/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2017 6WIND S.A. * Copyright 2017 Mellanox Technologies, Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include "failsafe_private.h" static int fs_dev_configure(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV(sdev, i, dev) { int rmv_interrupt = 0; int lsc_interrupt = 0; int lsc_enabled; if (sdev->state != DEV_PROBED && !(PRIV(dev)->alarm_lock == 0 && sdev->state == DEV_ACTIVE)) continue; rmv_interrupt = ETH(sdev)->data->dev_flags & RTE_ETH_DEV_INTR_RMV; if (rmv_interrupt) { DEBUG("Enabling RMV interrupts for sub_device %d", i); dev->data->dev_conf.intr_conf.rmv = 1; } else { DEBUG("sub_device %d does not support RMV event", i); } lsc_enabled = dev->data->dev_conf.intr_conf.lsc; lsc_interrupt = lsc_enabled && (ETH(sdev)->data->dev_flags & RTE_ETH_DEV_INTR_LSC); if (lsc_interrupt) { DEBUG("Enabling LSC interrupts for sub_device %d", i); dev->data->dev_conf.intr_conf.lsc = 1; } else if (lsc_enabled && !lsc_interrupt) { DEBUG("Disabling LSC interrupts for sub_device %d", i); dev->data->dev_conf.intr_conf.lsc = 0; } DEBUG("Configuring sub-device %d", i); ret = rte_eth_dev_configure(PORT_ID(sdev), dev->data->nb_rx_queues, dev->data->nb_tx_queues, &dev->data->dev_conf); if (ret) { if (!fs_err(sdev, ret)) continue; ERROR("Could not configure sub_device %d", i); fs_unlock(dev, 0); return ret; } if (rmv_interrupt && sdev->rmv_callback == 0) { ret = rte_eth_dev_callback_register(PORT_ID(sdev), RTE_ETH_EVENT_INTR_RMV, failsafe_eth_rmv_event_callback, sdev); if (ret) WARN("Failed to register RMV callback for sub_device %d", SUB_ID(sdev)); else sdev->rmv_callback = 1; } dev->data->dev_conf.intr_conf.rmv = 0; if (lsc_interrupt && sdev->lsc_callback == 0) { ret = rte_eth_dev_callback_register(PORT_ID(sdev), RTE_ETH_EVENT_INTR_LSC, failsafe_eth_lsc_event_callback, dev); if (ret) WARN("Failed to register LSC callback for sub_device %d", SUB_ID(sdev)); else sdev->lsc_callback = 1; } dev->data->dev_conf.intr_conf.lsc = lsc_enabled; sdev->state = DEV_ACTIVE; } if (PRIV(dev)->state < DEV_ACTIVE) PRIV(dev)->state = DEV_ACTIVE; fs_unlock(dev, 0); return 0; } static void fs_set_queues_state_start(struct rte_eth_dev *dev) { struct rxq *rxq; struct txq *txq; uint16_t i; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (rxq != NULL && !rxq->info.conf.rx_deferred_start) dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; } for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq != NULL && !txq->info.conf.tx_deferred_start) dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; } } static int fs_dev_start(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); ret = failsafe_rx_intr_install(dev); if (ret) { fs_unlock(dev, 0); return ret; } FOREACH_SUBDEV(sdev, i, dev) { if (sdev->state != DEV_ACTIVE) continue; DEBUG("Starting sub_device %d", i); ret = rte_eth_dev_start(PORT_ID(sdev)); if (ret) { if (!fs_err(sdev, ret)) continue; fs_unlock(dev, 0); return ret; } ret = failsafe_rx_intr_install_subdevice(sdev); if (ret) { if (!fs_err(sdev, ret)) continue; rte_eth_dev_stop(PORT_ID(sdev)); fs_unlock(dev, 0); return ret; } sdev->state = DEV_STARTED; } if (PRIV(dev)->state < DEV_STARTED) { PRIV(dev)->state = DEV_STARTED; fs_set_queues_state_start(dev); } fs_switch_dev(dev, NULL); fs_unlock(dev, 0); return 0; } static void fs_set_queues_state_stop(struct rte_eth_dev *dev) { uint16_t i; for (i = 0; i < dev->data->nb_rx_queues; i++) if (dev->data->rx_queues[i] != NULL) dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; for (i = 0; i < dev->data->nb_tx_queues; i++) if (dev->data->tx_queues[i] != NULL) dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; } static void fs_dev_stop(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; fs_lock(dev, 0); PRIV(dev)->state = DEV_STARTED - 1; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) { rte_eth_dev_stop(PORT_ID(sdev)); failsafe_rx_intr_uninstall_subdevice(sdev); sdev->state = DEV_STARTED - 1; } failsafe_rx_intr_uninstall(dev); fs_set_queues_state_stop(dev); fs_unlock(dev, 0); } static int fs_dev_set_link_up(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i); ret = rte_eth_dev_set_link_up(PORT_ID(sdev)); if ((ret = fs_err(sdev, ret))) { ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d" " with error %d", i, ret); fs_unlock(dev, 0); return ret; } } fs_unlock(dev, 0); return 0; } static int fs_dev_set_link_down(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i); ret = rte_eth_dev_set_link_down(PORT_ID(sdev)); if ((ret = fs_err(sdev, ret))) { ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d" " with error %d", i, ret); fs_unlock(dev, 0); return ret; } } fs_unlock(dev, 0); return 0; } static void fs_dev_free_queues(struct rte_eth_dev *dev); static void fs_dev_close(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; fs_lock(dev, 0); failsafe_hotplug_alarm_cancel(dev); if (PRIV(dev)->state == DEV_STARTED) dev->dev_ops->dev_stop(dev); PRIV(dev)->state = DEV_ACTIVE - 1; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Closing sub_device %d", i); failsafe_eth_dev_unregister_callbacks(sdev); rte_eth_dev_close(PORT_ID(sdev)); sdev->state = DEV_ACTIVE - 1; } fs_dev_free_queues(dev); fs_unlock(dev, 0); } static int fs_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct sub_device *sdev; uint8_t i; int ret; int err = 0; bool failure = true; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { uint16_t port_id = ETH(sdev)->data->port_id; ret = rte_eth_dev_rx_queue_stop(port_id, rx_queue_id); ret = fs_err(sdev, ret); if (ret) { ERROR("Rx queue stop failed for subdevice %d", i); err = ret; } else { failure = false; } } dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; fs_unlock(dev, 0); /* Return 0 in case of at least one successful queue stop */ return (failure) ? err : 0; } static int fs_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { uint16_t port_id = ETH(sdev)->data->port_id; ret = rte_eth_dev_rx_queue_start(port_id, rx_queue_id); ret = fs_err(sdev, ret); if (ret) { ERROR("Rx queue start failed for subdevice %d", i); fs_rx_queue_stop(dev, rx_queue_id); fs_unlock(dev, 0); return ret; } } dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; fs_unlock(dev, 0); return 0; } static int fs_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct sub_device *sdev; uint8_t i; int ret; int err = 0; bool failure = true; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { uint16_t port_id = ETH(sdev)->data->port_id; ret = rte_eth_dev_tx_queue_stop(port_id, tx_queue_id); ret = fs_err(sdev, ret); if (ret) { ERROR("Tx queue stop failed for subdevice %d", i); err = ret; } else { failure = false; } } dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; fs_unlock(dev, 0); /* Return 0 in case of at least one successful queue stop */ return (failure) ? err : 0; } static int fs_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { uint16_t port_id = ETH(sdev)->data->port_id; ret = rte_eth_dev_tx_queue_start(port_id, tx_queue_id); ret = fs_err(sdev, ret); if (ret) { ERROR("Tx queue start failed for subdevice %d", i); fs_tx_queue_stop(dev, tx_queue_id); fs_unlock(dev, 0); return ret; } } dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; fs_unlock(dev, 0); return 0; } static void fs_rx_queue_release(void *queue) { struct rte_eth_dev *dev; struct sub_device *sdev; uint8_t i; struct rxq *rxq; if (queue == NULL) return; rxq = queue; dev = &rte_eth_devices[rxq->priv->data->port_id]; fs_lock(dev, 0); if (rxq->event_fd > 0) close(rxq->event_fd); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { if (ETH(sdev)->data->rx_queues != NULL && ETH(sdev)->data->rx_queues[rxq->qid] != NULL) { SUBOPS(sdev, rx_queue_release) (ETH(sdev)->data->rx_queues[rxq->qid]); } } dev->data->rx_queues[rxq->qid] = NULL; rte_free(rxq); fs_unlock(dev, 