/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Huawei Technologies Co., Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include "base/hinic_compat.h" #include "base/hinic_pmd_hwdev.h" #include "base/hinic_pmd_hwif.h" #include "base/hinic_pmd_wq.h" #include "base/hinic_pmd_cmdq.h" #include "base/hinic_pmd_niccfg.h" #include "hinic_pmd_ethdev.h" #define HINIC_MAX_RX_QUEUE_NUM 64 #ifndef UINT8_MAX #define UINT8_MAX (u8)(~((u8)0)) /* 0xFF */ #define UINT16_MAX (u16)(~((u16)0)) /* 0xFFFF */ #define UINT32_MAX (u32)(~((u32)0)) /* 0xFFFFFFFF */ #define UINT64_MAX (u64)(~((u64)0)) /* 0xFFFFFFFFFFFFFFFF */ #define ASCII_MAX (0x7F) #endif /* IPSURX MACRO */ #define PA_ETH_TYPE_ROCE 0 #define PA_ETH_TYPE_IPV4 1 #define PA_ETH_TYPE_IPV6 2 #define PA_ETH_TYPE_OTHER 3 #define PA_IP_PROTOCOL_TYPE_TCP 1 #define PA_IP_PROTOCOL_TYPE_UDP 2 #define PA_IP_PROTOCOL_TYPE_ICMP 3 #define PA_IP_PROTOCOL_TYPE_IPV4_IGMP 4 #define PA_IP_PROTOCOL_TYPE_SCTP 5 #define PA_IP_PROTOCOL_TYPE_VRRP 112 #define IP_HEADER_PROTOCOL_TYPE_TCP 6 #define HINIC_MIN_N_TUPLE_PRIO 1 #define HINIC_MAX_N_TUPLE_PRIO 7 /* TCAM type mask in hardware */ #define TCAM_PKT_BGP_SPORT 1 #define TCAM_PKT_VRRP 2 #define TCAM_PKT_BGP_DPORT 3 #define TCAM_PKT_LACP 4 #define BGP_DPORT_ID 179 #define IPPROTO_VRRP 112 /* Packet type defined in hardware to perform filter */ #define PKT_IGMP_IPV4_TYPE 64 #define PKT_ICMP_IPV4_TYPE 65 #define PKT_ICMP_IPV6_TYPE 66 #define PKT_ICMP_IPV6RS_TYPE 67 #define PKT_ICMP_IPV6RA_TYPE 68 #define PKT_ICMP_IPV6NS_TYPE 69 #define PKT_ICMP_IPV6NA_TYPE 70 #define PKT_ICMP_IPV6RE_TYPE 71 #define PKT_DHCP_IPV4_TYPE 72 #define PKT_DHCP_IPV6_TYPE 73 #define PKT_LACP_TYPE 74 #define PKT_ARP_REQ_TYPE 79 #define PKT_ARP_REP_TYPE 80 #define PKT_ARP_TYPE 81 #define PKT_BGPD_DPORT_TYPE 83 #define PKT_BGPD_SPORT_TYPE 84 #define PKT_VRRP_TYPE 85 #define HINIC_DEV_PRIVATE_TO_FILTER_INFO(nic_dev) \ (&((struct hinic_nic_dev *)nic_dev)->filter) enum hinic_atr_flow_type { HINIC_ATR_FLOW_TYPE_IPV4_DIP = 0x1, HINIC_ATR_FLOW_TYPE_IPV4_SIP = 0x2, HINIC_ATR_FLOW_TYPE_DPORT = 0x3, HINIC_ATR_FLOW_TYPE_SPORT = 0x4, }; /* Structure to store fdir's info. */ struct hinic_fdir_info { uint8_t fdir_flag; uint8_t qid; uint32_t fdir_key; }; /** * Endless loop will never happen with below assumption * 1. there is at least one no-void item(END) * 2. cur is before END. */ static inline const struct rte_flow_item * next_no_void_pattern(const struct rte_flow_item pattern[], const struct rte_flow_item *cur) { const struct rte_flow_item *next = cur ? cur + 1 : &pattern[0]; while (1) { if (next->type != RTE_FLOW_ITEM_TYPE_VOID) return next; next++; } } static inline const struct rte_flow_action * next_no_void_action(const struct rte_flow_action actions[], const struct rte_flow_action *cur) { const struct rte_flow_action *next = cur ? cur + 1 : &actions[0]; while (1) { if (next->type != RTE_FLOW_ACTION_TYPE_VOID) return next; next++; } } static int hinic_check_ethertype_attr_ele(const struct rte_flow_attr *attr, struct rte_flow_error *error) { /* Must be input direction */ if (!attr->ingress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } if (attr->egress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } if (attr->priority) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Not support priority."); return -rte_errno; } if (attr->group) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, "Not support group."); return -rte_errno; } return 0; } static int hinic_check_filter_arg(const struct rte_flow_attr *attr, const struct rte_flow_item *pattern, const struct rte_flow_action *actions, struct rte_flow_error *error) { if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } return 0; } static int hinic_check_ethertype_first_item(const struct rte_flow_item *item, struct rte_flow_error *error) { /* The first non-void item should be MAC */ if (item->type != RTE_FLOW_ITEM_TYPE_ETH) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ethertype filter"); return -rte_errno; } /* Not supported last point for range */ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Get the MAC info. */ if (!item->spec || !item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ethertype filter"); return -rte_errno; } return 0; } static int hinic_parse_ethertype_aciton(const struct rte_flow_action *actions, const struct rte_flow_action *act, const struct rte_flow_action_queue *act_q, struct rte_eth_ethertype_filter *filter, struct rte_flow_error *error) { /* Parse action */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE && act->type != RTE_FLOW_ACTION_TYPE_DROP) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } if (act->type == RTE_FLOW_ACTION_TYPE_QUEUE) { act_q = (const struct rte_flow_action_queue *)act->conf; filter->queue = act_q->index; } else { filter->flags |= RTE_ETHTYPE_FLAGS_DROP; } /* Check if the next non-void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } return 0; } /** * Parse the rule to see if it is a ethertype rule. * And get the ethertype filter info BTW. * pattern: * The first not void item can be ETH. * The next not void item must be END. * action: * The first not void action should be QUEUE. * The next not void action should be END. * pattern example: * ITEM Spec Mask * ETH type 0x0807 0xFFFF * END * other members in mask and spec should set to 0x00. * item->last should be NULL. */ static int cons_parse_ethertype_filter(const struct rte_flow_attr *attr, const struct rte_flow_item *pattern, const struct rte_flow_action *actions, struct rte_eth_ethertype_filter *filter, struct rte_flow_error *error) { const struct rte_flow_item *item; const struct rte_flow_action *act = NULL; const struct rte_flow_item_eth *eth_spec; const struct rte_flow_item_eth *eth_mask; const struct rte_flow_action_queue *act_q = NULL; if (hinic_check_filter_arg(attr, pattern, actions, error)) return -rte_errno; item = next_no_void_pattern(pattern, NULL); if (hinic_check_ethertype_first_item(item, error)) return -rte_errno; eth_spec = (const struct rte_flow_item_eth *)item->spec; eth_mask = (const struct rte_flow_item_eth *)item->mask; /* * Mask bits of source MAC address must be full of 0. * Mask bits of destination MAC address must be full * of 1 or full of 0. */ if (!rte_is_zero_ether_addr(ð_mask->src) || (!rte_is_zero_ether_addr(ð_mask->dst) && !rte_is_broadcast_ether_addr(ð_mask->dst))) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ether address mask"); return -rte_errno; } if ((eth_mask->type & UINT16_MAX) != UINT16_MAX) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ethertype mask"); return -rte_errno; } /* * If mask bits of destination MAC address * are full of 1, set RTE_ETHTYPE_FLAGS_MAC. */ if (rte_is_broadcast_ether_addr(ð_mask->dst)) { filter->mac_addr = eth_spec->dst; filter->flags |= RTE_ETHTYPE_FLAGS_MAC; } else { filter->flags &= ~RTE_ETHTYPE_FLAGS_MAC; } filter->ether_type = rte_be_to_cpu_16(eth_spec->type); /* Check if the next non-void item is END. */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_END) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ethertype filter."); return -rte_errno; } if (hinic_parse_ethertype_aciton(actions, act, act_q, filter, error)) return -rte_errno; if (hinic_check_ethertype_attr_ele(attr, error)) return -rte_errno; return 0; } static int hinic_parse_ethertype_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_ethertype_filter *filter, struct rte_flow_error *error) { if (cons_parse_ethertype_filter(attr, pattern, actions, filter, error)) return -rte_errno; /* NIC doesn't support MAC address. */ if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Not supported by ethertype filter"); return -rte_errno; } if (filter->queue >= dev->data->nb_rx_queues) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Queue index much too big"); return -rte_errno; } if (filter->ether_type == RTE_ETHER_TYPE_IPV4 || filter->ether_type == RTE_ETHER_TYPE_IPV6) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "IPv4/IPv6 not supported by ethertype filter"); return -rte_errno; } if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Drop option is unsupported"); return -rte_errno; } /* Hinic only support LACP/ARP for ether type */ if (filter->ether_type != RTE_ETHER_TYPE_SLOW && filter->ether_type != RTE_ETHER_TYPE_ARP) { memset(filter, 0, sizeof(struct rte_eth_ethertype_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "only lacp/arp type supported by ethertype filter"); return -rte_errno; } return 0; } static int hinic_check_ntuple_attr_ele(const struct rte_flow_attr *attr, struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { /* Must be input direction */ if (!attr->ingress) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } if (attr->egress) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } if (attr->priority > 0xFFFF) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Error priority."); return -rte_errno; } if (attr->priority < HINIC_MIN_N_TUPLE_PRIO || attr->priority > HINIC_MAX_N_TUPLE_PRIO) filter->priority = 1; else filter->priority = (uint16_t)attr->priority; return 0; } static int hinic_check_ntuple_act_ele(__rte_unused const struct rte_flow_item *item, const struct rte_flow_action actions[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { const struct rte_flow_action *act; /* * n-tuple only supports forwarding, * check if the first not void action is QUEUE. */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Flow action type is not QUEUE."); return -rte_errno; } filter->queue = ((const struct rte_flow_action_queue *)act->conf)->index; /* Check if the next not void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Next not void item is not END."); return -rte_errno; } return 0; } static int hinic_ntuple_item_check_ether(const struct rte_flow_item **ipv4_item, const struct rte_flow_item pattern[], struct rte_flow_error *error) { const struct rte_flow_item *item; /* The first not void item can be MAC or IPv4 */ item = next_no_void_pattern(pattern, NULL); if (item->type != RTE_FLOW_ITEM_TYPE_ETH && item->type != RTE_FLOW_ITEM_TYPE_IPV4) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } /* Skip Ethernet */ if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { /* Not supported last point for range */ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* if the first item is MAC, the content should be NULL */ if (item->spec || item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } /* check if the next not void item is IPv4 */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_IPV4) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } } *ipv4_item = item; return 0; } static int hinic_ntuple_item_check_ipv4(const struct rte_flow_item **in_out_item, const struct rte_flow_item pattern[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { const struct rte_flow_item_ipv4 *ipv4_spec; const struct rte_flow_item_ipv4 *ipv4_mask; const struct rte_flow_item *item = *in_out_item; /* Get the IPv4 info */ if (!item->spec || !item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ntuple mask"); return -rte_errno; } /* Not supported last point for range */ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } ipv4_mask = (const struct rte_flow_item_ipv4 *)item->mask; /* * Only support src & dst addresses, protocol, * others should be masked. */ if (ipv4_mask->hdr.version_ihl || ipv4_mask->hdr.type_of_service || ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id || ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live || ipv4_mask->hdr.hdr_checksum || !ipv4_mask->hdr.next_proto_id) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } filter->dst_ip_mask = ipv4_mask->hdr.dst_addr; filter->src_ip_mask = ipv4_mask->hdr.src_addr; filter->proto_mask = ipv4_mask->hdr.next_proto_id; ipv4_spec = (const struct rte_flow_item_ipv4 *)item->spec; filter->dst_ip = ipv4_spec->hdr.dst_addr; filter->src_ip = ipv4_spec->hdr.src_addr; filter->proto = ipv4_spec->hdr.next_proto_id; /* Get next no void item */ *in_out_item = next_no_void_pattern(pattern, item); return 0; } static int hinic_ntuple_item_check_l4(const struct rte_flow_item **in_out_item, const struct rte_flow_item pattern[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { const struct rte_flow_item_tcp *tcp_spec; const struct rte_flow_item_tcp *tcp_mask; const struct rte_flow_item_icmp *icmp_mask; const struct rte_flow_item *item = *in_out_item; u32 ntuple_filter_size = sizeof(struct rte_eth_ntuple_filter); if (item->type == RTE_FLOW_ITEM_TYPE_END) return 0; /* Get TCP or UDP info */ if (item->type != RTE_FLOW_ITEM_TYPE_END && (!item->spec || !item->mask)) { memset(filter, 0, ntuple_filter_size); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid ntuple mask"); return -rte_errno; } /* Not supported last point for range */ if (item->last) { memset(filter, 0, ntuple_filter_size); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } if (item->type == RTE_FLOW_ITEM_TYPE_TCP) { tcp_mask = (const struct rte_flow_item_tcp *)item->mask; /* * Only support src & dst ports, tcp flags, * others should be masked. */ if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack || tcp_mask->hdr.data_off || tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum || tcp_mask->hdr.tcp_urp) { memset(filter, 0, ntuple_filter_size); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } filter->dst_port_mask = tcp_mask->hdr.dst_port; filter->src_port_mask = tcp_mask->hdr.src_port; if (tcp_mask->hdr.tcp_flags == 0xFF) { filter->flags |= RTE_NTUPLE_FLAGS_TCP_FLAG; } else if (!tcp_mask->hdr.tcp_flags) { filter->flags &= ~RTE_NTUPLE_FLAGS_TCP_FLAG; } else { memset(filter, 0, ntuple_filter_size); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } tcp_spec = (const struct rte_flow_item_tcp *)item->spec; filter->dst_port = tcp_spec->hdr.dst_port; filter->src_port = tcp_spec->hdr.src_port; filter->tcp_flags = tcp_spec->hdr.tcp_flags; } else if (item->type == RTE_FLOW_ITEM_TYPE_ICMP) { icmp_mask = (const struct rte_flow_item_icmp *)item->mask; /* ICMP all should be masked. */ if (icmp_mask->hdr.icmp_cksum || icmp_mask->hdr.icmp_ident || icmp_mask->hdr.icmp_seq_nb || icmp_mask->hdr.icmp_type || icmp_mask->hdr.icmp_code) { memset(filter, 0, ntuple_filter_size); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } } /* Get next no void item */ *in_out_item = next_no_void_pattern(pattern, item); return 