discards; stats->ibytes = pstats->rx_bytes; stats->ibytes -= stats->ipackets * ETHER_CRC_LEN; stats->obytes = pstats->tx_bytes; } else { PMD_DRV_LOG(ERR, "Get statistics failed"); } return -EIO; } static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter); uint16_t msix_intr; msix_intr = pci_dev->intr_handle.intr_vec[queue_id]; if (msix_intr == AVF_MISC_VEC_ID) { PMD_DRV_LOG(INFO, "MISC is also enabled for control"); AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK | AVFINT_DYN_CTL01_ITR_INDX_MASK); } else { AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START), AVFINT_DYN_CTLN1_INTENA_MASK | AVFINT_DYN_CTLN1_ITR_INDX_MASK); } AVF_WRITE_FLUSH(hw); rte_intr_enable(&pci_dev->intr_handle); return 0; } static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t msix_intr; msix_intr = pci_dev->intr_handle.intr_vec[queue_id]; if (msix_intr == AVF_MISC_VEC_ID) { PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it"); return -EIO; } AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START), 0); AVF_WRITE_FLUSH(hw); return 0; } static int avf_check_vf_reset_done(struct avf_hw *hw) { int i, reset; for (i = 0; i < AVF_RESET_WAIT_CNT; i++) { reset = AVF_READ_REG(hw, AVFGEN_RSTAT) & AVFGEN_RSTAT_VFR_STATE_MASK; reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT; if (reset == VIRTCHNL_VFR_VFACTIVE || reset == VIRTCHNL_VFR_COMPLETED) break; rte_delay_ms(20); } if (i >= AVF_RESET_WAIT_CNT) return -1; return 0; } static int avf_init_vf(struct rte_eth_dev *dev) { int err, bufsz; struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); err = avf_set_mac_type(hw); if (err) { PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err); goto err; } err = avf_check_vf_reset_done(hw); if (err) { PMD_INIT_LOG(ERR, "VF is still resetting"); goto err; } avf_init_adminq_parameter(hw); err = avf_init_adminq(hw); if (err) { PMD_INIT_LOG(ERR, "init_adminq failed: %d", err); goto err; } vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0); if (!vf->aq_resp) { PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory"); goto err_aq; } if (avf_check_api_version(adapter) != 0) { PMD_INIT_LOG(ERR, "check_api version failed"); goto err_api; } bufsz = sizeof(struct virtchnl_vf_resource) + (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource)); vf->vf_res = rte_zmalloc("vf_res", bufsz, 0); if (!vf->vf_res) { PMD_INIT_LOG(ERR, "unable to allocate vf_res memory"); goto err_api; } if (avf_get_vf_resource(adapter) != 0) { PMD_INIT_LOG(ERR, "avf_get_vf_config failed"); goto err_alloc; } /* Allocate memort for RSS info */ if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { vf->rss_key = rte_zmalloc("rss_key", vf->vf_res->rss_key_size, 0); if (!vf->rss_key) { PMD_INIT_LOG(ERR, "unable to allocate rss_key memory"); goto err_rss; } vf->rss_lut = rte_zmalloc("rss_lut", vf->vf_res->rss_lut_size, 0); if (!vf->rss_lut) { PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory"); goto err_rss; } } return 0; err_rss: rte_free(vf->rss_key); rte_free(vf->rss_lut); err_alloc: rte_free(vf->vf_res); vf->vsi_res = NULL; err_api: rte_free(vf->aq_resp); err_aq: avf_shutdown_adminq(hw); err: return -1; } /* Enable default admin queue interrupt setting */ static inline void avf_enable_irq0(struct avf_hw *hw) { /* Enable admin queue interrupt trigger */ AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK); AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK | AVFINT_DYN_CTL01_CLEARPBA_MASK | AVFINT_DYN_CTL01_ITR_INDX_MASK); AVF_WRITE_FLUSH(hw); } static inline void avf_disable_irq0(struct avf_hw *hw) { /* Disable all interrupt types */ AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0); AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_ITR_INDX_MASK); AVF_WRITE_FLUSH(hw); } static void avf_dev_interrupt_handler(void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); avf_disable_irq0(hw); avf_handle_virtchnl_msg(dev); avf_enable_irq0(hw); } static int avf_dev_init(struct rte_eth_dev *eth_dev) { struct avf_adapter *adapter = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); PMD_INIT_FUNC_TRACE(); /* assign ops func pointer */ eth_dev->dev_ops = &avf_eth_dev_ops; eth_dev->rx_pkt_burst = &avf_recv_pkts; eth_dev->tx_pkt_burst = &avf_xmit_pkts; eth_dev->tx_pkt_prepare = &avf_prep_pkts; /* For secondary processes, we don't initialise any further as primary * has already done this work. Only check if we need a different RX * and TX function. */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { avf_set_rx_function(eth_dev); avf_set_tx_function(eth_dev); return 0; } rte_eth_copy_pci_info(eth_dev, pci_dev); hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = pci_dev->id.subsystem_device_id; hw->bus.bus_id = pci_dev->addr.bus; hw->bus.device = pci_dev->addr.devid; hw->bus.func = pci_dev->addr.function; hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private); adapter->eth_dev = eth_dev; if (avf_init_vf(eth_dev) != 0) { PMD_INIT_LOG(ERR, "Init vf failed"); return -1; } /* copy mac addr */ eth_dev->data->mac_addrs = rte_zmalloc( "avf_mac", ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX, 0); if (!eth_dev->data->mac_addrs) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to" " store MAC addresses", ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX); return -ENOMEM; } /* If the MAC address is not configured by host, * generate a random one. */ if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr)) eth_random_addr(hw->mac.addr); ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); /* register callback func to eal lib */ rte_intr_callback_register(&pci_dev->intr_handle, avf_dev_interrupt_handler, (void *)eth_dev); /* enable uio intr after callback register */ rte_intr_enable(&pci_dev->intr_handle); /* configure and enable device interrupt */ avf_enable_irq0(hw); return 0; } static void avf_dev_close(struct rte_eth_dev *dev) { struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; avf_dev_stop(dev); avf_shutdown_adminq(hw); /* disable uio intr before callback unregister */ rte_intr_disable(intr_handle); /* unregister callback func from eal lib */ rte_intr_callback_unregister(intr_handle, avf_dev_interrupt_handler, dev); avf_disable_irq0(hw); } static int avf_dev_uninit(struct rte_eth_dev *dev) { struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; dev->dev_ops = NULL; dev->rx_pkt_burst = NULL; dev->tx_pkt_burst = NULL; if (hw->adapter_stopped == 0) avf_dev_close(dev); rte_free(vf->vf_res); vf->vsi_res = NULL; vf->vf_res = NULL; rte_free(vf->aq_resp); vf->aq_resp = NULL; if (vf->rss_lut) { rte_free(vf->rss_lut); vf->rss_lut = NULL; } if (vf->rss_key) { rte_free(vf->rss_key); vf->rss_key = NULL; } return 0; } static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avf_adapter), avf_dev_init); } static int eth_avf_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit); } /* Adaptive virtual function driver struct */ static struct rte_pci_driver rte_avf_pmd = { .id_table = pci_id_avf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_IOVA_AS_VA, .probe = eth_avf_pci_probe, .remove = eth_avf_pci_remove, }; RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map); RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci"); RTE_INIT(avf_init_log) { avf_logtype_init = rte_log_register("pmd.net.avf.init"); if (avf_logtype_init >= 0) rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE); avf_logtype_driver = rte_log_register("pmd.net.avf.driver"); if (avf_logtype_driver >= 0) rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE); } /* memory func for base code */ enum avf_status_code avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw, struct avf_dma_mem *mem, u64 size, u32 alignment) { const struct rte_memzone *mz = NULL; char z_name[RTE_MEMZONE_NAMESIZE]; if (!mem) return AVF_ERR_PARAM; snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand()); mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M); if (!mz) return AVF_ERR_NO_MEMORY; mem->size = size; mem->va = mz->addr; mem->pa = mz->phys_addr; mem->zone = (const void *)mz; PMD_DRV_LOG(DEBUG, "memzone %s allocated with physical address: %"PRIu64, mz->name, mem->pa); return AVF_SUCCESS; } enum avf_status_code avf_free_dma_mem_d(__rte_unused struct avf_hw *hw, struct avf_dma_mem *mem) { if (!mem) return AVF_ERR_PARAM; PMD_DRV_LOG(DEBUG, "memzone %s to be freed with physical address: %"PRIu64, ((const struct rte_memzone *)mem->zone)->name, mem->pa); rte_memzone_free((const struct rte_memzone *)mem->zone); mem->zone = NULL; mem->va = NULL; mem->pa = (u64)0; return AVF_SUCCESS; } enum avf_status_code avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw, struct avf_virt_mem *mem, u32 size) { if (!mem) return AVF_ERR_PARAM; mem->size = size; mem->va = rte_zmalloc("avf", size, 0); if (mem->va) return AVF_SUCCESS; else return AVF_ERR_NO_MEMORY; } enum avf_status_code avf_free_virt_mem_d(__rte_unused struct avf_hw *hw, struct avf_virt_mem *mem) { if (!mem) return AVF_ERR_PARAM; rte_free(mem->va); mem->va = NULL; return AVF_SUCCESS; }