/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2018 Intel Corporation. * Copyright(c) 2012-2014 6WIND S.A. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(RTE_ARCH_X86) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_private.h" #include "eal_thread.h" #include "eal_internal_cfg.h" #include "eal_filesystem.h" #include "eal_hugepages.h" #include "eal_memcfg.h" #include "eal_options.h" #include "eal_vfio.h" #include "hotplug_mp.h" #define MEMSIZE_IF_NO_HUGE_PAGE (64ULL * 1024ULL * 1024ULL) #define SOCKET_MEM_STRLEN (RTE_MAX_NUMA_NODES * 10) #define KERNEL_IOMMU_GROUPS_PATH "/sys/kernel/iommu_groups" /* Allow the application to print its usage message too if set */ static rte_usage_hook_t rte_application_usage_hook = NULL; /* early configuration structure, when memory config is not mmapped */ static struct rte_mem_config early_mem_config; /* define fd variable here, because file needs to be kept open for the * duration of the program, as we hold a write lock on it in the primary proc */ static int mem_cfg_fd = -1; static struct flock wr_lock = { .l_type = F_WRLCK, .l_whence = SEEK_SET, .l_start = offsetof(struct rte_mem_config, memsegs), .l_len = sizeof(early_mem_config.memsegs), }; /* Address of global and public configuration */ static struct rte_config rte_config = { .mem_config = &early_mem_config, }; /* internal configuration (per-core) */ struct lcore_config lcore_config[RTE_MAX_LCORE]; /* internal configuration */ struct internal_config internal_config; /* used by rte_rdtsc() */ int rte_cycles_vmware_tsc_map; /* platform-specific runtime dir */ static char runtime_dir[PATH_MAX]; static const char *default_runtime_dir = "/var/run"; int eal_create_runtime_dir(void) { const char *directory = default_runtime_dir; const char *xdg_runtime_dir = getenv("XDG_RUNTIME_DIR"); const char *fallback = "/tmp"; char tmp[PATH_MAX]; int ret; if (getuid() != 0) { /* try XDG path first, fall back to /tmp */ if (xdg_runtime_dir != NULL) directory = xdg_runtime_dir; else directory = fallback; } /* create DPDK subdirectory under runtime dir */ ret = snprintf(tmp, sizeof(tmp), "%s/dpdk", directory); if (ret < 0 || ret == sizeof(tmp)) { RTE_LOG(ERR, EAL, "Error creating DPDK runtime path name\n"); return -1; } /* create prefix-specific subdirectory under DPDK runtime dir */ ret = snprintf(runtime_dir, sizeof(runtime_dir), "%s/%s", tmp, eal_get_hugefile_prefix()); if (ret < 0 || ret == sizeof(runtime_dir)) { RTE_LOG(ERR, EAL, "Error creating prefix-specific runtime path name\n"); return -1; } /* create the path if it doesn't exist. no "mkdir -p" here, so do it * step by step. */ ret = mkdir(tmp, 0700); if (ret < 0 && errno != EEXIST) { RTE_LOG(ERR, EAL, "Error creating '%s': %s\n", tmp, strerror(errno)); return -1; } ret = mkdir(runtime_dir, 0700); if (ret < 0 && errno != EEXIST) { RTE_LOG(ERR, EAL, "Error creating '%s': %s\n", runtime_dir, strerror(errno)); return -1; } return 0; } int eal_clean_runtime_dir(void) { DIR *dir; struct dirent *dirent; int dir_fd, fd, lck_result; static const char * const filters[] = { "fbarray_*", "mp_socket_*" }; /* open directory */ dir = opendir(runtime_dir); if (!dir) { RTE_LOG(ERR, EAL, "Unable to open runtime directory %s\n", runtime_dir); goto error; } dir_fd = dirfd(dir); /* lock the directory before doing anything, to avoid races */ if (flock(dir_fd, LOCK_EX) < 0) { RTE_LOG(ERR, EAL, "Unable to lock runtime directory %s\n", runtime_dir); goto error; } dirent = readdir(dir); if (!dirent) { RTE_LOG(ERR, EAL, "Unable to read runtime directory %s\n", runtime_dir); goto error; } while (dirent != NULL) { unsigned int f_idx; bool skip = true; /* skip files that don't match the patterns */ for (f_idx = 0; f_idx < RTE_DIM(filters); f_idx++) { const char *filter = filters[f_idx]; if (fnmatch(filter, dirent->d_name, 0) == 0) { skip = false; break; } } if (skip) { dirent = readdir(dir); continue; } /* try and lock the file */ fd = openat(dir_fd, dirent->d_name, O_RDONLY); /* skip to next file */ if (fd == -1) { dirent = readdir(dir); continue; } /* non-blocking lock */ lck_result = flock(fd, LOCK_EX | LOCK_NB); /* if lock succeeds, remove the file */ if (lck_result != -1) unlinkat(dir_fd, dirent->d_name, 0); close(fd); dirent = readdir(dir); } /* closedir closes dir_fd and drops the lock */ closedir(dir); return 0; error: if (dir) closedir(dir); RTE_LOG(ERR, EAL, "Error while clearing runtime dir: %s\n", strerror(errno)); return -1; } const char * rte_eal_get_runtime_dir(void) { return runtime_dir; } /* Return user provided mbuf pool ops name */ const char * rte_eal_mbuf_user_pool_ops(void) { return internal_config.user_mbuf_pool_ops_name; } /* Return a pointer to the configuration structure */ struct rte_config * rte_eal_get_configuration(void) { return &rte_config; } enum rte_iova_mode rte_eal_iova_mode(void) { return rte_eal_get_configuration()->iova_mode; } /* parse a sysfs (or other) file containing one integer value */ int eal_parse_sysfs_value(const char *filename, unsigned long *val) { FILE *f; char buf[BUFSIZ]; char *end = NULL; if ((f = fopen(filename, "r")) == NULL) { RTE_LOG(ERR, EAL, "%s(): cannot open sysfs value %s\n", __func__, filename); return -1; } if (fgets(buf, sizeof(buf), f) == NULL) { RTE_LOG(ERR, EAL, "%s(): cannot read sysfs value %s\n", __func__, filename); fclose(f); return -1; } *val = strtoul(buf, &end, 0); if ((buf[0] == '\0') || (end == NULL) || (*end != '\n')) { RTE_LOG(ERR, EAL, "%s(): cannot parse sysfs value %s\n", __func__, filename); fclose(f); return -1; } fclose(f); return 0; } /* create memory configuration in shared/mmap memory. Take out * a write lock on the memsegs, so we can auto-detect primary/secondary. * This means we never close the file while running (auto-close on exit). * We also don't lock the whole file, so that in future we can use read-locks * on other parts, e.g. memzones, to detect if there are running secondary * processes. */ static int rte_eal_config_create(void) { size_t page_sz = sysconf(_SC_PAGE_SIZE); size_t cfg_len = sizeof(*rte_config.mem_config); size_t cfg_len_aligned = RTE_ALIGN(cfg_len, page_sz); void *rte_mem_cfg_addr, *mapped_mem_cfg_addr; int retval; const char *pathname = eal_runtime_config_path(); if (internal_config.no_shconf) return 0; /* map the config before hugepage address so that we don't waste a page */ if (internal_config.base_virtaddr != 0) rte_mem_cfg_addr = (void *) RTE_ALIGN_FLOOR(internal_config.base_virtaddr - sizeof(struct rte_mem_config), page_sz); else rte_mem_cfg_addr = NULL; if (mem_cfg_fd < 0){ mem_cfg_fd = open(pathname, O_RDWR | O_CREAT, 0600); if (mem_cfg_fd < 0) { RTE_LOG(ERR, EAL, "Cannot open '%s' for rte_mem_config\n", pathname); return -1; } } retval = ftruncate(mem_cfg_fd, cfg_len); if (retval < 0){ close(mem_cfg_fd); mem_cfg_fd = -1; RTE_LOG(ERR, EAL, "Cannot resize '%s' for rte_mem_config\n", pathname); return -1; } retval = fcntl(mem_cfg_fd, F_SETLK, &wr_lock); if (retval < 0){ close(mem_cfg_fd); mem_cfg_fd = -1; RTE_LOG(ERR, EAL, "Cannot create lock on '%s'. Is another primary " "process running?\n", pathname); return -1; } /* reserve space for config */ rte_mem_cfg_addr = eal_get_virtual_area(rte_mem_cfg_addr, &cfg_len_aligned, page_sz, 0, 0); if (rte_mem_cfg_addr == NULL) { RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config\n"); close(mem_cfg_fd); mem_cfg_fd = -1; return -1; } /* remap the actual file into the space we've just reserved */ mapped_mem_cfg_addr = mmap(rte_mem_cfg_addr, cfg_len_aligned, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, mem_cfg_fd, 0); if (mapped_mem_cfg_addr == MAP_FAILED) { munmap(rte_mem_cfg_addr, cfg_len); close(mem_cfg_fd); mem_cfg_fd = -1; RTE_LOG(ERR, EAL, "Cannot remap memory for rte_config\n"); return -1; } memcpy(rte_mem_cfg_addr, &early_mem_config, sizeof(early_mem_config)); rte_config.mem_config = rte_mem_cfg_addr; /* store address