0; } static int hinic_ntuple_item_check_end(const struct rte_flow_item *item, struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { /* Check if the next not void item is END */ if (item->type != RTE_FLOW_ITEM_TYPE_END) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by ntuple filter"); return -rte_errno; } return 0; } static int hinic_check_ntuple_item_ele(const struct rte_flow_item *item, const struct rte_flow_item pattern[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { if (hinic_ntuple_item_check_ether(&item, pattern, error) || hinic_ntuple_item_check_ipv4(&item, pattern, filter, error) || hinic_ntuple_item_check_l4(&item, pattern, filter, error) || hinic_ntuple_item_check_end(item, filter, error)) return -rte_errno; return 0; } /** * Parse the rule to see if it is a n-tuple rule. * And get the n-tuple filter info BTW. * pattern: * The first not void item can be ETH or IPV4. * The second not void item must be IPV4 if the first one is ETH. * The third not void item must be UDP or TCP. * The next not void item must be END. * action: * The first not void action should be QUEUE. * The next not void action should be END. * pattern example: * ITEM Spec Mask * ETH NULL NULL * IPV4 src_addr 192.168.1.20 0xFFFFFFFF * dst_addr 192.167.3.50 0xFFFFFFFF * next_proto_id 17 0xFF * UDP/TCP/ src_port 80 0xFFFF * SCTP dst_port 80 0xFFFF * END * other members in mask and spec should set to 0x00. * item->last should be NULL. * Please aware there's an asumption for all the parsers. * rte_flow_item is using big endian, rte_flow_attr and * rte_flow_action are using CPU order. * Because the pattern is used to describe the packets, * normally the packets should use network order. */ static int cons_parse_ntuple_filter(const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { const struct rte_flow_item *item = NULL; if (hinic_check_filter_arg(attr, pattern, actions, error)) return -rte_errno; if (hinic_check_ntuple_item_ele(item, pattern, filter, error)) return -rte_errno; if (hinic_check_ntuple_act_ele(item, actions, filter, error)) return -rte_errno; if (hinic_check_ntuple_attr_ele(attr, filter, error)) return -rte_errno; return 0; } static int hinic_parse_ntuple_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_eth_ntuple_filter *filter, struct rte_flow_error *error) { int ret; ret = cons_parse_ntuple_filter(attr, pattern, actions, filter, error); if (ret) return ret; /* Hinic doesn't support tcp flags */ if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Not supported by ntuple filter"); return -rte_errno; } /* Hinic doesn't support many priorities */ if (filter->priority < HINIC_MIN_N_TUPLE_PRIO || filter->priority > HINIC_MAX_N_TUPLE_PRIO) { memset(filter, 0, sizeof(struct rte_eth_ntuple_filter)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, NULL, "Priority not supported by ntuple filter"); return -rte_errno; } if (filter->queue >= dev->data->nb_rx_queues) return -rte_errno; /* Fixed value for hinic */ filter->flags = RTE_5TUPLE_FLAGS; return 0; } static int hinic_normal_item_check_ether(const struct rte_flow_item **ip_item, const struct rte_flow_item pattern[], struct rte_flow_error *error) { const struct rte_flow_item *item; /* The first not void item can be MAC or IPv4 or TCP or UDP */ item = next_no_void_pattern(pattern, NULL); if (item->type != RTE_FLOW_ITEM_TYPE_ETH && item->type != RTE_FLOW_ITEM_TYPE_IPV4 && item->type != RTE_FLOW_ITEM_TYPE_TCP && item->type != RTE_FLOW_ITEM_TYPE_UDP) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support mac,ipv4,tcp,udp"); return -rte_errno; } /* Not supported last point for range */ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Skip Ethernet */ if (item->type == RTE_FLOW_ITEM_TYPE_ETH) { /* All should be masked. */ if (item->spec || item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support mac"); return -rte_errno; } /* Check if the next not void item is IPv4 */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_IPV4) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support mac,ipv4"); return -rte_errno; } } *ip_item = item; return 0; } static int hinic_normal_item_check_ip(const struct rte_flow_item **in_out_item, const struct rte_flow_item pattern[], struct hinic_fdir_rule *rule, struct rte_flow_error *error) { const struct rte_flow_item_ipv4 *ipv4_spec; const struct rte_flow_item_ipv4 *ipv4_mask; const struct rte_flow_item *item = *in_out_item; /* Get the IPv4 info */ if (item->type == RTE_FLOW_ITEM_TYPE_IPV4) { /* Not supported last point for range */ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } if (!item->mask) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid fdir filter mask"); return -rte_errno; } ipv4_mask = (const struct rte_flow_item_ipv4 *)item->mask; /* * Only support src & dst addresses, * others should be masked. */ if (ipv4_mask->hdr.version_ihl || ipv4_mask->hdr.type_of_service || ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id || ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live || ipv4_mask->hdr.next_proto_id || ipv4_mask->hdr.hdr_checksum) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter, support src,dst ip"); return -rte_errno; } rule->mask.dst_ipv4_mask = ipv4_mask->hdr.dst_addr; rule->mask.src_ipv4_mask = ipv4_mask->hdr.src_addr; if (item->spec) { ipv4_spec = (const struct rte_flow_item_ipv4 *)item->spec; rule->hinic_fdir.dst_ip = ipv4_spec->hdr.dst_addr; rule->hinic_fdir.src_ip = ipv4_spec->hdr.src_addr; } /* * Check if the next not void item is * TCP or UDP or END. */ item = next_no_void_pattern(pattern, item); if (item->type != RTE_FLOW_ITEM_TYPE_TCP && item->type != RTE_FLOW_ITEM_TYPE_UDP && item->type != RTE_FLOW_ITEM_TYPE_END) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter, support tcp, udp, end"); return -rte_errno; } } *in_out_item = item; return 0; } static int hinic_normal_item_check_l4(const struct rte_flow_item **in_out_item, const struct rte_flow_item pattern[], struct hinic_fdir_rule *rule, struct rte_flow_error *error) { const struct rte_flow_item_tcp *tcp_spec; const struct rte_flow_item_tcp *tcp_mask; const struct rte_flow_item_udp *udp_spec; const struct rte_flow_item_udp *udp_mask; const struct rte_flow_item *item = *in_out_item; if (item->type != RTE_FLOW_ITEM_TYPE_END) { /* Not supported last point for range */ if (item->last) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, item, "Not supported last point for range"); return -rte_errno; } /* Get TCP/UDP info */ if (item->type == RTE_FLOW_ITEM_TYPE_TCP) { /* * Only care about src & dst ports, * others should be masked. */ if (!item->mask) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support src,dst ports"); return -rte_errno; } tcp_mask = (const struct rte_flow_item_tcp *)item->mask; if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack || tcp_mask->hdr.data_off || tcp_mask->hdr.tcp_flags || tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum || tcp_mask->hdr.tcp_urp) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support tcp"); return -rte_errno; } rule->mask.src_port_mask = tcp_mask->hdr.src_port; rule->mask.dst_port_mask = tcp_mask->hdr.dst_port; if (item->spec) { tcp_spec = (const struct rte_flow_item_tcp *) item->spec; rule->hinic_fdir.src_port = tcp_spec->hdr.src_port; rule->hinic_fdir.dst_port = tcp_spec->hdr.dst_port; } } else if (item->type == RTE_FLOW_ITEM_TYPE_UDP) { /* * Only care about src & dst ports, * others should be masked. */ if (!item->mask) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support src,dst ports"); return -rte_errno; } udp_mask = (const struct rte_flow_item_udp *)item->mask; if (udp_mask->hdr.dgram_len || udp_mask->hdr.dgram_cksum) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support udp"); return -rte_errno; } rule->mask.src_port_mask = udp_mask->hdr.src_port; rule->mask.dst_port_mask = udp_mask->hdr.dst_port; if (item->spec) { udp_spec = (const struct rte_flow_item_udp *) item->spec; rule->hinic_fdir.src_port = udp_spec->hdr.src_port; rule->hinic_fdir.dst_port = udp_spec->hdr.dst_port; } } else { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support tcp/udp"); return -rte_errno; } /* Get next no void item */ *in_out_item = next_no_void_pattern(pattern, item); } return 0; } static int hinic_normal_item_check_end(const struct rte_flow_item *item, struct hinic_fdir_rule *rule, struct rte_flow_error *error) { /* Check if the next not void item is END */ if (item->type != RTE_FLOW_ITEM_TYPE_END) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Not supported by fdir filter,support end"); return -rte_errno; } return 0; } static int hinic_check_normal_item_ele(const struct rte_flow_item *item, const struct rte_flow_item pattern[], struct hinic_fdir_rule *rule, struct rte_flow_error *error) { if (hinic_normal_item_check_ether(&item, pattern, error) || hinic_normal_item_check_ip(&item, pattern, rule, error) || hinic_normal_item_check_l4(&item, pattern, rule, error) || hinic_normal_item_check_end(item, rule, error)) return -rte_errno; return 0; } static int hinic_check_normal_attr_ele(const struct rte_flow_attr *attr, struct hinic_fdir_rule *rule, struct rte_flow_error *error) { /* Must be input direction */ if (!attr->ingress) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* Not supported */ if (attr->egress) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "Not support egress."); return -rte_errno; } /* Not supported */ if (attr->priority) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "Not support priority."); return -rte_errno; } return 0; } static int hinic_check_normal_act_ele(const struct rte_flow_item *item, const struct rte_flow_action actions[], struct hinic_fdir_rule *rule, struct rte_flow_error *error) { const struct rte_flow_action *act; /* Check if the first not void action is QUEUE */ act = next_no_void_action(actions, NULL); if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, item, "Not supported action."); return -rte_errno; } rule->queue = ((const struct rte_flow_action_queue *)act->conf)->index; /* Check if the next not void item is END */ act = next_no_void_action(actions, act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { memset(rule, 0, sizeof(struct hinic_fdir_rule)); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Not supported action."); return -rte_errno; } return 0; } /** * Parse the rule to see if it is a IP or MAC VLAN flow director rule. * And get the flow director filter info BTW. * UDP/TCP/SCTP PATTERN: * The first not void item can be ETH or IPV4 or IPV6 * The second not void item must be IPV4 or IPV6 if the first one is ETH. * The next not void item could be UDP or TCP(optional) * The next not void item must be END. * ACTION: * The first not void action should be QUEUE. * The second not void optional action should be MARK, * mark_id is a uint32_t number. * The next not void action should be END. * UDP/TCP pattern example: * ITEM Spec Mask * ETH NULL NULL * IPV4 src_addr 1.2.3.6 0xFFFFFFFF * dst_addr 1.2.3.5 0xFFFFFFFF * UDP/TCP src_port 80 0xFFFF * dst_port 80 0xFFFF * END * Other members in mask and spec should set to 0x00. * Item->last should be NULL. */ static int hinic_parse_fdir_filter_normal(const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct hinic_fdir_rule *rule, struct rte_flow_error *error) { const struct rte_flow_item *item = NULL; if (hinic_check_filter_arg(attr, pattern, actions, error)) return -rte_errno; if (hinic_check_normal_item_ele(item, pattern, rule, error)) return -rte_errno; if (hinic_check_normal_attr_ele(attr, rule, error)) return -rte_errno; if (hinic_check_normal_act_ele(item, actions, rule, error)) return -rte_errno; return 0; } static int hinic_parse_fdir_filter(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct hinic_fdir_rule *rule, struct rte_flow_error *error) { int ret; ret = hinic_parse_fdir_filter_normal(attr, pattern, actions, rule, error); if (ret) return ret; if (rule->queue >= dev->data->nb_rx_queues) return -ENOTSUP; return ret; } /** * Check if the flow rule is supported by nic. * It only checkes the format. Don't guarantee the rule can be programmed into * the HW. Because there can be no enough room for the rule. */ static int hinic_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct rte_eth_ethertype_filter ethertype_filter; struct rte_eth_ntuple_filter ntuple_filter; struct hinic_fdir_rule fdir_rule; int ret; memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter)); ret = hinic_parse_ntuple_filter(dev, attr, pattern, actions, &ntuple_filter, error); if (!ret) return 0; memset(ðertype_filter, 0, sizeof(struct rte_eth_ethertype_filter)); ret = hinic_parse_ethertype_filter(dev, attr, pattern, actions, ðertype_filter, error); if (!ret) return 0; memset(&fdir_rule, 0, sizeof(struct hinic_fdir_rule)); ret = hinic_parse_fdir_filter(dev, attr, pattern, actions, &fdir_rule, error); return ret; } static inline int ntuple_ip_filter(struct rte_eth_ntuple_filter *filter, struct hinic_5tuple_filter_info *filter_info) { switch (filter->dst_ip_mask) { case UINT32_MAX: filter_info->dst_ip_mask = 0; filter_info->dst_ip = filter->dst_ip; break; case 0: filter_info->dst_ip_mask = 1; filter_info->dst_ip = 0; break; default: PMD_DRV_LOG(ERR, "Invalid dst_ip mask."); return -EINVAL; } switch (filter->src_ip_mask) { case UINT32_MAX: filter_info->src_ip_mask = 0; filter_info->src_ip = filter->src_ip; break; case 0: filter_info->src_ip_mask = 1; filter_info->src_ip = 0; break; default: PMD_DRV_LOG(ERR, "Invalid src_ip mask."); return -EINVAL; } return 0; } static inline int ntuple_port_filter(struct rte_eth_ntuple_filter *filter, struct hinic_5tuple_filter_info *filter_info) { switch (filter->dst_port_mask) { case UINT16_MAX: filter_info->dst_port_mask = 0; filter_info->dst_port = filter->dst_port; break; case 0: filter_info->dst_port_mask = 1; filter_info->dst_port = 0; break; default: PMD_DRV_LOG(ERR, "Invalid dst_port mask."); return -EINVAL; } switch (filter->src_port_mask) { case UINT16_MAX: filter_info->src_port_mask = 0; filter_info->src_port = filter->src_port; break; case 0: filter_info->src_port_mask = 1; filter_info->src_port = 0; break; default: PMD_DRV_LOG(ERR, "Invalid src_port mask."); return -EINVAL; } return 0; } static inline int ntuple_proto_filter(struct rte_eth_ntuple_filter *filter, struct hinic_5tuple_filter_info *filter_info) { switch (filter->proto_mask) { case UINT8_MAX: filter_info->proto_mask = 0; filter_info->proto = filter->proto; break; case 0: filter_info->proto_mask = 1; filter_info->proto = 0; break; default: PMD_DRV_LOG(ERR, "Invalid protocol mask."); return -EINVAL; } return 0; } static inline int ntuple_filter_to_5tuple(struct rte_eth_ntuple_filter *filter, struct hinic_5tuple_filter_info *filter_info) { if (filter->queue >= HINIC_MAX_RX_QUEUE_NUM || filter->priority > HINIC_MAX_N_TUPLE_PRIO || filter->priority < HINIC_MIN_N_TUPLE_PRIO) return -EINVAL; if (ntuple_ip_filter(filter, filter_info) || ntuple_port_filter(filter, filter_info) || ntuple_proto_filter(filter, filter_info)) return -EINVAL; filter_info->priority = (uint8_t)filter->priority; return 0; } static inline struct hinic_5tuple_filter * hinic_5tuple_filter_lookup(struct hinic_5tuple_filter_list *filter_list, struct hinic_5tuple_filter_info *key) { struct hinic_5tuple_filter *it; TAILQ_FOREACH(it, filter_list, entries) { if (memcmp(key, &it->filter_info, sizeof(struct hinic_5tuple_filter_info)) == 0) { return it; } } return NULL; } static int hinic_set_lacp_tcam(struct hinic_nic_dev *nic_dev) { struct tag_pa_rule lacp_rule; struct tag_pa_action lacp_action; memset(&lacp_rule, 0, sizeof(lacp_rule)); memset(&lacp_action, 0, sizeof(lacp_action)); /* LACP TCAM rule */ lacp_rule.eth_type = PA_ETH_TYPE_OTHER; lacp_rule.l2_header.eth_type.val16 = 0x8809; lacp_rule.l2_header.eth_type.mask16 = 0xffff; /* LACP TCAM action */ lacp_action.err_type = 0x3f; /* err from ipsu, not convert */ lacp_action.fwd_action = 0x7; /* 0x3:drop; 0x7: not convert */ lacp_action.pkt_type = PKT_LACP_TYPE; lacp_action.pri = 0x0; lacp_action.push_len = 0xf; /* push_len:0xf, not convert */ return hinic_set_fdir_tcam(nic_dev->hwdev, TCAM_PKT_LACP, &lacp_rule, &lacp_action); } static int hinic_set_bgp_dport_tcam(struct hinic_nic_dev *nic_dev) { struct tag_pa_rule bgp_rule; struct tag_pa_action bgp_action; memset(&bgp_rule, 0, sizeof(bgp_rule)); memset(&bgp_action, 0, sizeof(bgp_action)); /* BGP TCAM rule */ bgp_rule.eth_type = PA_ETH_TYPE_IPV4; /* Eth type is IPV4 */ bgp_rule.ip_header.protocol.val8 = IP_HEADER_PROTOCOL_TYPE_TCP; bgp_rule.ip_header.protocol.mask8 = UINT8_MAX; bgp_rule.ip_protocol_type = PA_IP_PROTOCOL_TYPE_TCP; bgp_rule.eth_ip_tcp.dport.val16 = BGP_DPORT_ID; /* Dport is 179 */ bgp_rule.eth_ip_tcp.dport.mask16 = UINT16_MAX; /* BGP TCAM action */ bgp_action.err_type = 0x3f; /* err from ipsu, not convert */ bgp_action.fwd_action = 0x7; /* 0x3:drop; 0x7: not convert */ bgp_action.pkt_type = PKT_BGPD_DPORT_TYPE; /* bgp_dport: 83 */ bgp_action.pri = 0xf; /* pri of BGP is 0xf, result from ipsu parse * results, not need to convert */ bgp_action.push_len = 0xf; /* push_len:0xf, not convert */ return hinic_set_fdir_tcam(nic_dev->hwdev, TCAM_PKT_BGP_DPORT, &bgp_rule, &bgp_action); } static int hinic_set_bgp_sport_tcam(struct hinic_nic_dev *nic_dev) { struct tag_pa_rule bgp_rule; struct tag_pa_action bgp_action; memset(&bgp_rule, 0, sizeof(bgp_rule)); memset(&bgp_action, 0, sizeof(bgp_action)); /* BGP TCAM rule */ bgp_rule.eth_type = PA_ETH_TYPE_IPV4; bgp_rule.ip_header.protocol.val8 = IP_HEADER_PROTOCOL_TYPE_TCP; bgp_rule.ip_header.protocol.mask8 = UINT8_MAX; bgp_rule.ip_protocol_type = PA_IP_PROTOCOL_TYPE_TCP; bgp_rule.eth_ip_tcp.sport.val16 = BGP_DPORT_ID; bgp_rule.eth_ip_tcp.sport.mask16 = UINT16_MAX; /* BGP TCAM action */ bgp_action.err_type = 0x3f; /* err from ipsu, not convert */ bgp_action.fwd_action = 0x7; /* 0x3:drop; 0x7: not convert */ bgp_action.pkt_type = PKT_BGPD_SPORT_TYPE; /* bgp:sport: 84 */ bgp_action.pri = 0xf; /* pri of BGP is 0xf, result from ipsu parse * results, not need to convert */ bgp_action.push_len = 0xf; /* push_len:0xf, not convert */ return hinic_set_fdir_tcam(nic_dev->hwdev, TCAM_PKT_BGP_SPORT, &bgp_rule, &bgp_action); } static int hinic_set_vrrp_tcam(struct hinic_nic_dev *nic_dev) { struct tag_pa_rule vrrp_rule; struct tag_pa_action vrrp_action; memset(&vrrp_rule, 0, sizeof(vrrp_rule)); memset(&vrrp_action, 0, sizeof(vrrp_action)); /* VRRP TCAM rule */ vrrp_rule.eth_type = PA_ETH_TYPE_IPV4; vrrp_rule.ip_protocol_type = PA_IP_PROTOCOL_TYPE_TCP; vrrp_rule.ip_header.protocol.mask8 = 0xff; vrrp_rule.ip_header.protocol.val8 = PA_IP_PROTOCOL_TYPE_VRRP; /* VRRP TCAM action */ vrrp_action.err_type = 0x3f; vrrp_action.fwd_action = 0x7; vrrp_action.pkt_type = PKT_VRRP_TYPE; /* VRRP: 85 */ vrrp_action.pri = 0xf; vrrp_action.push_len = 0xf; return hinic_set_fdir_tcam(nic_dev->hwdev, TCAM_PKT_VRRP, &vrrp_rule, &vrrp_action); } /** * Clear all fdir configuration. * * @param nic_dev * The hardware interface of a Ethernet device. * * @return * 0 on success, * negative error value otherwise. */ void hinic_free_fdir_filter(struct hinic_nic_dev *nic_dev) { struct hinic_filter_info *filter_info = HINIC_DEV_PRIVATE_TO_FILTER_INFO(nic_dev); if (filter_info->type_mask & (1 << HINIC_PKT_TYPE_FIND_ID(PKT_BGPD_DPORT_TYPE))) hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_BGP_DPORT); if (filter_info->type_mask & (1 << HINIC_PKT_TYPE_FIND_ID(PKT_BGPD_SPORT_TYPE))) hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_BGP_SPORT); if (filter_info->type_mask & (1 << HINIC_PKT_TYPE_FIND_ID(PKT_VRRP_TYPE))) hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_VRRP); if (filter_info->type_mask & (1 << HINIC_PKT_TYPE_FIND_ID(PKT_LACP_TYPE))) hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_LACP); hinic_set_fdir_filter(nic_dev->hwdev, 0, 0, 0, false); } static int hinic_filter_info_init(struct hinic_5tuple_filter *filter, struct hinic_filter_info *filter_info) { switch (filter->filter_info.proto) { case IPPROTO_TCP: /* Filter type is bgp type if dst_port or src_port is 179 */ if (filter->filter_info.dst_port == RTE_BE16(BGP_DPORT_ID) && !(filter->filter_info.dst_port_mask)) { filter_info->pkt_type = PKT_BGPD_DPORT_TYPE; } else if (filter->filter_info.src_port == RTE_BE16(BGP_DPORT_ID) && !(filter->filter_info.src_port_mask)) { filter_info->pkt_type = PKT_BGPD_SPORT_TYPE; } else { PMD_DRV_LOG(INFO, "TCP PROTOCOL:5tuple filters" " just support BGP now, proto:0x%x, " "dst_port:0x%x, dst_port_mask:0x%x." "src_port:0x%x, src_port_mask:0x%x.", filter->filter_info.proto, filter->filter_info.dst_port, filter->filter_info.dst_port_mask, filter->filter_info.src_port, filter->filter_info.src_port_mask); return -EINVAL; } break; case IPPROTO_VRRP: filter_info->pkt_type = PKT_VRRP_TYPE; break; case IPPROTO_ICMP: filter_info->pkt_type = PKT_ICMP_IPV4_TYPE; break; case IPPROTO_ICMPV6: filter_info->pkt_type = PKT_ICMP_IPV6_TYPE; break; default: PMD_DRV_LOG(ERR, "5tuple filters just support BGP/VRRP/ICMP now, " "proto: 0x%x, dst_port: 0x%x, dst_port_mask: 0x%x." "src_port: 0x%x, src_port_mask: 0x%x.", filter->filter_info.proto, filter->filter_info.dst_port, filter->filter_info.dst_port_mask, filter->filter_info.src_port, filter->filter_info.src_port_mask); return -EINVAL; } return 0; } static int hinic_lookup_new_filter(struct hinic_5tuple_filter *filter, struct hinic_filter_info *filter_info, int *index) { int type_id; type_id = HINIC_PKT_TYPE_FIND_ID(filter_info->pkt_type); if (type_id > HINIC_MAX_Q_FILTERS - 1) { PMD_DRV_LOG(ERR, "Pkt filters only support 64 filter type."); return -EINVAL; } if (!