/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2016 6WIND S.A. * Copyright 2016 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include "rte_ethdev.h" #include "rte_flow_driver.h" #include "rte_flow.h" /* Mbuf dynamic field name for metadata. */ int rte_flow_dynf_metadata_offs = -1; /* Mbuf dynamic field flag bit number for metadata. */ uint64_t rte_flow_dynf_metadata_mask; /** * Flow elements description tables. */ struct rte_flow_desc_data { const char *name; size_t size; }; /** Generate flow_item[] entry. */ #define MK_FLOW_ITEM(t, s) \ [RTE_FLOW_ITEM_TYPE_ ## t] = { \ .name = # t, \ .size = s, \ } /** Information about known flow pattern items. */ static const struct rte_flow_desc_data rte_flow_desc_item[] = { MK_FLOW_ITEM(END, 0), MK_FLOW_ITEM(VOID, 0), MK_FLOW_ITEM(INVERT, 0), MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)), MK_FLOW_ITEM(PF, 0), MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)), MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)), MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)), MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)), MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)), MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)), MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)), MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)), MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)), MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)), MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)), MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)), MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)), MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)), MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)), MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)), MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)), MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)), MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)), MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)), MK_FLOW_ITEM(ESP, sizeof(struct rte_flow_item_esp)), MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)), MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)), MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)), MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)), MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)), MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)), MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)), MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)), MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH, sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)), MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH, sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)), MK_FLOW_ITEM(MARK, sizeof(struct rte_flow_item_mark)), MK_FLOW_ITEM(META, sizeof(struct rte_flow_item_meta)), MK_FLOW_ITEM(TAG, sizeof(struct rte_flow_item_tag)), MK_FLOW_ITEM(GRE_KEY, sizeof(rte_be32_t)), MK_FLOW_ITEM(GTP_PSC, sizeof(struct rte_flow_item_gtp_psc)), MK_FLOW_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)), MK_FLOW_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)), MK_FLOW_ITEM(PPPOE_PROTO_ID, sizeof(struct rte_flow_item_pppoe_proto_id)), MK_FLOW_ITEM(NSH, sizeof(struct rte_flow_item_nsh)), MK_FLOW_ITEM(IGMP, sizeof(struct rte_flow_item_igmp)), MK_FLOW_ITEM(AH, sizeof(struct rte_flow_item_ah)), MK_FLOW_ITEM(HIGIG2, sizeof(struct rte_flow_item_higig2_hdr)), }; /** Generate flow_action[] entry. */ #define MK_FLOW_ACTION(t, s) \ [RTE_FLOW_ACTION_TYPE_ ## t] = { \ .name = # t, \ .size = s, \ } /** Information about known flow actions. */ static const struct rte_flow_desc_data rte_flow_desc_action[] = { MK_FLOW_ACTION(END, 0), MK_FLOW_ACTION(VOID, 0), MK_FLOW_ACTION(PASSTHRU, 0), MK_FLOW_ACTION(JUMP, sizeof(struct rte_flow_action_jump)), MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)), MK_FLOW_ACTION(FLAG, 0), MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)), MK_FLOW_ACTION(DROP, 0), MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)), MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), MK_FLOW_ACTION(PF, 0), MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)), MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)), MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)), MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)), MK_FLOW_ACTION(SECURITY, sizeof(struct rte_flow_action_security)), MK_FLOW_ACTION(OF_SET_MPLS_TTL, sizeof(struct rte_flow_action_of_set_mpls_ttl)), MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0), MK_FLOW_ACTION(OF_SET_NW_TTL, sizeof(struct rte_flow_action_of_set_nw_ttl)), MK_FLOW_ACTION(OF_DEC_NW_TTL, 0), MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0), MK_FLOW_ACTION(OF_COPY_TTL_IN, 0), MK_FLOW_ACTION(OF_POP_VLAN, 0), MK_FLOW_ACTION(OF_PUSH_VLAN, sizeof(struct rte_flow_action_of_push_vlan)), MK_FLOW_ACTION(OF_SET_VLAN_VID, sizeof(struct rte_flow_action_of_set_vlan_vid)), MK_FLOW_ACTION(OF_SET_VLAN_PCP, sizeof(struct rte_flow_action_of_set_vlan_pcp)), MK_FLOW_ACTION(OF_POP_MPLS, sizeof(struct rte_flow_action_of_pop_mpls)), MK_FLOW_ACTION(OF_PUSH_MPLS, sizeof(struct rte_flow_action_of_push_mpls)), MK_FLOW_ACTION(VXLAN_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)), MK_FLOW_ACTION(VXLAN_DECAP, 0), MK_FLOW_ACTION(NVGRE_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)), MK_FLOW_ACTION(NVGRE_DECAP, 0), MK_FLOW_ACTION(RAW_ENCAP, sizeof(struct rte_flow_action_raw_encap)), MK_FLOW_ACTION(RAW_DECAP, sizeof(struct rte_flow_action_raw_decap)), MK_FLOW_ACTION(SET_IPV4_SRC, sizeof(struct rte_flow_action_set_ipv4)), MK_FLOW_ACTION(SET_IPV4_DST, sizeof(struct rte_flow_action_set_ipv4)), MK_FLOW_ACTION(SET_IPV6_SRC, sizeof(struct rte_flow_action_set_ipv6)), MK_FLOW_ACTION(SET_IPV6_DST, sizeof(struct rte_flow_action_set_ipv6)), MK_FLOW_ACTION(SET_TP_SRC, sizeof(struct rte_flow_action_set_tp)), MK_FLOW_ACTION(SET_TP_DST, sizeof(struct rte_flow_action_set_tp)), MK_FLOW_ACTION(MAC_SWAP, 0), MK_FLOW_ACTION(DEC_TTL, 0), MK_FLOW_ACTION(SET_TTL, sizeof(struct rte_flow_action_set_ttl)), MK_FLOW_ACTION(SET_MAC_SRC, sizeof(struct rte_flow_action_set_mac)), MK_FLOW_ACTION(SET_MAC_DST, sizeof(struct rte_flow_action_set_mac)), MK_FLOW_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)), MK_FLOW_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)), MK_FLOW_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)), MK_FLOW_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)), MK_FLOW_ACTION(SET_TAG, sizeof(struct rte_flow_action_set_tag)), MK_FLOW_ACTION(SET_META, sizeof(struct rte_flow_action_set_meta)), }; int rte_flow_dynf_metadata_register(void) { int offset; int flag; static const struct rte_mbuf_dynfield desc_offs = { .name = RTE_MBUF_DYNFIELD_METADATA_NAME, .size = sizeof(uint32_t), .align = __alignof__(uint32_t), }; static const struct rte_mbuf_dynflag desc_flag = { .name = RTE_MBUF_DYNFLAG_METADATA_NAME, }; offset = rte_mbuf_dynfield_register(&desc_offs); if (offset < 0) goto error; flag = rte_mbuf_dynflag_register(&desc_flag); if (flag < 0) goto error; rte_flow_dynf_metadata_offs = offset; rte_flow_dynf_metadata_mask = (1ULL << flag); return 0; error: rte_flow_dynf_metadata_offs = -1; rte_flow_dynf_metadata_mask = 0ULL; return -rte_errno; } static int flow_err(uint16_t port_id, int ret, struct rte_flow_error *error) { if (ret == 0) return 0; if (rte_eth_dev_is_removed(port_id)) return rte_flow_error_set(error, EIO, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(EIO)); return ret; } static enum rte_flow_item_type rte_flow_expand_rss_item_complete(const struct rte_flow_item *item) { enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID; uint16_t ether_type = 0; uint16_t ether_type_m; uint8_t ip_next_proto = 0; uint8_t ip_next_proto_m; if (item == NULL || item->spec == NULL) return ret; switch (item->type) { case RTE_FLOW_ITEM_TYPE_ETH: if (item->mask) ether_type_m = ((const struct rte_flow_item_eth *) (item->mask))->type; else ether_type_m = rte_flow_item_eth_mask.type; if (ether_type_m != RTE_BE16(0xFFFF)) break; ether_type = ((const struct rte_flow_item_eth *) (item->spec))->type; if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) ret = RTE_FLOW_ITEM_TYPE_IPV4; else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) ret = RTE_FLOW_ITEM_TYPE_IPV6; else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) ret = RTE_FLOW_ITEM_TYPE_VLAN; break; case RTE_FLOW_ITEM_TYPE_VLAN: if (item->mask) ether_type_m = ((const struct rte_flow_item_vlan *) (item->mask))->inner_type; else ether_type_m = rte_flow_item_vlan_mask.inner_type; if (ether_type_m != RTE_BE16(0xFFFF)) break; ether_type = ((const struct rte_flow_item_vlan *) (item->spec))->inner_type; if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) ret = RTE_FLOW_ITEM_TYPE_IPV4; else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) ret = RTE_FLOW_ITEM_TYPE_IPV6; else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) ret = RTE_FLOW_ITEM_TYPE_VLAN; break; case RTE_FLOW_ITEM_TYPE_IPV4: if (item->mask) ip_next_proto_m = ((const struct rte_flow_item_ipv4 *) (item->mask))->hdr.next_proto_id; else ip_next_proto_m = rte_flow_item_ipv4_mask.hdr.next_proto_id; if (ip_next_proto_m != 0xFF) break; ip_next_proto = ((const struct rte_flow_item_ipv4 *) (item->spec))->hdr.next_proto_id; if (ip_next_proto == IPPROTO_UDP) ret = RTE_FLOW_ITEM_TYPE_UDP; else if (ip_next_proto == IPPROTO_TCP) ret = RTE_FLOW_ITEM_TYPE_TCP; else if (ip_next_proto == IPPROTO_IP) ret = RTE_FLOW_ITEM_TYPE_IPV4; else if (ip_next_proto == IPPROTO_IPV6) ret = RTE_FLOW_ITEM_TYPE_IPV6; break; case RTE_FLOW_ITEM_TYPE_IPV6: if (item->mask) ip_next_proto_m = ((const struct rte_flow_item_ipv6 *) (item->mask))->hdr.proto; else ip_next_proto_m = rte_flow_item_ipv6_mask.hdr.proto; if (ip_next_proto_m != 0xFF) break; ip_next_proto = ((const struct rte_flow_item_ipv6 *) (item->spec))->hdr.proto; if (ip_next_proto == IPPROTO_UDP) ret = RTE_FLOW_ITEM_TYPE_UDP; else if (ip_next_proto == IPPROTO_TCP) ret = RTE_FLOW_ITEM_TYPE_TCP; else if (ip_next_proto == IPPROTO_IP) ret = RTE_FLOW_ITEM_TYPE_IPV4; else if (ip_next_proto == IPPROTO_IPV6) ret = RTE_FLOW_ITEM_TYPE_IPV6; break; default: ret = RTE_FLOW_ITEM_TYPE_VOID; break; } return ret; } /* Get generic flow operations structure from a port. */ const struct rte_flow_ops * rte_flow_ops_get(uint16_t port_id, struct rte_flow_error *error) { struct rte_eth_dev *dev = &rte_eth_devices[port_id]; const struct rte_flow_ops *ops; int code; if (unlikely(!rte_eth_dev_is_valid_port(port_id))) code = ENODEV; else if (unlikely(!dev->dev_ops->filter_ctrl || dev->dev_ops->filter_ctrl(dev, RTE_ETH_FILTER_GENERIC, RTE_ETH_FILTER_GET, &ops) || !ops)) code = ENOSYS; else return ops; rte_flow_error_set(error, code, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(code)); return NULL; } /* Check whether a flow rule can be created on a given port. */ int rte_flow_validate(uint16_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error); struct rte_eth_dev *dev = &rte_eth_devices[port_id]; if (unlikely(!ops)) return -rte_errno; if (likely(!!ops->validate)) return flow_err(port_id, ops->validate(dev, attr, pattern, actions, error), error); return rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(ENOSYS)); } /* Create a flow rule on a given port. */ struct rte_flow * rte_flow_create(uint16_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct rte_eth_dev *dev = &rte_eth_devices[port_id]; struct rte_flow *flow; const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error); if (unlikely(!ops)) return NULL; if (likely(!!ops->create)) { flow = ops->create(dev, attr, pattern, actions, error); if (flow == NULL) flow_err(port_id, -rte_errno, error); return flow; } rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(ENOSYS)); return NULL; } /* Destroy a flow rule on a given port. */ int rte_flow_destroy(uint16_t port_id, struct rte_flow *flow, struct rte_flow_error *error) { struct rte_eth_dev *dev = &rte_eth_devices[port_id]; const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error); if (unlikely(!ops)) return -rte_errno; if (likely(!!ops->destroy)) return flow_err(port_id, ops->destroy(dev, flow, error), error); return rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(ENOSYS)); } /* Destroy all flow rules associated with a port. */ int rte_flow_flush(uint16_t port_id, struct rte_flow_error *error) { struct rte_eth_dev *dev = &rte_eth_devices[port_id]; const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error); if (unlikely(!ops)) return -rte_errno; if (likely(!!ops->flush)) return flow_err(port_id, ops->flush(dev, error), error); return rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(ENOSYS)); } /* Query an existing flow rule. */ int rte_flow_query(uint16_t port_id, struct rte_flow *flow, const struct rte_flow_action *action, void *data, struct rte_flow_error *error) { struct rte_eth_dev *dev = &rte_eth_devices[port_id]; const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error); if (!ops) return -rte_errno; if (likely(!!ops->query)) return flow_err(port_id, ops->query(dev, flow, action, data, error), error); return rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(ENOSYS)); } /* Restrict ingress traffic to the defined flow rules. */ int rte_flow_isolate(uint16_t port_id, int set, struct rte_flow_error *error) { struct rte_eth_dev *dev = &rte_eth_devices[port_id]; const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error); if (!ops) return -rte_errno; if (likely(!!ops->isolate)) return flow_err(port_id, ops->isolate(dev, set, error), error); return rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, rte_strerror(ENOSYS)); } /* Initialize flow error structure. */ int rte_flow_error_set(struct rte_flow_error *error, int code, enum rte_flow_error_type type, const void *cause, const char *message) { if (error) { *error = (struct rte_flow_error){ .type = type, .cause = cause, .message = message, }; } rte_errno = code; return -code; } /** Pattern item specification types. */ enum rte_flow_conv_item_spec_type { RTE_FLOW_CONV_ITEM_SPEC, RTE_FLOW_CONV_ITEM_LAST, RTE_FLOW_CONV_ITEM_MASK, }; /** * Copy pattern item specification. * * @param[out] buf * Output buffer. Can be NULL if @p size is zero. * @param size * Size of @p buf in bytes. * @param[in] item * Pattern item to copy specification from. * @param type * Specification selector for either @p spec, @p last or @p mask. * * @return * Number of bytes needed to store pattern item specification regardless * of @p size. @p buf contents are truncated to @p size if not large * enough. */ static size_t rte_flow_conv_item_spec(void *buf, const size_t size, const struct rte_flow_item *item, enum rte_flow_conv_item_spec_type type) { size_t off; const void *data = type == RTE_FLOW_CONV_ITEM_SPEC ? item->spec : type == RTE_FLOW_CONV_ITEM_LAST ? item->last : type == RTE_FLOW_CONV_ITEM_MASK ? item->mask : NULL; switch (item->type) { union { const struct rte_flow_item_raw *raw; } spec; union { const struct rte_flow_item_raw *raw; } last; union { const struct rte_flow_item_raw *raw; } mask; union { const struct rte_flow_item_raw *raw; } src; union { struct rte_flow_item_raw *raw; } dst; size_t tmp; case RTE_FLOW_ITEM_TYPE_RAW: spec.raw = item->spec; last.raw = item->last ? item->last : item->spec; mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask; src.raw = data; dst.raw = buf; rte_memcpy(dst.raw, (&(struct rte_flow_item_raw){ .relative = src.raw->relative, .search = src.raw->search, .reserved = src.raw->reserved, .offset = src.raw->offset, .limit = src.raw->limit, .length = src.raw->length, }), size > sizeof(*dst.raw) ? sizeof(*dst.raw) : size); off = sizeof(*dst.raw); if (type == RTE_FLOW_CONV_ITEM_SPEC || (type == RTE_FLOW_CONV_ITEM_MASK && ((spec.raw->length & mask.raw->length) >= (last.raw->length & mask.raw->length)))) tmp = spec.raw->length & mask.raw->length; else tmp = last.raw->length & mask.raw->length; if (tmp) { off = RTE_ALIGN_CEIL(off, sizeof(*dst.raw->pattern)); if (size >= off + tmp) dst.raw->pattern = rte_memcpy ((void *)((uintptr_t)dst.raw + off), src.raw->pattern, tmp); off += tmp; } break; default: off = rte_flow_desc_item[item->type].size; rte_memcpy(buf, data, (size > off ? off : size)); break; } return off; } /** * Copy action configuration. * * @param[out] buf * Output buffer. Can be NULL if @p size is zero. * @param size * Size of @p buf in bytes. * @param[in] action * Action to copy configuration from. * * @return * Number of bytes needed to store pattern item specification regardless * of @p size. @p buf contents are truncated to @p size if not large * enough. */ static size_t rte_flow_conv_action_conf(void *buf, const size_t size, const struct rte_flow_action *action) { size_t off; switch (action->type) { union { const struct rte_flow_action_rss *rss; const struct rte_flow_action_vxlan_encap *vxlan_encap; const struct rte_flow_action_nvgre_encap *nvgre_encap; } src; union { struct rte_flow_action_rss *rss; struct rte_flow_action_vxlan_encap *vxlan_encap; struct rte_flow_action_nvgre_encap *nvgre_encap; } dst; size_t tmp; int ret; case RTE_FLOW_ACTION_TYPE_RSS: src.rss = action->conf; dst.rss = buf; rte_memcpy(dst.rss, (&(struct rte_flow_action_rss){ .func = src.rss->func, .level = src.rss->level, .types = src.rss->types, .key_len = src.rss->key_len, .queue_num = src.rss->queue_num, }), size > sizeof(*dst.rss) ? sizeof(*dst.rss) : size); off = sizeof(*dst.rss); if (src.rss->key_len) { off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->key)); tmp = sizeof(*src.rss->key) * src.rss->key_len; if (size >= off + tmp) dst.rss->key = rte_memcpy ((void *)((uintptr_t)dst.rss + off), src.rss->key, tmp); off += tmp; } if (src.rss->queue_num) { off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->queue)); tmp = sizeof(*src.rss->queue) * src.rss->queue_num; if (size >= off + tmp) dst.rss->queue = rte_memcpy ((void *)((uintptr_t)dst.rss + off), src.rss->queue, tmp); off += tmp; } break; case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: src.vxlan_encap = action->conf; dst.vxlan_encap = buf; RTE_BUILD_BUG_ON(sizeof(*src.vxlan_encap) != sizeof(*src.nvgre_encap) || offsetof(struct rte_flow_action_vxlan_encap, definition) != offsetof(struct rte_flow_action_nvgre_encap, definition)); off = sizeof(*dst.vxlan_encap); if (src.vxlan_encap->definition) { off = RTE_ALIGN_CEIL (off, sizeof(*dst.vxlan_encap->definition)); ret = rte_flow_conv (RTE_FLOW_CONV_OP_PATTERN, (void *)((uintptr_t)dst.vxlan_encap + off), size > off ? size - off : 0, src.vxlan_encap->definition, NULL); if (ret < 0) return 0; if (size >= off + ret) dst.vxlan_encap->definition = (void *)((uintptr_t)dst.vxlan_encap + off); off += ret; } break; default: off = rte_flow_desc_action[action->type].size; rte_memcpy(buf, action->conf, (size > off ? off : size)); break; } return off; } /** * Copy a list of pattern items. * * @param[out] dst * Destination buffer. Can be NULL if @p size is zero. * @param size * Size of @p dst in bytes. * @param[in] src * Source pattern items. * @param num * Maximum number of pattern items to process from @p src or 0 to process * the entire list. In both cases, processing stops after * RTE_FLOW_ITEM_TYPE_END is encountered. * @param[out] error * Perform verbose error reporting if not NULL. * * @return * A positive value representing the number of bytes needed to store * pattern items regardless of @p size on success (@p buf contents are * truncated to @p size if not large enough), a negative errno value * otherwise and rte_errno is set. */ static int rte_flow_conv_pattern(struct rte_flow_item *dst, const size_t size, const struct rte_flow_item *src, unsigned int num, struct rte_flow_error *error) { uintptr_t data = (uintptr_t)dst; size_t off; size_t ret; unsigned int i; for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) { if ((size_t)src->type >= RTE_DIM(rte_flow_desc_item) || !rte_flow_desc_item[src->type].name) return rte_flow_error_set (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, src, "cannot convert unknown item type"); if (size >= off + sizeof(*dst)) *dst = (struct rte_flow_item){ .type = src->type, }; off += sizeof(*dst); if (!src->type) num = i + 1; } num = i; src -= num; dst -= num; do { if (src->spec) { off = RTE_ALIGN_CEIL(off, sizeof(double)); ret = rte_flow_conv_item_spec ((void *)(data + off), size > off ? size - off : 0, src, RTE_FLOW_CONV_ITEM_SPEC); if (size && size >= off + ret) dst->spec = (void *)(data + off); off += ret; } if (src->last) { off = RTE_ALIGN_CEIL(off, sizeof(double)); ret = rte_flow_conv_item_spec ((void *)(data + off), size > off ? size - off : 0, src, RTE_FLOW_CONV_ITEM_LAST); if (size && size >= off + ret) dst->last = (void *)(data + off); off += ret; } if (src->mask) { off = RTE_ALIGN_CEIL(off, sizeof(double)); ret = rte_flow_conv_item_spec ((void *)(data + off), size > off ? size - off : 0, src, RTE_FLOW_CONV_ITEM_MASK); if (size && size >= off + ret) dst->mask = (void *)(data + off); off += ret; } ++src; ++dst; } while (--num); return off; } /** * Copy a list of actions. * * @param[out] dst * Destination buffer. Can be NULL if @p size is zero. * @param size * Size of @p dst in bytes. * @param[in] src * Source actions. * @param num * Maximum number of actions to process from @p src or 0 to process the * entire list. In both cases, processing stops after * RTE_FLOW_ACTION_TYPE_END is encountered. * @param[out] error * Perform verbose error reporting if not NULL. * * @return * A positive value representing the number of bytes needed to store * actions regardless of @p size on success (@p buf contents are truncated * to @p size if not large enough), a negative errno value otherwise and * rte_errno is set. */ static int rte_flow_conv_actions(struct rte_flow_action *dst, const size_t size, const struct rte_flow_action *src, unsigned int num, struct rte_flow_error *error) { uintptr_t data = (uintptr_t)dst; size_t off; size_t ret; unsigned int i; for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) { if ((size_t)src->type >= RTE_DIM(rte_flow_desc_action) || !rte_flow_desc_action[src->type].name) return rte_flow_error_set (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, src, "cannot convert unknown action type"); if (size >= off + sizeof(*dst)) *dst = (struct rte_flow_action){ .type = src->type, }; off += sizeof(*dst); if (!src->type) num = i + 1; } num = i; src -= num; dst -= num; do { if (src->conf) { off = RTE_ALIGN_CEIL(off, sizeof(double)); ret = rte_flow_conv_action_conf ((void *)(data + off), size > off ? size - off : 0, src); if (size && size >= off + ret) dst->conf = (void *)(data + off); off += ret; } ++src; ++dst; } while (--num); return off; } /** * Copy flow rule components. * * This comprises the flow rule descriptor itself, attributes, pattern and * actions list. NULL components in @p src are skipped. * * @param[out] dst * Destination buffer. Can be NULL if @p size is zero. * @param size * Size of @p dst in bytes. * @param[in] src * Source flow rule descriptor. * @param[out] error * Perform verbose error reporting if not NULL. * * @return * A positive value representing the number of bytes needed to store all * components including the descriptor regardless of @p size on success * (@p buf contents are truncated to @p size if not large enough), a * negative errno value otherwise and rte_errno is set. */ static int rte_flow_conv_rule(struct rte_flow_conv_rule *dst, const size_t size, const struct rte_flow_conv_rule *src, struct rte_flow_error *error) { size_t off; int ret; rte_memcpy(dst, (&(struct rte_flow_conv_rule){ .attr = NULL, .pattern = NULL, .actions = NULL, }), size > sizeof(*dst) ? sizeof(*dst) : size); off = sizeof(*dst); if (src->attr_ro) { off = RTE_ALIGN_CEIL(off, sizeof(double)); if (size && size >= off + sizeof(*dst->attr)) dst->attr = rte_memcpy ((void *)((uintptr_t)dst + off), src->attr_ro, sizeof(*dst->attr)); off += sizeof(*dst->attr); } if (src->pattern_ro) { off = RTE_ALIGN_CEIL(off, sizeof(double)); ret = rte_flow_conv_pattern((void *)((uintptr_t)dst + off), size > off ? size - off : 0, src->pattern_ro, 0, error); if (ret < 0) return ret; if (size && size >= off + (size_t)ret) dst->pattern = (void *)((uintptr_t)dst + off); off += ret; } if (src->actions_ro) { off = RTE_ALIGN_CEIL(off, sizeof(double)); ret = rte_flow_conv_actions((void *)((uintptr_t)dst + off), size > off ? size - off : 0, src->actions_ro, 0, error); if (ret < 0) return ret; if (size >= off + (size_t)ret) dst->actions = (void *)((uintptr_t)dst + off); off += ret; } return off; } /** * Retrieve the name of a pattern item/action type. * * @param is_action * Nonzero when @p src represents an action type instead of a pattern item * type. * @param is_ptr * Nonzero to write string address instead of contents into @p dst. * @param[out] dst * Destination buffer. Can be NULL if @p size is zero. * @param size * Size of @p dst in bytes. * @param[in] src * Depending on @p is_action, source pattern item or action type cast as a * pointer. * @param[out] error * Perform verbose error reporting if not NULL. * * @return * A positive value representing the number of