0); } static int fs_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool) { /* * FIXME: Add a proper interface in rte_eal_interrupts for * allocating eventfd as an interrupt vector. * For the time being, fake as if we are using MSIX interrupts, * this will cause rte_intr_efd_enable to allocate an eventfd for us. */ struct rte_intr_handle intr_handle = { .type = RTE_INTR_HANDLE_VFIO_MSIX, .efds = { -1, }, }; struct sub_device *sdev; struct rxq *rxq; uint8_t i; int ret; fs_lock(dev, 0); if (rx_conf->rx_deferred_start) { FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) { if (SUBOPS(sdev, rx_queue_start) == NULL) { ERROR("Rx queue deferred start is not " "supported for subdevice %d", i); fs_unlock(dev, 0); return -EINVAL; } } } rxq = dev->data->rx_queues[rx_queue_id]; if (rxq != NULL) { fs_rx_queue_release(rxq); dev->data->rx_queues[rx_queue_id] = NULL; } rxq = rte_zmalloc(NULL, sizeof(*rxq) + sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail, RTE_CACHE_LINE_SIZE); if (rxq == NULL) { fs_unlock(dev, 0); return -ENOMEM; } FOREACH_SUBDEV(sdev, i, dev) rte_atomic64_init(&rxq->refcnt[i]); rxq->qid = rx_queue_id; rxq->socket_id = socket_id; rxq->info.mp = mb_pool; rxq->info.conf = *rx_conf; rxq->info.nb_desc = nb_rx_desc; rxq->priv = PRIV(dev); rxq->sdev = PRIV(dev)->subs; ret = rte_intr_efd_enable(&intr_handle, 1); if (ret < 0) { fs_unlock(dev, 0); return ret; } rxq->event_fd = intr_handle.efds[0]; dev->data->rx_queues[rx_queue_id] = rxq; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_rx_queue_setup(PORT_ID(sdev), rx_queue_id, nb_rx_desc, socket_id, rx_conf, mb_pool); if ((ret = fs_err(sdev, ret))) { ERROR("RX queue setup failed for sub_device %d", i); goto free_rxq; } } fs_unlock(dev, 0); return 0; free_rxq: fs_rx_queue_release(rxq); fs_unlock(dev, 0); return ret; } static int fs_rx_intr_enable(struct rte_eth_dev *dev, uint16_t idx) { struct rxq *rxq; struct sub_device *sdev; uint8_t i; int ret; int rc = 0; fs_lock(dev, 0); if (idx >= dev->data->nb_rx_queues) { rc = -EINVAL; goto unlock; } rxq = dev->data->rx_queues[idx]; if (rxq == NULL || rxq->event_fd <= 0) { rc = -EINVAL; goto unlock; } /* Fail if proxy service is nor running. */ if (PRIV(dev)->rxp.sstate != SS_RUNNING) { ERROR("failsafe interrupt services are not running"); rc = -EAGAIN; goto unlock; } rxq->enable_events = 1; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_dev_rx_intr_enable(PORT_ID(sdev), idx); ret = fs_err(sdev, ret); if (ret) rc = ret; } unlock: fs_unlock(dev, 0); if (rc) rte_errno = -rc; return rc; } static int fs_rx_intr_disable(struct rte_eth_dev *dev, uint16_t idx) { struct rxq *rxq; struct sub_device *sdev; uint64_t u64; uint8_t i; int rc = 0; int ret; fs_lock(dev, 0); if (idx >= dev->data->nb_rx_queues) { rc = -EINVAL; goto unlock; } rxq = dev->data->rx_queues[idx]; if (rxq == NULL || rxq->event_fd <= 0) { rc = -EINVAL; goto unlock; } rxq->enable_events = 0; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_dev_rx_intr_disable(PORT_ID(sdev), idx); ret = fs_err(sdev, ret); if (ret) rc = ret; } /* Clear pending events */ while (read(rxq->event_fd, &u64, sizeof(uint64_t)) > 0) ; unlock: fs_unlock(dev, 0); if (rc) rte_errno = -rc; return rc; } static void fs_tx_queue_release(void *queue) { struct rte_eth_dev *dev; struct sub_device *sdev; uint8_t i; struct txq *txq; if (queue == NULL) return; txq = queue; dev = &rte_eth_devices[txq->priv->data->port_id]; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { if (ETH(sdev)->data->tx_queues != NULL && ETH(sdev)->data->tx_queues[txq->qid] != NULL) { SUBOPS(sdev, tx_queue_release) (ETH(sdev)->data->tx_queues[txq->qid]); } } dev->data->tx_queues[txq->qid] = NULL; rte_free(txq); fs_unlock(dev, 0); } static int fs_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct sub_device *sdev; struct txq *txq; uint8_t i; int ret; fs_lock(dev, 0); if (tx_conf->tx_deferred_start) { FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) { if (SUBOPS(sdev, tx_queue_start) == NULL) { ERROR("Tx queue deferred start is not " "supported for subdevice %d", i); fs_unlock(dev, 0); return -EINVAL; } } } txq = dev->data->tx_queues[tx_queue_id]; if (txq != NULL) { fs_tx_queue_release(txq); dev->data->tx_queues[tx_queue_id] = NULL; } txq = rte_zmalloc("ethdev TX queue", sizeof(*txq) + sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail, RTE_CACHE_LINE_SIZE); if (txq == NULL) { fs_unlock(dev, 0); return -ENOMEM; } FOREACH_SUBDEV(sdev, i, dev) rte_atomic64_init(&txq->refcnt[i]); txq->qid = tx_queue_id; txq->socket_id = socket_id; txq->info.conf = *tx_conf; txq->info.nb_desc = nb_tx_desc; txq->priv = PRIV(dev); dev->data->tx_queues[tx_queue_id] = txq; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_tx_queue_setup(PORT_ID(sdev), tx_queue_id, nb_tx_desc, socket_id, tx_conf); if ((ret = fs_err(sdev, ret))) { ERROR("TX queue setup failed for sub_device %d", i); goto free_txq; } } fs_unlock(dev, 0); return 0; free_txq: fs_tx_queue_release(txq); fs_unlock(dev, 0); return ret; } static void fs_dev_free_queues(struct rte_eth_dev *dev) { uint16_t i; for (i = 0; i < dev->data->nb_rx_queues; i++) { fs_rx_queue_release(dev->data->rx_queues[i]); dev->data->rx_queues[i] = NULL; } dev->data->nb_rx_queues = 0; for (i = 0; i < dev->data->nb_tx_queues; i++) { fs_tx_queue_release(dev->data->tx_queues[i]); dev->data->tx_queues[i] = NULL; } dev->data->nb_tx_queues = 0; } static int fs_promiscuous_enable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret = 0; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_promiscuous_enable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) { ERROR("Promiscuous mode enable failed for subdevice %d", PORT_ID(sdev)); break; } } if (ret != 0) { /* Rollback in the case of failure */ FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_promiscuous_disable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) ERROR("Promiscuous mode disable during rollback failed for subdevice %d", PORT_ID(sdev)); } } fs_unlock(dev, 0); return ret; } static int fs_promiscuous_disable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret = 0; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_promiscuous_disable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) { ERROR("Promiscuous mode disable failed for subdevice %d", PORT_ID(sdev)); break; } } if (ret != 0) { /* Rollback in the case of failure */ FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_promiscuous_enable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) ERROR("Promiscuous mode enable during rollback failed for subdevice %d", PORT_ID(sdev)); } } fs_unlock(dev, 0); return ret; } static int fs_allmulticast_enable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret = 0; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_allmulticast_enable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) { ERROR("All-multicast mode enable failed for subdevice %d", PORT_ID(sdev)); break; } } if (ret != 0) { /* Rollback in the case of failure */ FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_allmulticast_disable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) ERROR("All-multicast mode disable during rollback failed for subdevice %d", PORT_ID(sdev)); } } fs_unlock(dev, 0); return ret; } static int fs_allmulticast_disable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret = 0; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_allmulticast_disable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) { ERROR("All-multicast mode disable failed for subdevice %d", PORT_ID(sdev)); break; } } if (ret != 0) { /* Rollback in the case of failure */ FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_allmulticast_enable(PORT_ID(sdev)); ret = fs_err(sdev, ret); if (ret != 0) ERROR("All-multicast mode enable during rollback failed for subdevice %d", PORT_ID(sdev)); } } fs_unlock(dev, 0); return ret; } static int fs_link_update(struct rte_eth_dev *dev, int wait_to_complete) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling link_update on sub_device %d", i); ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete); if (ret && ret != -1 && sdev->remove == 0 && rte_eth_dev_is_removed(PORT_ID(sdev)) == 0) { ERROR("Link update failed for sub_device %d with error %d", i, ret); fs_unlock(dev, 0); return ret; } } if (TX_SUBDEV(dev)) { struct rte_eth_link *l1; struct rte_eth_link *l2; l1 = &dev->data->dev_link; l2 = Ð(TX_SUBDEV(dev))->data->dev_link; if (memcmp(l1, l2, sizeof(*l1))) { *l1 = *l2; fs_unlock(dev, 0); return 0; } } fs_unlock(dev, 0); return -1; } static int fs_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct rte_eth_stats backup; struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats)); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats; uint64_t *timestamp = &sdev->stats_snapshot.timestamp; rte_memcpy(&backup, snapshot, sizeof(backup)); ret = rte_eth_stats_get(PORT_ID(sdev), snapshot); if (ret) { if (!fs_err(sdev, ret)) { rte_memcpy(snapshot, &backup, sizeof(backup)); goto inc; } ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d", i, ret); *timestamp = 0; fs_unlock(dev, 0); return ret; } *timestamp = rte_rdtsc(); inc: failsafe_stats_increment(stats, snapshot); } fs_unlock(dev, 0); return 0; } static int fs_stats_reset(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_stats_reset(PORT_ID(sdev)); if (ret) { if (!fs_err(sdev, ret)) continue; ERROR("Operation rte_eth_stats_reset failed for sub_device %d with error %d", i, ret); fs_unlock(dev, 0); return ret; } memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats)); } memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats)); fs_unlock(dev, 0); return 0; } static int __fs_xstats_count(struct rte_eth_dev *dev) { struct sub_device *sdev; int count = 0; uint8_t i; int ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_xstats_get_names(PORT_ID(sdev), NULL, 0); if (ret < 0) return ret; count += ret; } return count; } static int __fs_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int limit) { struct sub_device *sdev; unsigned int count = 0; uint8_t i; /* Caller only cares about count */ if (!xstats_names) return __fs_xstats_count(dev); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { struct rte_eth_xstat_name *sub_names = xstats_names + count; int j, r; if (count >= limit) break; r = rte_eth_xstats_get_names(PORT_ID(sdev), sub_names, limit - count); if (r < 0) return r; /* add subN_ prefix to names */ for (j = 0; j < r; j++) { char *xname = sub_names[j].name; char tmp[RTE_ETH_XSTATS_NAME_SIZE]; if ((xname[0] == 't' || xname[0] == 'r') && xname[1] == 'x' && xname[2] == '_') snprintf(tmp, sizeof(tmp), "%.3ssub%u_%s", xname, i, xname + 3); else snprintf(tmp, sizeof(tmp), "sub%u_%s", i, xname); strlcpy(xname, tmp, RTE_ETH_XSTATS_NAME_SIZE); } count += r; } return count; } static int fs_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int limit) { int ret; fs_lock(dev, 0); ret = __fs_xstats_get_names(dev, xstats_names, limit); fs_unlock(dev, 0); return ret; } static int __fs_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n) { unsigned int count = 0; struct sub_device *sdev; uint8_t i; int j, ret; ret = __fs_xstats_count(dev); /* * if error * or caller did not give enough space * or just querying */ if (ret < 0 || ret > (int)n || xstats == NULL) return ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_xstats_get(PORT_ID(sdev), xstats, n); if (ret < 0) return ret; if (ret > (int)n) return n + count; /* add offset to id's from sub-device */ for (j = 0; j < ret; j++) xstats[j].id += count; xstats += ret; n -= ret; count += ret; } return count; } static int fs_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n) { int ret; fs_lock(dev, 0); ret = __fs_xstats_get(dev, xstats, n); fs_unlock(dev, 0); return ret; } static int fs_xstats_reset(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int r = 0; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { r = rte_eth_xstats_reset(PORT_ID(sdev)); if (r < 0) break; } fs_unlock(dev, 0); return r; } static void fs_dev_merge_desc_lim(struct rte_eth_desc_lim *to, const struct rte_eth_desc_lim *from) { to->nb_max = RTE_MIN(to->nb_max, from->nb_max); to->nb_min = RTE_MAX(to->nb_min, from->nb_min); to->nb_align = RTE_MAX(to->nb_align, from->nb_align); to->nb_seg_max = RTE_MIN(to->nb_seg_max, from->nb_seg_max); to->nb_mtu_seg_max = RTE_MIN(to->nb_mtu_seg_max, from->nb_mtu_seg_max); } /* * Merge the information from sub-devices. * * The reported values must be the common subset of all sub devices */ static void fs_dev_merge_info(struct rte_eth_dev_info *info, const struct rte_eth_dev_info *sinfo) { info->max_rx_pktlen = RTE_MIN(info->max_rx_pktlen, sinfo->max_rx_pktlen); info->max_rx_queues = RTE_MIN(info->max_rx_queues, sinfo->max_rx_queues); info->max_tx_queues = RTE_MIN(info->max_tx_queues, sinfo->max_tx_queues); info->max_mac_addrs = RTE_MIN(info->max_mac_addrs, sinfo->max_mac_addrs); info->max_hash_mac_addrs = RTE_MIN(info->max_hash_mac_addrs, sinfo->max_hash_mac_addrs); info->max_vmdq_pools = RTE_MIN(info->max_vmdq_pools, sinfo->max_vmdq_pools); info->max_vfs = RTE_MIN(info->max_vfs, sinfo->max_vfs); fs_dev_merge_desc_lim(&info->rx_desc_lim, &sinfo->rx_desc_lim); fs_dev_merge_desc_lim(&info->tx_desc_lim, &sinfo->tx_desc_lim); info->rx_offload_capa &= sinfo->rx_offload_capa; info->tx_offload_capa &= sinfo->tx_offload_capa; info->rx_queue_offload_capa &= sinfo->rx_queue_offload_capa; info->tx_queue_offload_capa &= sinfo->tx_queue_offload_capa; info->flow_type_rss_offloads &= sinfo->flow_type_rss_offloads; info->hash_key_size = RTE_MIN(info->hash_key_size, sinfo->hash_key_size); } /** * Fail-safe dev_infos_get rules: * * No sub_device: * Numerables: * Use the maximum possible values for any field, so as not * to impede any further configuration effort. * Capabilities: * Limits capabilities to those that are understood by the * fail-safe PMD. This understanding stems from the fail-safe * being capable of verifying that the related capability is * expressed within the device configuration (struct rte_eth_conf). * * At least one probed sub_device: * Numerables: * Uses values from the active probed sub_device * The rationale here is that if any sub_device is less capable * (for example concerning the number of queues) than the active * sub_device, then its subsequent configuration will fail. * It is impossible to foresee this failure when the failing sub_device * is supposed to be plugged-in later on, so the configuration process * is the single point of failure and error reporting. * Capabilities: * Uses a logical AND of RX capabilities among * all sub_devices and the default capabilities. * Uses a logical AND of TX capabilities among * the active probed sub_device and the default capabilities. * Uses a logical AND of device capabilities among * all sub_devices and the default capabilities. * */ static int fs_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *infos) { struct sub_device *sdev; uint8_t i; int ret; /* Use maximum upper bounds by default */ infos->max_rx_pktlen = UINT32_MAX; infos->max_rx_queues = RTE_MAX_QUEUES_PER_PORT; infos->max_tx_queues = RTE_MAX_QUEUES_PER_PORT; infos->max_mac_addrs = FAILSAFE_MAX_ETHADDR; infos->max_hash_mac_addrs = UINT32_MAX; infos->max_vfs = UINT16_MAX; infos->max_vmdq_pools = UINT16_MAX; infos->hash_key_size = UINT8_MAX; /* * Set of capabilities that can be