(filter_info->type_mask & (1 << type_id))) { filter_info->type_mask |= 1 << type_id; filter->index = type_id; filter_info->pkt_filters[type_id].enable = true; filter_info->pkt_filters[type_id].pkt_proto = filter->filter_info.proto; TAILQ_INSERT_TAIL(&filter_info->fivetuple_list, filter, entries); } else { PMD_DRV_LOG(ERR, "Filter type: %d exists.", type_id); return -EIO; } *index = type_id; return 0; } /* * Add a 5tuple filter * * @param dev: * Pointer to struct rte_eth_dev. * @param filter: * Pointer to the filter that will be added. * @return * - On success, zero. * - On failure, a negative value. */ static int hinic_add_5tuple_filter(struct rte_eth_dev *dev, struct hinic_5tuple_filter *filter) { struct hinic_filter_info *filter_info = HINIC_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); int i, ret_fw; struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); if (hinic_filter_info_init(filter, filter_info) || hinic_lookup_new_filter(filter, filter_info, &i)) return -EFAULT; ret_fw = hinic_set_fdir_filter(nic_dev->hwdev, filter_info->pkt_type, filter_info->qid, filter_info->pkt_filters[i].enable, true); if (ret_fw) { PMD_DRV_LOG(ERR, "Set fdir filter failed, type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter->queue, filter_info->pkt_filters[i].enable); return -EFAULT; } PMD_DRV_LOG(INFO, "Add 5tuple succeed, type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter_info->qid, filter_info->pkt_filters[filter->index].enable); switch (filter->filter_info.proto) { case IPPROTO_TCP: if (filter->filter_info.dst_port == RTE_BE16(BGP_DPORT_ID)) { ret_fw = hinic_set_bgp_dport_tcam(nic_dev); if (ret_fw) { PMD_DRV_LOG(ERR, "Set dport bgp failed, " "type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter->queue, filter_info->pkt_filters[i].enable); return -EFAULT; } PMD_DRV_LOG(INFO, "Set dport bgp succeed, qid: 0x%x, enable: 0x%x", filter->queue, filter_info->pkt_filters[i].enable); } else if (filter->filter_info.src_port == RTE_BE16(BGP_DPORT_ID)) { ret_fw = hinic_set_bgp_sport_tcam(nic_dev); if (ret_fw) { PMD_DRV_LOG(ERR, "Set sport bgp failed, " "type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter->queue, filter_info->pkt_filters[i].enable); return -EFAULT; } PMD_DRV_LOG(INFO, "Set sport bgp succeed, qid: 0x%x, enable: 0x%x", filter->queue, filter_info->pkt_filters[i].enable); } break; case IPPROTO_VRRP: ret_fw = hinic_set_vrrp_tcam(nic_dev); if (ret_fw) { PMD_DRV_LOG(ERR, "Set VRRP failed, " "type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter->queue, filter_info->pkt_filters[i].enable); return -EFAULT; } PMD_DRV_LOG(INFO, "Set VRRP succeed, qid: 0x%x, enable: 0x%x", filter->queue, filter_info->pkt_filters[i].enable); break; default: break; } return 0; } /* * Remove a 5tuple filter * * @param dev * Pointer to struct rte_eth_dev. * @param filter * The pointer of the filter will be removed. */ static void hinic_remove_5tuple_filter(struct rte_eth_dev *dev, struct hinic_5tuple_filter *filter) { struct hinic_filter_info *filter_info = HINIC_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); switch (filter->filter_info.proto) { case IPPROTO_VRRP: (void)hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_VRRP); break; case IPPROTO_TCP: if (filter->filter_info.dst_port == RTE_BE16(BGP_DPORT_ID)) (void)hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_BGP_DPORT); else if (filter->filter_info.src_port == RTE_BE16(BGP_DPORT_ID)) (void)hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_BGP_SPORT); break; default: break; } hinic_filter_info_init(filter, filter_info); filter_info->pkt_filters[filter->index].enable = false; filter_info->pkt_filters[filter->index].pkt_proto = 0; PMD_DRV_LOG(INFO, "Del 5tuple succeed, type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter_info->pkt_filters[filter->index].qid, filter_info->pkt_filters[filter->index].enable); (void)hinic_set_fdir_filter(nic_dev->hwdev, filter_info->pkt_type, filter_info->pkt_filters[filter->index].qid, filter_info->pkt_filters[filter->index].enable, true); filter_info->pkt_type = 0; filter_info->qid = 0; filter_info->pkt_filters[filter->index].qid = 0; filter_info->type_mask &= ~(1 << (filter->index)); TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries); rte_free(filter); } /* * Add or delete a ntuple filter * * @param dev * Pointer to struct rte_eth_dev. * @param ntuple_filter * Pointer to struct rte_eth_ntuple_filter * @param add * If true, add filter; if false, remove filter * @return * - On success, zero. * - On failure, a negative value. */ static int hinic_add_del_ntuple_filter(struct rte_eth_dev *dev, struct rte_eth_ntuple_filter *ntuple_filter, bool add) { struct hinic_filter_info *filter_info = HINIC_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct hinic_5tuple_filter_info filter_5tuple; struct hinic_5tuple_filter *filter; int ret; if (ntuple_filter->flags != RTE_5TUPLE_FLAGS) { PMD_DRV_LOG(ERR, "Only 5tuple is supported."); return -EINVAL; } memset(&filter_5tuple, 0, sizeof(struct hinic_5tuple_filter_info)); ret = ntuple_filter_to_5tuple(ntuple_filter, &filter_5tuple); if (ret < 0) return ret; filter = hinic_5tuple_filter_lookup(&filter_info->fivetuple_list, &filter_5tuple); if (filter != NULL && add) { PMD_DRV_LOG(ERR, "Filter exists."); return -EEXIST; } if (filter == NULL && !add) { PMD_DRV_LOG(ERR, "Filter doesn't exist."); return -ENOENT; } if (add) { filter = rte_zmalloc("hinic_5tuple_filter", sizeof(struct hinic_5tuple_filter), 0); if (filter == NULL) return -ENOMEM; rte_memcpy(&filter->filter_info, &filter_5tuple, sizeof(struct hinic_5tuple_filter_info)); filter->queue = ntuple_filter->queue; filter_info->qid = ntuple_filter->queue; ret = hinic_add_5tuple_filter(dev, filter); if (ret) rte_free(filter); return ret; } hinic_remove_5tuple_filter(dev, filter); return 0; } static inline int hinic_check_ethertype_filter(struct rte_eth_ethertype_filter *filter) { if (filter->queue >= HINIC_MAX_RX_QUEUE_NUM) return -EINVAL; if (filter->ether_type == RTE_ETHER_TYPE_IPV4 || filter->ether_type == RTE_ETHER_TYPE_IPV6) { PMD_DRV_LOG(ERR, "Unsupported ether_type(0x%04x) in" " ethertype filter", filter->ether_type); return -EINVAL; } if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) { PMD_DRV_LOG(ERR, "Mac compare is not supported"); return -EINVAL; } if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) { PMD_DRV_LOG(ERR, "Drop option is not supported"); return -EINVAL; } return 0; } static inline int hinic_ethertype_filter_lookup(struct hinic_filter_info *filter_info, struct hinic_pkt_filter *ethertype_filter) { switch (ethertype_filter->pkt_proto) { case RTE_ETHER_TYPE_SLOW: filter_info->pkt_type = PKT_LACP_TYPE; break; case RTE_ETHER_TYPE_ARP: filter_info->pkt_type = PKT_ARP_TYPE; break; default: PMD_DRV_LOG(ERR, "Just support LACP/ARP for ethertype filters"); return -EIO; } return HINIC_PKT_TYPE_FIND_ID(filter_info->pkt_type); } static inline int hinic_ethertype_filter_insert(struct hinic_filter_info *filter_info, struct hinic_pkt_filter *ethertype_filter) { int id; /* Find LACP or VRRP type id */ id = hinic_ethertype_filter_lookup(filter_info, ethertype_filter); if (id < 0) return -EINVAL; if (!