of the config in the config itself so that secondary * processes could later map the config into this exact location */ rte_config.mem_config->mem_cfg_addr = (uintptr_t) rte_mem_cfg_addr; rte_config.mem_config->dma_maskbits = 0; return 0; } /* attach to an existing shared memory config */ static int rte_eal_config_attach(void) { struct rte_mem_config *mem_config; const char *pathname = eal_runtime_config_path(); if (internal_config.no_shconf) return 0; if (mem_cfg_fd < 0){ mem_cfg_fd = open(pathname, O_RDWR); if (mem_cfg_fd < 0) { RTE_LOG(ERR, EAL, "Cannot open '%s' for rte_mem_config\n", pathname); return -1; } } /* map it as read-only first */ mem_config = (struct rte_mem_config *) mmap(NULL, sizeof(*mem_config), PROT_READ, MAP_SHARED, mem_cfg_fd, 0); if (mem_config == MAP_FAILED) { close(mem_cfg_fd); mem_cfg_fd = -1; RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config! error %i (%s)\n", errno, strerror(errno)); return -1; } rte_config.mem_config = mem_config; return 0; } /* reattach the shared config at exact memory location primary process has it */ static int rte_eal_config_reattach(void) { struct rte_mem_config *mem_config; void *rte_mem_cfg_addr; if (internal_config.no_shconf) return 0; /* save the address primary process has mapped shared config to */ rte_mem_cfg_addr = (void *) (uintptr_t) rte_config.mem_config->mem_cfg_addr; /* unmap original config */ munmap(rte_config.mem_config, sizeof(struct rte_mem_config)); /* remap the config at proper address */ mem_config = (struct rte_mem_config *) mmap(rte_mem_cfg_addr, sizeof(*mem_config), PROT_READ | PROT_WRITE, MAP_SHARED, mem_cfg_fd, 0); close(mem_cfg_fd); mem_cfg_fd = -1; if (mem_config == MAP_FAILED || mem_config != rte_mem_cfg_addr) { if (mem_config != MAP_FAILED) { /* errno is stale, don't use */ RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config at [%p], got [%p]" " - please use '--" OPT_BASE_VIRTADDR "' option\n", rte_mem_cfg_addr, mem_config); munmap(mem_config, sizeof(struct rte_mem_config)); return -1; } RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config! error %i (%s)\n", errno, strerror(errno)); return -1; } rte_config.mem_config = mem_config; return 0; } /* Detect if we are a primary or a secondary process */ enum rte_proc_type_t eal_proc_type_detect(void) { enum rte_proc_type_t ptype = RTE_PROC_PRIMARY; const char *pathname = eal_runtime_config_path(); /* if there no shared config, there can be no secondary processes */ if (!internal_config.no_shconf) { /* if we can open the file but not get a write-lock we are a * secondary process. NOTE: if we get a file handle back, we * keep that open and don't close it to prevent a race condition * between multiple opens. */ if (((mem_cfg_fd = open(pathname, O_RDWR)) >= 0) && (fcntl(mem_cfg_fd, F_SETLK, &wr_lock) < 0)) ptype = RTE_PROC_SECONDARY; } RTE_LOG(INFO, EAL, "Auto-detected process type: %s\n", ptype == RTE_PROC_PRIMARY ? "PRIMARY" : "SECONDARY"); return ptype; } /* Sets up rte_config structure with the pointer to shared memory config.*/ static int rte_config_init(void) { rte_config.process_type = internal_config.process_type; switch (rte_config.process_type){ case RTE_PROC_PRIMARY: if (rte_eal_config_create() < 0) return -1; eal_mcfg_update_from_internal(); break; case RTE_PROC_SECONDARY: if (rte_eal_config_attach() < 0) return -1; eal_mcfg_wait_complete(); if (eal_mcfg_check_version() < 0) { RTE_LOG(ERR, EAL, "Primary and secondary process DPDK version mismatch\n"); return -1; } if (rte_eal_config_reattach() < 0) return -1; eal_mcfg_update_internal(); break; case RTE_PROC_AUTO: case RTE_PROC_INVALID: RTE_LOG(ERR, EAL, "Invalid process type %d\n", rte_config.process_type); return -1; } return 0; } /* Unlocks hugepage directories that were locked by eal_hugepage_info_init */ static void eal_hugedirs_unlock(void) { int i; for (i = 0; i < MAX_HUGEPAGE_SIZES; i++) { /* skip uninitialized */ if (internal_config.hugepage_info[i].lock_descriptor < 0) continue; /* unlock hugepage file */ flock(internal_config.hugepage_info[i].lock_descriptor, LOCK_UN); close(internal_config.hugepage_info[i].lock_descriptor); /* reset the field */ internal_config.hugepage_info[i].lock_descriptor = -1; } } /* display usage */ static void eal_usage(const char *prgname) { printf("\nUsage: %s ", prgname); eal_common_usage(); printf("EAL Linux options:\n" " --"OPT_SOCKET_MEM" Memory to allocate on sockets (comma separated values)\n" " --"OPT_SOCKET_LIMIT" Limit memory allocation on sockets (comma separated values)\n" " --"OPT_HUGE_DIR" Directory where hugetlbfs is mounted\n" " --"OPT_FILE_PREFIX" Prefix for hugepage filenames\n" " --"OPT_CREATE_UIO_DEV" Create /dev/uioX (usually done by hotplug)\n" " --"OPT_VFIO_INTR" Interrupt mode for VFIO (legacy|msi|msix)\n" " --"OPT_LEGACY_MEM" Legacy memory mode (no dynamic allocation, contiguous segments)\n" " --"OPT_SINGLE_FILE_SEGMENTS" Put all hugepage memory in single files\n" " --"OPT_MATCH_ALLOCATIONS" Free hugepages exactly as allocated\n" "\n"); /* Allow the application to print its usage message too if hook is set */ if ( rte_application_usage_hook ) { printf("===== Application Usage =====\n\n"); rte_application_usage_hook(prgname); } } /* Set a per-application usage message */ rte_usage_hook_t rte_set_application_usage_hook( rte_usage_hook_t usage_func ) { rte_usage_hook_t old_func; /* Will be NULL on the first call to denote the last usage routine. */ old_func = rte_application_usage_hook; rte_application_usage_hook = usage_func; return old_func; } static int eal_parse_socket_arg(char *strval, volatile uint64_t *socket_arg) { char * arg[RTE_MAX_NUMA_NODES]; char *end; int arg_num, i, len; uint64_t total_mem = 0; len = strnlen(strval, SOCKET_MEM_STRLEN); if (len == SOCKET_MEM_STRLEN) { RTE_LOG(ERR, EAL, "--socket-mem is too long\n"); return -1; } /* all other error cases will be caught later */ if (!isdigit(strval[len-1])) return -1; /* split the optarg into separate socket values */ arg_num = rte_strsplit(strval, len, arg, RTE_MAX_NUMA_NODES, ','); /* if split failed, or 0 arguments */ if (arg_num <= 0) return -1; /* parse each defined socket option */ errno = 0; for (i = 0; i < arg_num; i++) { uint64_t val; end = NULL; val = strtoull(arg[i], &end, 10); /* check for invalid input */ if ((errno != 0) || (arg[i][0] == '\0') || (end == NULL) || (*end != '\0')) return -1; val <<= 20; total_mem += val; socket_arg[i] = val; } return 0; } static int eal_parse_vfio_intr(const char *mode) { unsigned i; static struct { const char *name; enum rte_intr_mode value; } map[] = { { "legacy", RTE_INTR_MODE_LEGACY }, { "msi", RTE_INTR_MODE_MSI }, { "msix", RTE_INTR_MODE_MSIX }, }; for (i = 0; i < RTE_DIM(map); i++) { if (!strcmp(mode, map[i].name)) { internal_config.vfio_intr_mode = map[i].value; return 0; } } return -1; } /* Parse the arguments for --log-level only */ static void eal_log_level_parse(int argc, char **argv) { int opt; char **argvopt; int option_index; const int old_optind = optind; const int old_optopt = optopt; char * const old_optarg = optarg; argvopt = argv; optind = 1; while ((opt = getopt_long(argc, argvopt, eal_short_options, eal_long_options, &option_index)) != EOF) { int ret; /* getopt is not happy, stop right now */ if (opt == '?') break; ret = (opt == OPT_LOG_LEVEL_NUM) ? eal_parse_common_option(opt, optarg, &internal_config) : 0; /* common parser is not happy */ if (ret < 0) break; } /* restore getopt lib */ optind = old_optind; optopt = old_optopt; optarg = old_optarg; } /* Parse the argument given in the command line of the application */ static int eal_parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; const int old_optind = optind; const int old_optopt = optopt; char * const old_optarg = optarg; argvopt = argv; optind = 1; opterr = 0; while ((opt = getopt_long(argc, argvopt, eal_short_options, eal_long_options, &option_index)) != EOF) { /* * getopt