verified upon * configuring a sub-device. */ infos->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_TCP_LRO | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_MACSEC_STRIP | DEV_RX_OFFLOAD_HEADER_SPLIT | DEV_RX_OFFLOAD_VLAN_FILTER | DEV_RX_OFFLOAD_VLAN_EXTEND | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_TIMESTAMP | DEV_RX_OFFLOAD_SECURITY; infos->rx_queue_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_TCP_LRO | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_MACSEC_STRIP | DEV_RX_OFFLOAD_HEADER_SPLIT | DEV_RX_OFFLOAD_VLAN_FILTER | DEV_RX_OFFLOAD_VLAN_EXTEND | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_TIMESTAMP | DEV_RX_OFFLOAD_SECURITY; infos->tx_offload_capa = DEV_TX_OFFLOAD_MULTI_SEGS | DEV_TX_OFFLOAD_MBUF_FAST_FREE | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_TCP_TSO; infos->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_UDP | ETH_RSS_TCP; infos->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) { struct rte_eth_dev_info sub_info; ret = rte_eth_dev_info_get(PORT_ID(sdev), &sub_info); ret = fs_err(sdev, ret); if (ret != 0) return ret; fs_dev_merge_info(infos, &sub_info); } return 0; } static const uint32_t * fs_dev_supported_ptypes_get(struct rte_eth_dev *dev) { struct sub_device *sdev; struct rte_eth_dev *edev; const uint32_t *ret; fs_lock(dev, 0); sdev = TX_SUBDEV(dev); if (sdev == NULL) { ret = NULL; goto unlock; } edev = ETH(sdev); /* ENOTSUP: counts as no supported ptypes */ if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) { ret = NULL; goto unlock; } /* * The API does not permit to do a clean AND of all ptypes, * It is also incomplete by design and we do not really care * to have a best possible value in this context. * We just return the ptypes of the device of highest * priority, usually the PREFERRED device. */ ret = SUBOPS(sdev, dev_supported_ptypes_get)(edev); unlock: fs_unlock(dev, 0); return ret; } static int fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i); ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu); if ((ret = fs_err(sdev, ret))) { ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d", i, ret); fs_unlock(dev, 0); return ret; } } fs_unlock(dev, 0); return 0; } static int fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i); ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on); if ((ret = fs_err(sdev, ret))) { ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d" " with error %d", i, ret); fs_unlock(dev, 0); return ret; } } fs_unlock(dev, 0); return 0; } static int fs_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct sub_device *sdev; int ret; fs_lock(dev, 0); sdev = TX_SUBDEV(dev); if (sdev == NULL) { ret = 0; goto unlock; } if (SUBOPS(sdev, flow_ctrl_get) == NULL) { ret = -ENOTSUP; goto unlock; } ret = SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf); unlock: fs_unlock(dev, 0); return ret; } static int fs_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i); ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf); if ((ret = fs_err(sdev, ret))) { ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d" " with error %d", i, ret); fs_unlock(dev, 0); return ret; } } fs_unlock(dev, 0); return 0; } static void fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index) { struct sub_device *sdev; uint8_t i; fs_lock(dev, 0); /* No check: already done within the rte_eth_dev_mac_addr_remove * call for the fail-safe device. */ FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) rte_eth_dev_mac_addr_remove(PORT_ID(sdev), &dev->data->mac_addrs[index]); PRIV(dev)->mac_addr_pool[index] = 0; fs_unlock(dev, 0); } static int fs_mac_addr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, uint32_t index, uint32_t vmdq) { struct sub_device *sdev; int ret; uint8_t i; RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR); fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq); if ((ret = fs_err(sdev, ret))) { ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %" PRIu8 " with error %d", i, ret); fs_unlock(dev, 0); return ret; } } if (index >= PRIV(dev)->nb_mac_addr) { DEBUG("Growing mac_addrs array"); PRIV(dev)->nb_mac_addr = index; } PRIV(dev)->mac_addr_pool[index] = vmdq; fs_unlock(dev, 0); return 0; } static int fs_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr); ret = fs_err(sdev, ret); if (ret) { ERROR("Operation rte_eth_dev_mac_addr_set failed for sub_device %d with error %d", i, ret); fs_unlock(dev, 0); return ret; } } fs_unlock(dev, 0); return 0; } static int fs_set_mc_addr_list(struct rte_eth_dev *dev, struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct sub_device *sdev; uint8_t i; int ret; void *mcast_addrs; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev), mc_addr_set, nb_mc_addr); if (ret != 0) { ERROR("Operation rte_eth_dev_set_mc_addr_list failed for sub_device %d with error %d", i, ret); goto rollback; } } mcast_addrs = rte_realloc(PRIV(dev)->mcast_addrs, nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]), 0); if (mcast_addrs == NULL && nb_mc_addr > 0) { ret = -ENOMEM; goto rollback; } rte_memcpy(mcast_addrs, mc_addr_set, nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0])); PRIV(dev)->nb_mcast_addr = nb_mc_addr; PRIV(dev)->mcast_addrs = mcast_addrs; fs_unlock(dev, 0); return 0; rollback: FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { int rc = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev), PRIV(dev)->mcast_addrs, PRIV(dev)->nb_mcast_addr); if (rc != 0) { ERROR("Multicast MAC address list rollback for sub_device %d failed with error %d", i, rc); } } fs_unlock(dev, 0); return ret; } static int fs_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct sub_device *sdev; uint8_t i; int ret; fs_lock(dev, 0); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_dev_rss_hash_update(PORT_ID(sdev), rss_conf); ret = fs_err(sdev, ret); if (ret) { ERROR("Operation rte_eth_dev_rss_hash_update" " failed for sub_device %d with error %d", i, ret); fs_unlock(dev, 0); return ret; } } fs_unlock(dev, 0); return 0; } static int fs_filter_ctrl(struct rte_eth_dev *dev __rte_unused, enum rte_filter_type type, enum rte_filter_op op, void *arg) { if (type == RTE_ETH_FILTER_GENERIC && op == RTE_ETH_FILTER_GET) { *(const void **)arg = &fs_flow_ops; return 0; } return -ENOTSUP; } const struct eth_dev_ops failsafe_ops = { .dev_configure = fs_dev_configure, .dev_start = fs_dev_start, .dev_stop = fs_dev_stop, .dev_set_link_down = fs_dev_set_link_down, .dev_set_link_up = fs_dev_set_link_up, .dev_close = fs_dev_close, .promiscuous_enable = fs_promiscuous_enable, .promiscuous_disable = fs_promiscuous_disable, .allmulticast_enable = fs_allmulticast_enable, .allmulticast_disable = fs_allmulticast_disable, .link_update = fs_link_update, .stats_get = fs_stats_get, .stats_reset = fs_stats_reset, .xstats_get = fs_xstats_get, .xstats_get_names = fs_xstats_get_names, .xstats_reset = fs_xstats_reset, .dev_infos_get = fs_dev_infos_get, .dev_supported_ptypes_get = fs_dev_supported_ptypes_get, .mtu_set = fs_mtu_set, .vlan_filter_set = fs_vlan_filter_set, .rx_queue_start = fs_rx_queue_start, .rx_queue_stop = fs_rx_queue_stop, .tx_queue_start = fs_tx_queue_start, .tx_queue_stop = fs_tx_queue_stop, .rx_queue_setup = fs_rx_queue_setup, .tx_queue_setup = fs_tx_queue_setup, .rx_queue_release = fs_rx_queue_release, .tx_queue_release = fs_tx_queue_release, .rx_queue_intr_enable = fs_rx_intr_enable, .rx_queue_intr_disable = fs_rx_intr_disable, .flow_ctrl_get = fs_flow_ctrl_get, .flow_ctrl_set = fs_flow_ctrl_set, .mac_addr_remove = fs_mac_addr_remove, .mac_addr_add = fs_mac_addr_add, .mac_addr_set = fs_mac_addr_set, .set_mc_addr_list = fs_set_mc_addr_list, .rss_hash_update = fs_rss_hash_update, .filter_ctrl = fs_filter_ctrl, };