(filter_info->type_mask & (1 << id))) { filter_info->type_mask |= 1 << id; filter_info->pkt_filters[id].pkt_proto = ethertype_filter->pkt_proto; filter_info->pkt_filters[id].enable = ethertype_filter->enable; filter_info->qid = ethertype_filter->qid; return id; } PMD_DRV_LOG(ERR, "Filter type: %d exists", id); return -EINVAL; } static inline void hinic_ethertype_filter_remove(struct hinic_filter_info *filter_info, uint8_t idx) { if (idx >= HINIC_MAX_Q_FILTERS) return; filter_info->pkt_type = 0; filter_info->type_mask &= ~(1 << idx); filter_info->pkt_filters[idx].pkt_proto = (uint16_t)0; filter_info->pkt_filters[idx].enable = FALSE; filter_info->pkt_filters[idx].qid = 0; } static inline int hinic_add_del_ethertype_filter(struct rte_eth_dev *dev, struct rte_eth_ethertype_filter *filter, bool add) { struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); struct hinic_filter_info *filter_info = HINIC_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct hinic_pkt_filter ethertype_filter; int i; int ret_fw; if (hinic_check_ethertype_filter(filter)) return -EINVAL; if (add) { ethertype_filter.pkt_proto = filter->ether_type; ethertype_filter.enable = TRUE; ethertype_filter.qid = (u8)filter->queue; i = hinic_ethertype_filter_insert(filter_info, ðertype_filter); if (i < 0) return -ENOSPC; ret_fw = hinic_set_fdir_filter(nic_dev->hwdev, filter_info->pkt_type, filter_info->qid, filter_info->pkt_filters[i].enable, true); if (ret_fw) { PMD_DRV_LOG(ERR, "add ethertype failed, type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter->queue, filter_info->pkt_filters[i].enable); hinic_ethertype_filter_remove(filter_info, i); return -ENOENT; } PMD_DRV_LOG(INFO, "Add ethertype succeed, type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter->queue, filter_info->pkt_filters[i].enable); switch (ethertype_filter.pkt_proto) { case RTE_ETHER_TYPE_SLOW: ret_fw = hinic_set_lacp_tcam(nic_dev); if (ret_fw) { PMD_DRV_LOG(ERR, "Add lacp tcam failed"); hinic_ethertype_filter_remove(filter_info, i); return -ENOENT; } PMD_DRV_LOG(INFO, "Add lacp tcam succeed"); break; default: break; } } else { ethertype_filter.pkt_proto = filter->ether_type; i = hinic_ethertype_filter_lookup(filter_info, ðertype_filter); if ((filter_info->type_mask & (1 << i))) { filter_info->pkt_filters[i].enable = FALSE; (void)hinic_set_fdir_filter(nic_dev->hwdev, filter_info->pkt_type, filter_info->pkt_filters[i].qid, filter_info->pkt_filters[i].enable, true); PMD_DRV_LOG(INFO, "Del ethertype succeed, type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter_info->pkt_filters[i].qid, filter_info->pkt_filters[i].enable); switch (ethertype_filter.pkt_proto) { case RTE_ETHER_TYPE_SLOW: (void)hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_LACP); PMD_DRV_LOG(INFO, "Del lacp tcam succeed"); break; default: break; } hinic_ethertype_filter_remove(filter_info, i); } else { PMD_DRV_LOG(ERR, "Ethertype doesn't exist, type: 0x%x, qid: 0x%x, enable: 0x%x", filter_info->pkt_type, filter->queue, filter_info->pkt_filters[i].enable); return -ENOENT; } } return 0; } static int hinic_fdir_info_init(struct hinic_fdir_rule *rule, struct hinic_fdir_info *fdir_info) { switch (rule->mask.src_ipv4_mask) { case UINT32_MAX: fdir_info->fdir_flag = HINIC_ATR_FLOW_TYPE_IPV4_SIP; fdir_info->qid = rule->queue; fdir_info->fdir_key = rule->hinic_fdir.src_ip; return 0; case 0: break; default: PMD_DRV_LOG(ERR, "Invalid src_ip mask."); return -EINVAL; } switch (rule->mask.dst_ipv4_mask) { case UINT32_MAX: fdir_info->fdir_flag = HINIC_ATR_FLOW_TYPE_IPV4_DIP; fdir_info->qid = rule->queue; fdir_info->fdir_key = rule->hinic_fdir.dst_ip; return 0; case 0: break; default: PMD_DRV_LOG(ERR, "Invalid dst_ip mask."); return -EINVAL; } if (fdir_info->fdir_flag == 0) { PMD_DRV_LOG(ERR, "All support mask is NULL."); return -EINVAL; } return 0; } static inline int hinic_add_del_fdir_filter(struct rte_eth_dev *dev, struct hinic_fdir_rule *rule, bool add) { struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); struct hinic_fdir_info fdir_info; int ret; memset(&fdir_info, 0, sizeof(struct hinic_fdir_info)); ret = hinic_fdir_info_init(rule, &fdir_info); if (ret) { PMD_DRV_LOG(ERR, "Init hinic fdir info failed!"); return ret; } if (add) { ret = hinic_set_normal_filter(nic_dev->hwdev, fdir_info.qid, true, fdir_info.fdir_key, true, fdir_info.fdir_flag); if (ret) { PMD_DRV_LOG(ERR, "Add fdir filter failed, flag: 0x%x, qid: 0x%x, key: 0x%x", fdir_info.fdir_flag, fdir_info.qid, fdir_info.fdir_key); return -ENOENT; } PMD_DRV_LOG(INFO, "Add fdir filter succeed, flag: 0x%x, qid: 0x%x, key: 0x%x", fdir_info.fdir_flag, fdir_info.qid, fdir_info.fdir_key); } else { ret = hinic_set_normal_filter(nic_dev->hwdev, fdir_info.qid, false, fdir_info.fdir_key, true, fdir_info.fdir_flag); if (ret) { PMD_DRV_LOG(ERR, "Del fdir filter ailed, flag: 0x%x, qid: 0x%x, key: 0x%x", fdir_info.fdir_flag, fdir_info.qid, fdir_info.fdir_key); return -ENOENT; } PMD_DRV_LOG(INFO, "Del fdir filter succeed, flag: 0x%x, qid: 0x%x, key: 0x%x", fdir_info.fdir_flag, fdir_info.qid, fdir_info.fdir_key); } return 0; } /** * Create or destroy a flow rule. * Theorically one rule can match more than one filters. * We will let it use the filter which it hitt first. * So, the sequence matters. */ static struct rte_flow *hinic_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { int ret; struct rte_eth_ntuple_filter ntuple_filter; struct rte_eth_ethertype_filter ethertype_filter; struct hinic_fdir_rule fdir_rule; struct rte_flow *flow = NULL; struct hinic_ethertype_filter_ele *ethertype_filter_ptr; struct hinic_ntuple_filter_ele *ntuple_filter_ptr; struct hinic_fdir_rule_ele *fdir_rule_ptr; struct hinic_flow_mem *hinic_flow_mem_ptr; struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); flow = rte_zmalloc("hinic_rte_flow", sizeof(struct rte_flow), 0); if (!flow) { PMD_DRV_LOG(ERR, "Failed to allocate flow memory"); return NULL; } hinic_flow_mem_ptr = rte_zmalloc("hinic_flow_mem", sizeof(struct hinic_flow_mem), 0); if (!hinic_flow_mem_ptr) { PMD_DRV_LOG(ERR, "Failed to allocate hinic_flow_mem_ptr"); rte_free(flow); return NULL; } hinic_flow_mem_ptr->flow = flow; TAILQ_INSERT_TAIL(&nic_dev->hinic_flow_list, hinic_flow_mem_ptr, entries); /* Add ntuple filter */ memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter)); ret = hinic_parse_ntuple_filter(dev, attr, pattern, actions, &ntuple_filter, error); if (!ret) { ret = hinic_add_del_ntuple_filter(dev, &ntuple_filter, TRUE); if (!ret) { ntuple_filter_ptr = rte_zmalloc("hinic_ntuple_filter", sizeof(struct hinic_ntuple_filter_ele), 0); rte_memcpy(&ntuple_filter_ptr->filter_info, &ntuple_filter, sizeof(struct rte_eth_ntuple_filter)); TAILQ_INSERT_TAIL(&nic_dev->filter_ntuple_list, ntuple_filter_ptr, entries); flow->rule = ntuple_filter_ptr; flow->filter_type = RTE_ETH_FILTER_NTUPLE; PMD_DRV_LOG(INFO, "Create flow ntuple succeed, func_id: 0x%x", hinic_global_func_id(nic_dev->hwdev)); return flow; } goto out; } /* Add ethertype filter */ memset(ðertype_filter, 0, sizeof(struct