didn't recognise the option, lets parse the * registered options to see if the flag is valid */ if (opt == '?') { ret = rte_option_parse(argv[optind-1]); if (ret == 0) continue; eal_usage(prgname); ret = -1; goto out; } ret = eal_parse_common_option(opt, optarg, &internal_config); /* common parser is not happy */ if (ret < 0) { eal_usage(prgname); ret = -1; goto out; } /* common parser handled this option */ if (ret == 0) continue; switch (opt) { case 'h': eal_usage(prgname); exit(EXIT_SUCCESS); case OPT_HUGE_DIR_NUM: { char *hdir = strdup(optarg); if (hdir == NULL) RTE_LOG(ERR, EAL, "Could not store hugepage directory\n"); else { /* free old hugepage dir */ if (internal_config.hugepage_dir != NULL) free(internal_config.hugepage_dir); internal_config.hugepage_dir = hdir; } break; } case OPT_FILE_PREFIX_NUM: { char *prefix = strdup(optarg); if (prefix == NULL) RTE_LOG(ERR, EAL, "Could not store file prefix\n"); else { /* free old prefix */ if (internal_config.hugefile_prefix != NULL) free(internal_config.hugefile_prefix); internal_config.hugefile_prefix = prefix; } break; } case OPT_SOCKET_MEM_NUM: if (eal_parse_socket_arg(optarg, internal_config.socket_mem) < 0) { RTE_LOG(ERR, EAL, "invalid parameters for --" OPT_SOCKET_MEM "\n"); eal_usage(prgname); ret = -1; goto out; } internal_config.force_sockets = 1; break; case OPT_SOCKET_LIMIT_NUM: if (eal_parse_socket_arg(optarg, internal_config.socket_limit) < 0) { RTE_LOG(ERR, EAL, "invalid parameters for --" OPT_SOCKET_LIMIT "\n"); eal_usage(prgname); ret = -1; goto out; } internal_config.force_socket_limits = 1; break; case OPT_VFIO_INTR_NUM: if (eal_parse_vfio_intr(optarg) < 0) { RTE_LOG(ERR, EAL, "invalid parameters for --" OPT_VFIO_INTR "\n"); eal_usage(prgname); ret = -1; goto out; } break; case OPT_CREATE_UIO_DEV_NUM: internal_config.create_uio_dev = 1; break; case OPT_MBUF_POOL_OPS_NAME_NUM: { char *ops_name = strdup(optarg); if (ops_name == NULL) RTE_LOG(ERR, EAL, "Could not store mbuf pool ops name\n"); else { /* free old ops name */ if (internal_config.user_mbuf_pool_ops_name != NULL) free(internal_config.user_mbuf_pool_ops_name); internal_config.user_mbuf_pool_ops_name = ops_name; } break; } case OPT_MATCH_ALLOCATIONS_NUM: internal_config.match_allocations = 1; break; default: if (opt < OPT_LONG_MIN_NUM && isprint(opt)) { RTE_LOG(ERR, EAL, "Option %c is not supported " "on Linux\n", opt); } else if (opt >= OPT_LONG_MIN_NUM && opt < OPT_LONG_MAX_NUM) { RTE_LOG(ERR, EAL, "Option %s is not supported " "on Linux\n", eal_long_options[option_index].name); } else { RTE_LOG(ERR, EAL, "Option %d is not supported " "on Linux\n", opt); } eal_usage(prgname); ret = -1; goto out; } } /* create runtime data directory */ if (internal_config.no_shconf == 0 && eal_create_runtime_dir() < 0) { RTE_LOG(ERR, EAL, "Cannot create runtime directory\n"); ret = -1; goto out; } if (eal_adjust_config(&internal_config) != 0) { ret = -1; goto out; } /* sanity checks */ if (eal_check_common_options(&internal_config) != 0) { eal_usage(prgname); ret = -1; goto out; } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; out: /* restore getopt lib */ optind = old_optind; optopt = old_optopt; optarg = old_optarg; return ret; } static int check_socket(const struct rte_memseg_list *msl, void *arg) { int *socket_id = arg; if (msl->external) return 0; return *socket_id == msl->socket_id; } static void eal_check_mem_on_local_socket(void) { int socket_id; socket_id = rte_lcore_to_socket_id(rte_config.master_lcore); if (rte_memseg_list_walk(check_socket, &socket_id) == 0) RTE_LOG(WARNING, EAL, "WARNING: Master core has no memory on local socket!