bytes needed to store the * name or its address regardless of @p size on success (@p buf contents * are truncated to @p size if not large enough), a negative errno value * otherwise and rte_errno is set. */ static int rte_flow_conv_name(int is_action, int is_ptr, char *dst, const size_t size, const void *src, struct rte_flow_error *error) { struct desc_info { const struct rte_flow_desc_data *data; size_t num; }; static const struct desc_info info_rep[2] = { { rte_flow_desc_item, RTE_DIM(rte_flow_desc_item), }, { rte_flow_desc_action, RTE_DIM(rte_flow_desc_action), }, }; const struct desc_info *const info = &info_rep[!!is_action]; unsigned int type = (uintptr_t)src; if (type >= info->num) return rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "unknown object type to retrieve the name of"); if (!is_ptr) return strlcpy(dst, info->data[type].name, size); if (size >= sizeof(const char **)) *((const char **)dst) = info->data[type].name; return sizeof(const char **); } /** Helper function to convert flow API objects. */ int rte_flow_conv(enum rte_flow_conv_op op, void *dst, size_t size, const void *src, struct rte_flow_error *error) { switch (op) { const struct rte_flow_attr *attr; case RTE_FLOW_CONV_OP_NONE: return 0; case RTE_FLOW_CONV_OP_ATTR: attr = src; if (size > sizeof(*attr)) size = sizeof(*attr); rte_memcpy(dst, attr, size); return sizeof(*attr); case RTE_FLOW_CONV_OP_ITEM: return rte_flow_conv_pattern(dst, size, src, 1, error); case RTE_FLOW_CONV_OP_ACTION: return rte_flow_conv_actions(dst, size, src, 1, error); case RTE_FLOW_CONV_OP_PATTERN: return rte_flow_conv_pattern(dst, size, src, 0, error); case RTE_FLOW_CONV_OP_ACTIONS: return rte_flow_conv_actions(dst, size, src, 0, error); case RTE_FLOW_CONV_OP_RULE: return rte_flow_conv_rule(dst, size, src, error); case RTE_FLOW_CONV_OP_ITEM_NAME: return rte_flow_conv_name(0, 0, dst, size, src, error); case RTE_FLOW_CONV_OP_ACTION_NAME: return rte_flow_conv_name(1, 0, dst, size, src, error); case RTE_FLOW_CONV_OP_ITEM_NAME_PTR: return rte_flow_conv_name(0, 1, dst, size, src, error); case RTE_FLOW_CONV_OP_ACTION_NAME_PTR: return rte_flow_conv_name(1, 1, dst, size, src, error); } return rte_flow_error_set (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "unknown object conversion operation"); } /** Store a full rte_flow description. */ size_t rte_flow_copy(struct rte_flow_desc *desc, size_t len, const struct rte_flow_attr *attr, const struct rte_flow_item *items, const struct rte_flow_action *actions) { /* * Overlap struct rte_flow_conv with struct rte_flow_desc in order * to convert the former to the latter without wasting space. */ struct rte_flow_conv_rule *dst = len ? (void *)((uintptr_t)desc + (offsetof(struct rte_flow_desc, actions) - offsetof(struct rte_flow_conv_rule, actions))) : NULL; size_t dst_size = len > sizeof(*desc) - sizeof(*dst) ? len - (sizeof(*desc) - sizeof(*dst)) : 0; struct rte_flow_conv_rule src = { .attr_ro = NULL, .pattern_ro = items, .actions_ro = actions, }; int ret; RTE_BUILD_BUG_ON(sizeof(struct rte_flow_desc) < sizeof(struct rte_flow_conv_rule)); if (dst_size && (&dst->pattern != &desc->items || &dst->actions != &desc->actions || (uintptr_t)(dst + 1) != (uintptr_t)(desc + 1))) { rte_errno = EINVAL; return 0; } ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, dst, dst_size, &src, NULL); if (ret < 0) return 0; ret += sizeof(*desc) - sizeof(*dst); rte_memcpy(desc, (&(struct rte_flow_desc){ .size = ret, .attr = *attr, .items = dst_size ? dst->pattern : NULL, .actions = dst_size ? dst->actions : NULL, }), len > sizeof(*desc) ? sizeof(*desc) : len); return ret; } /** * Expand RSS flows into several possible flows according to the RSS hash * fields requested and the driver capabilities. */ int rte_flow_expand_rss(struct rte_flow_expand_rss *buf, size_t size, const struct rte_flow_item *pattern, uint64_t types, const struct rte_flow_expand_node graph[], int graph_root_index) { const int elt_n = 8; const struct rte_flow_item *item; const struct rte_flow_expand_node *node = &graph[graph_root_index]; const int *next_node; const int *stack[elt_n]; int stack_pos = 0; struct rte_flow_item flow_items[elt_n]; unsigned int i; size_t lsize; size_t