rte_eth_ethertype_filter)); ret = hinic_parse_ethertype_filter(dev, attr, pattern, actions, ðertype_filter, error); if (!ret) { ret = hinic_add_del_ethertype_filter(dev, ðertype_filter, TRUE); if (!ret) { ethertype_filter_ptr = rte_zmalloc("hinic_ethertype_filter", sizeof(struct hinic_ethertype_filter_ele), 0); rte_memcpy(ðertype_filter_ptr->filter_info, ðertype_filter, sizeof(struct rte_eth_ethertype_filter)); TAILQ_INSERT_TAIL(&nic_dev->filter_ethertype_list, ethertype_filter_ptr, entries); flow->rule = ethertype_filter_ptr; flow->filter_type = RTE_ETH_FILTER_ETHERTYPE; PMD_DRV_LOG(INFO, "Create flow ethertype succeed, func_id: 0x%x", hinic_global_func_id(nic_dev->hwdev)); return flow; } goto out; } /* Add fdir filter */ memset(&fdir_rule, 0, sizeof(struct hinic_fdir_rule)); ret = hinic_parse_fdir_filter(dev, attr, pattern, actions, &fdir_rule, error); if (!ret) { ret = hinic_add_del_fdir_filter(dev, &fdir_rule, TRUE); if (!ret) { fdir_rule_ptr = rte_zmalloc("hinic_fdir_rule", sizeof(struct hinic_fdir_rule_ele), 0); rte_memcpy(&fdir_rule_ptr->filter_info, &fdir_rule, sizeof(struct hinic_fdir_rule)); TAILQ_INSERT_TAIL(&nic_dev->filter_fdir_rule_list, fdir_rule_ptr, entries); flow->rule = fdir_rule_ptr; flow->filter_type = RTE_ETH_FILTER_FDIR; PMD_DRV_LOG(INFO, "Create flow fdir rule succeed, func_id : 0x%x", hinic_global_func_id(nic_dev->hwdev)); return flow; } goto out; } out: TAILQ_REMOVE(&nic_dev->hinic_flow_list, hinic_flow_mem_ptr, entries); rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to create flow."); rte_free(hinic_flow_mem_ptr); rte_free(flow); return NULL; } /* Destroy a flow rule on hinic. */ static int hinic_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow, struct rte_flow_error *error) { int ret; struct rte_flow *pmd_flow = flow; enum rte_filter_type filter_type = pmd_flow->filter_type; struct rte_eth_ntuple_filter ntuple_filter; struct rte_eth_ethertype_filter ethertype_filter; struct hinic_fdir_rule fdir_rule; struct hinic_ntuple_filter_ele *ntuple_filter_ptr; struct hinic_ethertype_filter_ele *ethertype_filter_ptr; struct hinic_fdir_rule_ele *fdir_rule_ptr; struct hinic_flow_mem *hinic_flow_mem_ptr; struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); switch (filter_type) { case RTE_ETH_FILTER_NTUPLE: ntuple_filter_ptr = (struct hinic_ntuple_filter_ele *) pmd_flow->rule; rte_memcpy(&ntuple_filter, &ntuple_filter_ptr->filter_info, sizeof(struct rte_eth_ntuple_filter)); ret = hinic_add_del_ntuple_filter(dev, &ntuple_filter, FALSE); if (!ret) { TAILQ_REMOVE(&nic_dev->filter_ntuple_list, ntuple_filter_ptr, entries); rte_free(ntuple_filter_ptr); } break; case RTE_ETH_FILTER_ETHERTYPE: ethertype_filter_ptr = (struct hinic_ethertype_filter_ele *) pmd_flow->rule; rte_memcpy(ðertype_filter, ðertype_filter_ptr->filter_info, sizeof(struct rte_eth_ethertype_filter)); ret = hinic_add_del_ethertype_filter(dev, ðertype_filter, FALSE); if (!ret) { TAILQ_REMOVE(&nic_dev->filter_ethertype_list, ethertype_filter_ptr, entries); rte_free(ethertype_filter_ptr); } break; case RTE_ETH_FILTER_FDIR: fdir_rule_ptr = (struct hinic_fdir_rule_ele *)pmd_flow->rule; rte_memcpy(&fdir_rule, &fdir_rule_ptr->filter_info, sizeof(struct hinic_fdir_rule)); ret = hinic_add_del_fdir_filter(dev, &fdir_rule, FALSE); if (!ret) { TAILQ_REMOVE(&nic_dev->filter_fdir_rule_list, fdir_rule_ptr, entries); rte_free(fdir_rule_ptr); } break; default: PMD_DRV_LOG(WARNING, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } if (ret) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to destroy flow"); return ret; } TAILQ_FOREACH(hinic_flow_mem_ptr, &nic_dev->hinic_flow_list, entries) { if (hinic_flow_mem_ptr->flow == pmd_flow) { TAILQ_REMOVE(&nic_dev->hinic_flow_list, hinic_flow_mem_ptr, entries); rte_free(hinic_flow_mem_ptr); break; } } rte_free(flow); PMD_DRV_LOG(INFO, "Destroy flow succeed, func_id: 0x%x", hinic_global_func_id(nic_dev->hwdev)); return ret; } /* Remove all the n-tuple filters */ static void hinic_clear_all_ntuple_filter(struct rte_eth_dev *dev) { struct hinic_filter_info *filter_info = HINIC_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private); struct hinic_5tuple_filter *p_5tuple; while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) hinic_remove_5tuple_filter(dev, p_5tuple); } /* Remove all the ether type filters */ static void hinic_clear_all_ethertype_filter(struct rte_eth_dev *dev) { struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); struct hinic_filter_info *filter_info = HINIC_DEV_PRIVATE_TO_FILTER_INFO(nic_dev); int ret = 0; if (filter_info->type_mask & (1 << HINIC_PKT_TYPE_FIND_ID(PKT_LACP_TYPE))) { hinic_ethertype_filter_remove(filter_info, HINIC_PKT_TYPE_FIND_ID(PKT_LACP_TYPE)); ret = hinic_set_fdir_filter(nic_dev->hwdev, PKT_LACP_TYPE, filter_info->qid, false, true); (void)hinic_clear_fdir_tcam(nic_dev->hwdev, TCAM_PKT_LACP); } if (filter_info->type_mask & (1 << HINIC_PKT_TYPE_FIND_ID(PKT_ARP_TYPE))) { hinic_ethertype_filter_remove(filter_info, HINIC_PKT_TYPE_FIND_ID(PKT_ARP_TYPE)); ret = hinic_set_fdir_filter(nic_dev->hwdev, PKT_ARP_TYPE, filter_info->qid, false, true); } if (ret) PMD_DRV_LOG(ERR, "Clear ethertype failed, filter type: 0x%x", filter_info->pkt_type); } /* Remove all the ether type filters */ static void hinic_clear_all_fdir_filter(struct rte_eth_dev *dev) { struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); (void)hinic_set_fdir_filter(nic_dev->hwdev, 0, 0, 0, false); } static void hinic_filterlist_flush(struct rte_eth_dev *dev) { struct hinic_ntuple_filter_ele *ntuple_filter_ptr; struct hinic_ethertype_filter_ele *ethertype_filter_ptr; struct hinic_fdir_rule_ele *fdir_rule_ptr; struct hinic_flow_mem *hinic_flow_mem_ptr; struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); while ((ntuple_filter_ptr = TAILQ_FIRST(&nic_dev->filter_ntuple_list))) { TAILQ_REMOVE(&nic_dev->filter_ntuple_list, ntuple_filter_ptr, entries); rte_free(ntuple_filter_ptr); } while ((ethertype_filter_ptr = TAILQ_FIRST(&nic_dev->filter_ethertype_list))) { TAILQ_REMOVE(&nic_dev->filter_ethertype_list, ethertype_filter_ptr, entries); rte_free(ethertype_filter_ptr); } while ((fdir_rule_ptr = TAILQ_FIRST(&nic_dev->filter_fdir_rule_list))) { TAILQ_REMOVE(&nic_dev->filter_fdir_rule_list, fdir_rule_ptr, entries); rte_free(fdir_rule_ptr); } while ((hinic_flow_mem_ptr = TAILQ_FIRST(&nic_dev->hinic_flow_list))) { TAILQ_REMOVE(&nic_dev->hinic_flow_list, hinic_flow_mem_ptr, entries); rte_free(hinic_flow_mem_ptr->flow); rte_free(hinic_flow_mem_ptr); } } /* Destroy all flow rules associated with a port on hinic. */ static int hinic_flow_flush(struct rte_eth_dev *dev, __rte_unused struct rte_flow_error *error) { struct hinic_nic_dev *nic_dev = HINIC_ETH_DEV_TO_PRIVATE_NIC_DEV(dev); hinic_clear_all_ntuple_filter(dev); hinic_clear_all_ethertype_filter(dev); hinic_clear_all_fdir_filter(dev); hinic_filterlist_flush(dev); PMD_DRV_LOG(INFO, "Flush flow succeed, func_id: 0x%x", hinic_global_func_id(nic_dev->hwdev)); return 0; } const struct rte_flow_ops hinic_flow_ops = { .validate = hinic_flow_validate, .create = hinic_flow_create, .destroy = hinic_flow_destroy, .flush = hinic_flow_flush, };