\n"); } static int sync_func(__attribute__((unused)) void *arg) { return 0; } /* * Request iopl privilege for all RPL, returns 0 on success * iopl() call is mostly for the i386 architecture. For other architectures, * return -1 to indicate IO privilege can't be changed in this way. */ int rte_eal_iopl_init(void) { #if defined(RTE_ARCH_X86) if (iopl(3) != 0) return -1; #endif return 0; } #ifdef VFIO_PRESENT static int rte_eal_vfio_setup(void) { if (rte_vfio_enable("vfio")) return -1; return 0; } #endif static void rte_eal_init_alert(const char *msg) { fprintf(stderr, "EAL: FATAL: %s\n", msg); RTE_LOG(ERR, EAL, "%s\n", msg); } /* * On Linux 3.6+, even if VFIO is not loaded, whenever IOMMU is enabled in the * BIOS and in the kernel, /sys/kernel/iommu_groups path will contain kernel * IOMMU groups. If IOMMU is not enabled, that path would be empty. * Therefore, checking if the path is empty will tell us if IOMMU is enabled. */ static bool is_iommu_enabled(void) { DIR *dir = opendir(KERNEL_IOMMU_GROUPS_PATH); struct dirent *d; int n = 0; /* if directory doesn't exist, assume IOMMU is not enabled */ if (dir == NULL) return false; while ((d = readdir(dir)) != NULL) { /* skip dot and dot-dot */ if (++n > 2) break; } closedir(dir); return n > 2; } /* Launch threads, called at application init(). */ int rte_eal_init(int argc, char **argv) { int i, fctret, ret; pthread_t thread_id; static rte_atomic32_t run_once = RTE_ATOMIC32_INIT(0); const char *p; static char logid[PATH_MAX]; char cpuset[RTE_CPU_AFFINITY_STR_LEN]; char thread_name[RTE_MAX_THREAD_NAME_LEN]; bool phys_addrs; /* checks if the machine is adequate */ if (!rte_cpu_is_supported()) { rte_eal_init_alert("unsupported cpu type."); rte_errno = ENOTSUP; return -1; } if (!rte_atomic32_test_and_set(&run_once)) { rte_eal_init_alert("already called initialization."); rte_errno = EALREADY; return -1; } p = strrchr(argv[0], '/'); strlcpy(logid, p ? p + 1 : argv[0], sizeof(logid)); thread_id = pthread_self(); eal_reset_internal_config(&internal_config); /* set log level as early as possible */ eal_log_level_parse(argc, argv); if (rte_eal_cpu_init() < 0) { rte_eal_init_alert("Cannot detect lcores."); rte_errno = ENOTSUP; return -1; } fctret = eal_parse_args(argc, argv); if (fctret < 0) { rte_eal_init_alert("Invalid 'command line' arguments."); rte_errno = EINVAL; rte_atomic32_clear(&run_once); return -1; } if (eal_plugins_init() < 0) { rte_eal_init_alert("Cannot init plugins"); rte_errno = EINVAL; rte_atomic32_clear(&run_once); return -1; } if (eal_option_device_parse()) { rte_errno = ENODEV; rte_atomic32_clear(&run_once); return -1; } if (rte_config_init() < 0) { rte_eal_init_alert("Cannot init config"); return -1; } if (rte_eal_intr_init() < 0) { rte_eal_init_alert("Cannot init interrupt-handling thread"); return -1; } if (rte_eal_alarm_init() < 0) { rte_eal_init_alert("Cannot init alarm"); /* rte_eal_alarm_init sets rte_errno on failure. */ return -1; } /* Put mp channel init before bus scan so that we can init the vdev * bus through mp channel in the secondary process before the bus scan. */ if (rte_mp_channel_init() < 0 && rte_errno != ENOTSUP) { rte_eal_init_alert("failed to init mp channel"); if (rte_eal_process_type() == RTE_PROC_PRIMARY) { rte_errno = EFAULT; return -1; } } /* register multi-process action callbacks for hotplug */ if (eal_mp_dev_hotplug_init() < 0) { rte_eal_init_alert("failed to register mp callback for hotplug"); return -1; } if (rte_bus_scan()) { rte_eal_init_alert("Cannot scan the buses for devices"); rte_errno = ENODEV; rte_atomic32_clear(&run_once); return -1; } phys_addrs = rte_eal_using_phys_addrs() != 0; /* if no EAL option "--iova-mode=", use bus IOVA scheme */ if (internal_config.iova_mode == RTE_IOVA_DC) { /* autodetect the IOVA mapping mode */ enum rte_iova_mode iova_mode = rte_bus_get_iommu_class(); if (iova_mode == RTE_IOVA_DC) { RTE_LOG(DEBUG, EAL, "Buses did not request a specific IOVA mode.\n"); if (!phys_addrs) { /* if we have no access to physical addresses, * pick IOVA as VA mode. */ iova_mode = RTE_IOVA_VA; RTE_LOG(DEBUG, EAL, "Physical addresses are unavailable, selecting IOVA as VA mode.