user_pattern_size = 0; void *addr = NULL; const struct rte_flow_expand_node *next = NULL; struct rte_flow_item missed_item; int missed = 0; int elt = 0; const struct rte_flow_item *last_item = NULL; memset(&missed_item, 0, sizeof(missed_item)); lsize = offsetof(struct rte_flow_expand_rss, entry) + elt_n * sizeof(buf->entry[0]); if (lsize <= size) { buf->entry[0].priority = 0; buf->entry[0].pattern = (void *)&buf->entry[elt_n]; buf->entries = 0; addr = buf->entry[0].pattern; } for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { if (item->type != RTE_FLOW_ITEM_TYPE_VOID) last_item = item; for (i = 0; node->next && node->next[i]; ++i) { next = &graph[node->next[i]]; if (next->type == item->type) break; } if (next) node = next; user_pattern_size += sizeof(*item); } user_pattern_size += sizeof(*item); /* Handle END item. */ lsize += user_pattern_size; /* Copy the user pattern in the first entry of the buffer. */ if (lsize <= size) { rte_memcpy(addr, pattern, user_pattern_size); addr = (void *)(((uintptr_t)addr) + user_pattern_size); buf->entries = 1; } /* Start expanding. */ memset(flow_items, 0, sizeof(flow_items)); user_pattern_size -= sizeof(*item); /* * Check if the last valid item has spec set * and need complete pattern. */ missed_item.type = rte_flow_expand_rss_item_complete(last_item); if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) { next = NULL; missed = 1; for (i = 0; node->next && node->next[i]; ++i) { next = &graph[node->next[i]]; if (next->type == missed_item.type) { flow_items[0].type = missed_item.type; flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; break; } next = NULL; } } if (next && missed) { elt = 2; /* missed item + item end. */ node = next; lsize += elt * sizeof(*item) + user_pattern_size; if ((node->rss_types & types) && lsize <= size) { buf->entry[buf->entries].priority = 1; buf->entry[buf->entries].pattern = addr; buf->entries++; rte_memcpy(addr, buf->entry[0].pattern, user_pattern_size); addr = (void *)(((uintptr_t)addr) + user_pattern_size); rte_memcpy(addr, flow_items, elt * sizeof(*item)); addr = (void *)(((uintptr_t)addr) + elt * sizeof(*item)); } } memset(flow_items, 0, sizeof(flow_items)); next_node = node->next; stack[stack_pos] = next_node; node = next_node ? &graph[*next_node] : NULL; while (node) { flow_items[stack_pos].type = node->type; if (node->rss_types & types) { /* * compute the number of items to copy from the * expansion and copy it. * When the stack_pos is 0, there are 1 element in it, * plus the addition END item. */ elt = stack_pos + 2; flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END; lsize += elt * sizeof(*item) + user_pattern_size; if (lsize <= size) { size_t n = elt * sizeof(*item); buf->entry[buf->entries].priority = stack_pos + 1 + missed; buf->entry[buf->entries].pattern = addr; buf->entries++; rte_memcpy(addr, buf->entry[0].pattern, user_pattern_size); addr = (void *)(((uintptr_t)addr) + user_pattern_size); rte_memcpy(addr, &missed_item, missed * sizeof(*item)); addr = (void *)(((uintptr_t)addr) + missed * sizeof(*item)); rte_memcpy(addr, flow_items, n); addr = (void *)(((uintptr_t)addr) + n); } } /* Go deeper. */ if (node->next) { next_node = node->next; if (stack_pos++ == elt_n) { rte_errno = E2BIG; return -rte_errno; } stack[stack_pos] = next_node; } else if (*(next_node + 1)) { /* Follow up with the next possibility. */ ++next_node; } else { /* Move to the next path. */ if (stack_pos) next_node = stack[--stack_pos]; next_node++; stack[stack_pos] = next_node; } node = *next_node ? &graph[*next_node] : NULL; }; /* no expanded flows but we have missed item, create one rule for it */ if (buf->entries == 1 && missed != 0) { elt = 2; lsize += elt * sizeof(*item) + user_pattern_size; if (lsize <= size) { buf->entry[buf->entries].priority = 1; buf->entry[buf->entries].pattern = addr; buf->entries++; flow_items[0].type = missed_item.type; flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; rte_memcpy(addr, buf->entry[0].pattern, user_pattern_size); addr = (void *)(((uintptr_t)addr) + user_pattern_size); rte_memcpy(addr, flow_items, elt * sizeof(*item)); addr = (void *)(((uintptr_t)addr) + elt * sizeof(*item)); } } return lsize; }