/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2018-2019 NXP */ #ifndef _PFE_H_ #define _PFE_H_ #include "cbus.h" /* * WARNING: non atomic version. */ static inline void set_bit(unsigned long nr, void *addr) { int *m = ((int *)addr) + (nr >> 5); *m |= 1 << (nr & 31); } static inline int test_bit(int nr, const void *addr) { return (1UL & (((const int *)addr)[nr >> 5] >> (nr & 31))) != 0UL; } /* * WARNING: non atomic version. */ static inline void clear_bit(unsigned long nr, void *addr) { int *m = ((int *)addr) + (nr >> 5); *m &= ~(1 << (nr & 31)); } /* * WARNING: non atomic version. */ static inline int test_and_clear_bit(unsigned long nr, void *addr) { unsigned long mask = 1 << (nr & 0x1f); int *m = ((int *)addr) + (nr >> 5); int old = *m; *m = old & ~mask; return (old & mask) != 0; } /* * WARNING: non atomic version. */ static inline int test_and_set_bit(unsigned long nr, void *addr) { unsigned long mask = 1 << (nr & 0x1f); int *m = ((int *)addr) + (nr >> 5); int old = *m; *m = old | mask; return (old & mask) != 0; } #ifndef BIT #define BIT(nr) (1UL << (nr)) #endif #define CLASS_DMEM_BASE_ADDR(i) (0x00000000 | ((i) << 20)) /* * Only valid for mem access register interface */ #define CLASS_IMEM_BASE_ADDR(i) (0x00000000 | ((i) << 20)) #define CLASS_DMEM_SIZE 0x00002000 #define CLASS_IMEM_SIZE 0x00008000 #define TMU_DMEM_BASE_ADDR(i) (0x00000000 + ((i) << 20)) /* * Only valid for mem access register interface */ #define TMU_IMEM_BASE_ADDR(i) (0x00000000 + ((i) << 20)) #define TMU_DMEM_SIZE 0x00000800 #define TMU_IMEM_SIZE 0x00002000 #define UTIL_DMEM_BASE_ADDR 0x00000000 #define UTIL_DMEM_SIZE 0x00002000 #define PE_LMEM_BASE_ADDR 0xc3010000 #define PE_LMEM_SIZE 0x8000 #define PE_LMEM_END (PE_LMEM_BASE_ADDR + PE_LMEM_SIZE) #define DMEM_BASE_ADDR 0x00000000 #define DMEM_SIZE 0x2000 /* TMU has less... */ #define DMEM_END (DMEM_BASE_ADDR + DMEM_SIZE) #define PMEM_BASE_ADDR 0x00010000 #define PMEM_SIZE 0x8000 /* TMU has less... */ #define PMEM_END (PMEM_BASE_ADDR + PMEM_SIZE) #define writel(v, p) ({*(volatile unsigned int *)(p) = (v); }) #define readl(p) (*(const volatile unsigned int *)(p)) /* These check memory ranges from PE point of view/memory map */ #define IS_DMEM(addr, len) \ ({ typeof(addr) addr_ = (addr); \ ((unsigned long)(addr_) >= DMEM_BASE_ADDR) && \ (((unsigned long)(addr_) + (len)) <= DMEM_END); }) #define IS_PMEM(addr, len) \ ({ typeof(addr) addr_ = (addr); \ ((unsigned long)(addr_) >= PMEM_BASE_ADDR) && \ (((unsigned long)(addr_) + (len)) <= PMEM_END); }) #define IS_PE_LMEM(addr, len) \ ({ typeof(addr) addr_ = (addr); \ ((unsigned long)(addr_) >= \ PE_LMEM_BASE_ADDR) && \ (((unsigned long)(addr_) + \ (len)) <= PE_LMEM_END); }) #define IS_PFE_LMEM(addr, len) \ ({ typeof(addr) addr_ = (addr); \ ((unsigned long)(addr_) >= \ CBUS_VIRT_TO_PFE(LMEM_BASE_ADDR)) && \ (((unsigned long)(addr_) + (len)) <= \ CBUS_VIRT_TO_PFE(LMEM_END)); }) #define __IS_PHYS_DDR(addr, len) \ ({ typeof(addr) addr_ = (addr); \ ((unsigned long)(addr_) >= \ DDR_PHYS_BASE_ADDR) && \ (((unsigned long)(addr_) + (len)) <= \ DDR_PHYS_END); }) #define IS_PHYS_DDR(addr, len) __IS_PHYS_DDR(DDR_PFE_TO_PHYS(addr), len) /* * If using a run-time virtual address for the cbus base address use this code */ extern void *cbus_base_addr; extern void *ddr_base_addr; extern unsigned long ddr_phys_base_addr; extern unsigned int ddr_size; #define CBUS_BASE_ADDR cbus_base_addr #define DDR_PHYS_BASE_ADDR ddr_phys_base_addr #define DDR_BASE_ADDR ddr_base_addr #define DDR_SIZE ddr_size #define DDR_PHYS_END (DDR_PHYS_BASE_ADDR + DDR_SIZE) #define LS1012A_PFE_RESET_WA /* * PFE doesn't have global reset and re-init * should takecare few things to make PFE * functional after reset */ #define PFE_CBUS_PHYS_BASE_ADDR 0xc0000000 /* CBUS physical base address * as seen by PE's. */ /* CBUS physical base address as seen by PE's. */ #define PFE_CBUS_PHYS_BASE_ADDR_FROM_PFE 0xc0000000 #define DDR_PHYS_TO_PFE(p) (((unsigned long)(p)) & 0x7FFFFFFF) #define DDR_PFE_TO_PHYS(p) (((unsigned long)(p)) | 0x80000000) #define CBUS_PHYS_TO_PFE(p) (((p) - PFE_CBUS_PHYS_BASE_ADDR) + \ PFE_CBUS_PHYS_BASE_ADDR_FROM_PFE) /* Translates to PFE address map */ #define DDR_PHYS_TO_VIRT(p) (((p) - DDR_PHYS_BASE_ADDR) + DDR_BASE_ADDR) #define DDR_VIRT_TO_PHYS(v) (((v) - DDR_BASE_ADDR) + DDR_PHYS_BASE_ADDR) #define DDR_VIRT_TO_PFE(p) (DDR_PHYS_TO_PFE(DDR_VIRT_TO_PHYS(p))) #define CBUS_VIRT_TO_PFE(v) (((v) - CBUS_BASE_ADDR) + \ PFE_CBUS_PHYS_BASE_ADDR) #define CBUS_PFE_TO_VIRT(p) (((unsigned long)(p) - \ PFE_CBUS_PHYS_BASE_ADDR) + CBUS_BASE_ADDR) /* The below part of the code is used in QOS control driver from host */ #define TMU_APB_BASE_ADDR 0xc1000000 /* TMU base address seen by * pe's */ enum { CLASS0_ID = 0, CLASS1_ID, CLASS2_ID, CLASS3_ID, CLASS4_ID, CLASS5_ID, TMU0_ID, TMU1_ID, TMU2_ID, TMU3_ID, #if !defined(CONFIG_FSL_PFE_UTIL_DISABLED) UTIL_ID, #endif MAX_PE }; #define CLASS_MASK (BIT(CLASS0_ID) | BIT(CLASS1_ID) |\ BIT(CLASS2_ID) | BIT(CLASS3_ID) |\ BIT(CLASS4_ID) | BIT(CLASS5_ID)) #define CLASS_MAX_ID CLASS5_ID #define TMU_MASK (BIT(TMU0_ID) | BIT(TMU1_ID) |\ BIT(TMU3_ID)) #define TMU_MAX_ID TMU3_ID #if !defined(CONFIG_FSL_PFE_UTIL_DISABLED) #define UTIL_MASK BIT(UTIL_ID) #endif struct pe_status { u32 cpu_state; u32 activity_counter; u32 rx; union { u32 tx; u32 tmu_qstatus; }; u32 drop; #if defined(CFG_PE_DEBUG) u32 debug_indicator; u32 debug[16]; #endif } __rte_aligned(16); struct pe_sync_mailbox { u32 stop; u32 stopped; }; /* Drop counter definitions */ #define CLASS_NUM_DROP_COUNTERS 13 #define UTIL_NUM_DROP_COUNTERS 8 /* PE information. * Structure containing PE's specific information. It is used to create * generic C functions common to all PE's. * Before using the library functions this structure needs to be initialized * with the different registers virtual addresses * (according to the ARM MMU mmaping). The default initialization supports a * virtual == physical mapping. */ struct pe_info { u32 dmem_base_addr; /* PE's dmem base address */ u32 pmem_base_addr; /* PE's pmem base address */ u32 pmem_size; /* PE's pmem size */ void *mem_access_wdata; /* PE's _MEM_ACCESS_WDATA register * address */ void *mem_access_addr; /* PE's _MEM_ACCESS_ADDR register * address */ void *mem_access_rdata; /* PE's _MEM_ACCESS_RDATA register * address */ }; void pe_lmem_read(u32 *dst, u32 len, u32 offset); void pe_lmem_write(u32 *src, u32 len, u32 offset); void pe_dmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len); void pe_pmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len); u32 pe_pmem_read(int id, u32 addr, u8 size); void pe_dmem_write(int id, u32 val, u32 addr, u8 size); u32 pe_dmem_read(int id, u32 addr, u8 size); void class_pe_lmem_memcpy_to32(u32 dst, const void *src, unsigned int len); void class_pe_lmem_memset(u32 dst, int val, unsigned int len); void class_bus_write(u32 val, u32 addr, u8 size); u32 class_bus_read(u32 addr, u8 size); #define class_bus_readl(addr) class_bus_read(addr, 4) #define class_bus_readw(addr) class_bus_read(addr, 2) #define class_bus_readb(addr) class_bus_read(addr, 1) #define class_bus_writel(val, addr) class_bus_write(val, addr, 4) #define class_bus_writew(val, addr) class_bus_write(val, addr, 2) #define class_bus_writeb(val, addr) class_bus_write(val, addr, 1) #define pe_dmem_readl(id, addr) pe_dmem_read(id, addr, 4) #define pe_dmem_readw(id, addr) pe_dmem_read(id, addr, 2) #define pe_dmem_readb(id, addr) pe_dmem_read(id, addr, 1) #define pe_dmem_writel(id, val, addr) pe_dmem_write(id, val, addr, 4) #define pe_dmem_writew(id, val, addr) pe_dmem_write(id, val, addr, 2) #define pe_dmem_writeb(id, val, addr) pe_dmem_write(id, val, addr, 1) /*int pe_load_elf_section(int id, const void *data, elf32_shdr *shdr); */ //int pe_load_elf_section(int id, const void *data, struct elf32_shdr *shdr, // struct device *dev); void pfe_lib_init(void *cbus_base, void *ddr_base, unsigned long ddr_phys_base, unsigned int ddr_size); void bmu_init(void *base, struct BMU_CFG *cfg); void bmu_reset(void *base); void bmu_enable(void *base); void bmu_disable(void *base); void bmu_set_config(void *base, struct BMU_CFG *cfg); /* * An enumerated type for loopback values. This can be one of three values, no * loopback -normal operation, local loopback with internal loopback module of * MAC or PHY loopback which is through the external PHY. */ #ifndef __MAC_LOOP_ENUM__ #define __MAC_LOOP_ENUM__ enum mac_loop {LB_NONE, LB_EXT, LB_LOCAL}; #endif void gemac_init(void *base, void *config); void gemac_disable_rx_checksum_offload(void *base); void gemac_enable_rx_checksum_offload(void *base); void gemac_set_mdc_div(void *base, int mdc_div); void gemac_set_speed(void *base, enum mac_speed gem_speed); void gemac_set_duplex(void *base, int duplex); void gemac_set_mode(void *base, int mode); void gemac_enable(void *base); void gemac_tx_disable(void *base); void gemac_tx_enable(void *base); void gemac_disable(void *base); void gemac_reset(void *base); void gemac_set_address(void *base, struct