\n"); #if defined(RTE_LIBRTE_KNI) && LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0) } else if (rte_eal_check_module("rte_kni") == 1) { iova_mode = RTE_IOVA_PA; RTE_LOG(DEBUG, EAL, "KNI is loaded, selecting IOVA as PA mode for better KNI perfomance.\n"); #endif } else if (is_iommu_enabled()) { /* we have an IOMMU, pick IOVA as VA mode */ iova_mode = RTE_IOVA_VA; RTE_LOG(DEBUG, EAL, "IOMMU is available, selecting IOVA as VA mode.\n"); } else { /* physical addresses available, and no IOMMU * found, so pick IOVA as PA. */ iova_mode = RTE_IOVA_PA; RTE_LOG(DEBUG, EAL, "IOMMU is not available, selecting IOVA as PA mode.\n"); } } #if defined(RTE_LIBRTE_KNI) && LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0) /* Workaround for KNI which requires physical address to work * in kernels < 4.10 */ if (iova_mode == RTE_IOVA_VA && rte_eal_check_module("rte_kni") == 1) { if (phys_addrs) { iova_mode = RTE_IOVA_PA; RTE_LOG(WARNING, EAL, "Forcing IOVA as 'PA' because KNI module is loaded\n"); } else { RTE_LOG(DEBUG, EAL, "KNI can not work since physical addresses are unavailable\n"); } } #endif rte_eal_get_configuration()->iova_mode = iova_mode; } else { rte_eal_get_configuration()->iova_mode = internal_config.iova_mode; } if (rte_eal_iova_mode() == RTE_IOVA_PA && !phys_addrs) { rte_eal_init_alert("Cannot use IOVA as 'PA' since physical addresses are not available"); rte_errno = EINVAL; return -1; } RTE_LOG(INFO, EAL, "Selected IOVA mode '%s'\n", rte_eal_iova_mode() == RTE_IOVA_PA ? "PA" : "VA"); if (internal_config.no_hugetlbfs == 0) { /* rte_config isn't initialized yet */ ret = internal_config.process_type == RTE_PROC_PRIMARY ? eal_hugepage_info_init() : eal_hugepage_info_read(); if (ret < 0) { rte_eal_init_alert("Cannot get hugepage information."); rte_errno = EACCES; rte_atomic32_clear(&run_once); return -1; } } if (internal_config.memory == 0 && internal_config.force_sockets == 0) { if (internal_config.no_hugetlbfs) internal_config.memory = MEMSIZE_IF_NO_HUGE_PAGE; } if (internal_config.vmware_tsc_map == 1) { #ifdef RTE_LIBRTE_EAL_VMWARE_TSC_MAP_SUPPORT rte_cycles_vmware_tsc_map = 1; RTE_LOG (DEBUG, EAL, "Using VMWARE TSC MAP, " "you must have monitor_control.pseudo_perfctr = TRUE\n"); #else RTE_LOG (WARNING, EAL, "Ignoring --vmware-tsc-map because " "RTE_LIBRTE_EAL_VMWARE_TSC_MAP_SUPPORT is not set\n"); #endif } if (rte_eal_log_init(logid, internal_config.syslog_facility) < 0) { rte_eal_init_alert("Cannot init logging."); rte_errno = ENOMEM; rte_atomic32_clear(&run_once); return -1; } #ifdef VFIO_PRESENT if (rte_eal_vfio_setup() < 0) { rte_eal_init_alert("Cannot init VFIO"); rte_errno = EAGAIN; rte_atomic32_clear(&run_once); return -1; } #endif /* in secondary processes, memory init may allocate additional fbarrays * not present in primary processes, so to avoid any potential issues, * initialize memzones first. */ if (rte_eal_memzone_init() < 0) { rte_eal_init_alert("Cannot init memzone"); rte_errno = ENODEV; return -1; } if (rte_eal_memory_init() < 0) { rte_eal_init_alert("Cannot init memory"); rte_errno = ENOMEM; return -1; } /* the directories are locked during eal_hugepage_info_init */ eal_hugedirs_unlock(); if (rte_eal_malloc_heap_init() < 0) { rte_eal_init_alert("Cannot init malloc heap"); rte_errno = ENODEV; return -1; } if (rte_eal_tailqs_init() < 0) { rte_eal_init_alert("Cannot init tail queues for objects"); rte_errno = EFAULT; return -1; } if (rte_eal_timer_init() < 0) { rte_eal_init_alert("Cannot init HPET or TSC timers"); rte_errno = ENOTSUP; return -1; } eal_check_mem_on_local_socket(); eal_thread_init_master(rte_config.master_lcore); ret = eal_thread_dump_affinity(cpuset, sizeof(cpuset)); RTE_LOG(DEBUG, EAL, "Master lcore %u is ready (tid=%zx;cpuset=[%s%s])\n", rte_config.master_lcore, (uintptr_t)thread_id, cpuset, ret == 0 ? "" : "..."); RTE_LCORE_FOREACH_SLAVE(i) { /* * create communication pipes between master thread * and children */ if (pipe(lcore_config[i].pipe_master2slave) < 0) rte_panic("Cannot create