/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "channel_manager.h" #include "power_manager.h" #include "oob_monitor.h" #define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \ if (core_num >= ci.core_count) \ return -1; \ if (!(ci.cd[core_num].global_enabled_cpus)) \ return -1; \ rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \ ret = rte_power_freq_##DIRECTION(core_num); \ rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \ } while (0) struct freq_info { rte_spinlock_t power_sl; uint32_t freqs[RTE_MAX_LCORE_FREQS]; unsigned num_freqs; } __rte_cache_aligned; static struct freq_info global_core_freq_info[RTE_MAX_LCORE]; struct core_info ci; #define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id" struct core_info * get_core_info(void) { return &ci; } int core_info_init(void) { struct core_info *ci; int i; ci = get_core_info(); ci->core_count = get_nprocs_conf(); ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD; ci->cd = malloc(ci->core_count * sizeof(struct core_details)); memset(ci->cd, 0, ci->core_count * sizeof(struct core_details)); if (!ci->cd) { RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info."); return -1; } for (i = 0; i < ci->core_count; i++) { ci->cd[i].global_enabled_cpus = 1; } printf("%d cores in system\n", ci->core_count); return 0; } int power_manager_init(void) { unsigned int i, num_cpus = 0, num_freqs = 0; int ret = 0; struct core_info *ci; unsigned int max_core_num; rte_power_set_env(PM_ENV_NOT_SET); ci = get_core_info(); if (!ci) { RTE_LOG(ERR, POWER_MANAGER, "Failed to get core info!\n"); return -1; } if (ci->core_count > RTE_MAX_LCORE) max_core_num = RTE_MAX_LCORE; else max_core_num = ci->core_count; for (i = 0; i < max_core_num; i++) { if (ci->cd[i].global_enabled_cpus) { if (rte_power_init(i) < 0) RTE_LOG(ERR, POWER_MANAGER, "Unable to initialize power manager " "for core %u\n", i); num_cpus++; num_freqs = rte_power_freqs(i, global_core_freq_info[i].freqs, RTE_MAX_LCORE_FREQS); if (num_freqs == 0) { RTE_LOG(ERR, POWER_MANAGER, "Unable to get frequency list for core %u\n", i); ci->cd[i].oob_enabled = 0; ret = -1; } global_core_freq_info[i].num_freqs = num_freqs; rte_spinlock_init(&global_core_freq_info[i].power_sl); } if (ci->cd[i].oob_enabled) add_core_to_monitor(i); } RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n", num_cpus, ci->core_count); return ret; } uint32_t power_manager_get_current_frequency(unsigned core_num) { uint32_t freq, index; if (core_num >= RTE_MAX_LCORE) { RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n", core_num, RTE_MAX_LCORE-1); return -1; } if (!(ci.cd[core_num].global_enabled_cpus)) return 0; rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); index = rte_power_get_freq(core_num); rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); if (index >= RTE_MAX_LCORE_FREQS) freq = 0; else freq = global_core_freq_info[core_num].freqs[index]; return freq; } int power_manager_exit(void) { unsigned int i; int ret = 0; struct core_info *ci; unsigned int max_core_num; ci = get_core_info(); if (!ci) { RTE_LOG(ERR, POWER_MANAGER, "Failed to get core info!\n"); return -1; } if (ci->core_count > RTE_MAX_LCORE) max_core_num = RTE_MAX_LCORE; else max_core_num = ci->core_count; for (i = 0; i < max_core_num; i++) { if (ci->cd[i].global_enabled_cpus) { if (rte_power_exit(i) < 0) { RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager " "for core %u\n", i); ret = -1; } ci->cd[i].global_enabled_cpus = 0; } remove_core_from_monitor(i); } return ret; } int power_manager_scale_core_up(unsigned core_num) { int ret = 0; POWER_SCALE_CORE(up, core_num, ret); return ret; } int power_manager_scale_core_down(unsigned core_num) { int ret = 0; POWER_SCALE_CORE(down, core_num, ret); return ret; } int power_manager_scale_core_min(unsigned core_num) { int ret = 0; POWER_SCALE_CORE(min, core_num, ret); return ret; } int power_manager_scale_core_max(unsigned core_num) { int ret = 0; POWER_SCALE_CORE(max, core_num, ret); return ret; } int power_manager_enable_turbo_core(unsigned int core_num) { int ret = 0; POWER_SCALE_CORE(enable_turbo, core_num, ret); return ret; } int power_manager_disable_turbo_core(unsigned int core_num) { int ret = 0; POWER_SCALE_CORE(disable_turbo, core_num, ret); return ret; } int power_manager_scale_core_med(unsigned int core_num) { int ret = 0; struct core_info *ci; ci = get_core_info(); if (core_num >= RTE_MAX_LCORE) return -1; if (!(ci->cd[core_num].global_enabled_cpus)) return -1; rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); ret = rte_power_set_freq(core_num, global_core_freq_info[core_num].num_freqs / 2); rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); return ret; }