spec_addr *addr); struct spec_addr gemac_get_address(void *base); void gemac_set_loop(void *base, enum mac_loop gem_loop); void gemac_set_laddr1(void *base, struct pfe_mac_addr *address); void gemac_set_laddr2(void *base, struct pfe_mac_addr *address); void gemac_set_laddr3(void *base, struct pfe_mac_addr *address); void gemac_set_laddr4(void *base, struct pfe_mac_addr *address); void gemac_set_laddrN(void *base, struct pfe_mac_addr *address, unsigned int entry_index); void gemac_clear_laddr1(void *base); void gemac_clear_laddr2(void *base); void gemac_clear_laddr3(void *base); void gemac_clear_laddr4(void *base); void gemac_clear_laddrN(void *base, unsigned int entry_index); struct pfe_mac_addr gemac_get_hash(void *base); void gemac_set_hash(void *base, struct pfe_mac_addr *hash); struct pfe_mac_addr gem_get_laddr1(void *base); struct pfe_mac_addr gem_get_laddr2(void *base); struct pfe_mac_addr gem_get_laddr3(void *base); struct pfe_mac_addr gem_get_laddr4(void *base); struct pfe_mac_addr gem_get_laddrN(void *base, unsigned int entry_index); void gemac_set_config(void *base, struct gemac_cfg *cfg); void gemac_allow_broadcast(void *base); void gemac_no_broadcast(void *base); void gemac_enable_1536_rx(void *base); void gemac_disable_1536_rx(void *base); int gemac_set_rx(void *base, int mtu); void gemac_enable_rx_jmb(void *base); void gemac_disable_rx_jmb(void *base); void gemac_enable_stacked_vlan(void *base); void gemac_disable_stacked_vlan(void *base); void gemac_enable_pause_rx(void *base); void gemac_disable_pause_rx(void *base); void gemac_enable_pause_tx(void *base); void gemac_disable_pause_tx(void *base); void gemac_enable_copy_all(void *base); void gemac_disable_copy_all(void *base); void gemac_set_bus_width(void *base, int width); void gemac_set_wol(void *base, u32 wol_conf); void gpi_init(void *base, struct gpi_cfg *cfg); void gpi_reset(void *base); void gpi_enable(void *base); void gpi_disable(void *base); void gpi_set_config(void *base, struct gpi_cfg *cfg); void hif_init(void); void hif_tx_enable(void); void hif_tx_disable(void); void hif_rx_enable(void); void hif_rx_disable(void); /* Get Chip Revision level * */ static inline unsigned int CHIP_REVISION(void) { /*For LS1012A return always 1 */ return 1; } /* Start HIF rx DMA * */ static inline void hif_rx_dma_start(void) { writel(HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB, HIF_RX_CTRL); } /* Start HIF tx DMA * */ static inline void hif_tx_dma_start(void) { writel(HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB, HIF_TX_CTRL); } static inline void *pfe_mem_ptov(phys_addr_t paddr) { return rte_mem_iova2virt(paddr); } static phys_addr_t pfe_mem_vtop(uint64_t vaddr) __attribute__((unused)); static inline phys_addr_t pfe_mem_vtop(uint64_t vaddr) { const struct rte_memseg *memseg; memseg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL); if (memseg) return memseg->phys_addr + RTE_PTR_DIFF(vaddr, memseg->addr); return (size_t)NULL; } #endif /* _PFE_H_ */