pipe\n"); if (pipe(lcore_config[i].pipe_slave2master) < 0) rte_panic("Cannot create pipe\n"); lcore_config[i].state = WAIT; /* create a thread for each lcore */ ret = pthread_create(&lcore_config[i].thread_id, NULL, eal_thread_loop, NULL); if (ret != 0) rte_panic("Cannot create thread\n"); /* Set thread_name for aid in debugging. */ snprintf(thread_name, sizeof(thread_name), "lcore-slave-%d", i); ret = rte_thread_setname(lcore_config[i].thread_id, thread_name); if (ret != 0) RTE_LOG(DEBUG, EAL, "Cannot set name for lcore thread\n"); } /* * Launch a dummy function on all slave lcores, so that master lcore * knows they are all ready when this function returns. */ rte_eal_mp_remote_launch(sync_func, NULL, SKIP_MASTER); rte_eal_mp_wait_lcore(); /* initialize services so vdevs register service during bus_probe. */ ret = rte_service_init(); if (ret) { rte_eal_init_alert("rte_service_init() failed"); rte_errno = ENOEXEC; return -1; } /* Probe all the buses and devices/drivers on them */ if (rte_bus_probe()) { rte_eal_init_alert("Cannot probe devices"); rte_errno = ENOTSUP; return -1; } #ifdef VFIO_PRESENT /* Register mp action after probe() so that we got enough info */ if (rte_vfio_is_enabled("vfio") && vfio_mp_sync_setup() < 0) return -1; #endif /* initialize default service/lcore mappings and start running. Ignore * -ENOTSUP, as it indicates no service coremask passed to EAL. */ ret = rte_service_start_with_defaults(); if (ret < 0 && ret != -ENOTSUP) { rte_errno = ENOEXEC; return -1; } /* * Clean up unused files in runtime directory. We do this at the end of * init and not at the beginning because we want to clean stuff up * whether we are primary or secondary process, but we cannot remove * primary process' files because secondary should be able to run even * if primary process is dead. * * In no_shconf mode, no runtime directory is created in the first * place, so no cleanup needed. */ if (!internal_config.no_shconf && eal_clean_runtime_dir() < 0) { rte_eal_init_alert("Cannot clear runtime directory\n"); return -1; } eal_mcfg_complete(); /* Call each registered callback, if enabled */ rte_option_init(); return fctret; } static int mark_freeable(const struct rte_memseg_list *msl, const struct rte_memseg *ms, void *arg __rte_unused) { /* ms is const, so find this memseg */ struct rte_memseg *found; if (msl->external) return 0; found = rte_mem_virt2memseg(ms->addr, msl); found->flags &= ~RTE_MEMSEG_FLAG_DO_NOT_FREE; return 0; } int rte_eal_cleanup(void) { /* if we're in a primary process, we need to mark hugepages as freeable * so that finalization can release them back to the system. */ if (rte_eal_process_type() == RTE_PROC_PRIMARY) rte_memseg_walk(mark_freeable, NULL); rte_service_finalize(); rte_mp_channel_cleanup(); eal_cleanup_config(&internal_config); return 0; } enum rte_proc_type_t rte_eal_process_type(void) { return rte_config.process_type; } int rte_eal_has_hugepages(void) { return ! internal_config.no_hugetlbfs; } int rte_eal_has_pci(void) { return !internal_config.no_pci; } int rte_eal_create_uio_dev(void) { return internal_config.create_uio_dev; } enum rte_intr_mode rte_eal_vfio_intr_mode(void) { return internal_config.vfio_intr_mode; } int rte_eal_check_module(const char *module_name) { char sysfs_mod_name[PATH_MAX]; struct stat st; int n; if (NULL == module_name) return -1; /* Check if there is sysfs mounted */ if (stat("/sys/module", &st) != 0) { RTE_LOG(DEBUG, EAL, "sysfs is not mounted! error %i (%s)\n", errno, strerror(errno)); return -1; } /* A module might be built-in, therefore try sysfs */ n = snprintf(sysfs_mod_name, PATH_MAX, "/sys/module/%s", module_name); if (n < 0 || n > PATH_MAX) { RTE_LOG(DEBUG, EAL, "Could not format module path\n"); return -1; } if (stat(sysfs_mod_name, &st) != 0) { RTE_LOG(DEBUG, EAL, "Module %s not found! error %i (%s)\n", sysfs_mod_name, errno, strerror(errno)); return 0; } /* Module has been found */ return 1; }