/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include "test.h" #include #include #include #include #include #include #include #include #include #include "packet_burst_generator.h" #include "test_flow_classify.h" #define FLOW_CLASSIFY_MAX_RULE_NUM 100 #define MAX_PKT_BURST 32 #define NB_SOCKETS 1 #define MEMPOOL_CACHE_SIZE 256 #define MBUF_SIZE 512 #define NB_MBUF 512 /* test UDP, TCP and SCTP packets */ static struct rte_mempool *mbufpool[NB_SOCKETS]; static struct rte_mbuf *bufs[MAX_PKT_BURST]; static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { /* first input field - always one byte long. */ { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint8_t), .field_index = PROTO_FIELD_IPV4, .input_index = PROTO_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, next_proto_id), }, /* next input field (IPv4 source address) - 4 consecutive bytes. */ { /* rte_flow uses a bit mask for IPv4 addresses */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint32_t), .field_index = SRC_FIELD_IPV4, .input_index = SRC_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, src_addr), }, /* next input field (IPv4 destination address) - 4 consecutive bytes. */ { /* rte_flow uses a bit mask for IPv4 addresses */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint32_t), .field_index = DST_FIELD_IPV4, .input_index = DST_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, dst_addr), }, /* * Next 2 fields (src & dst ports) form 4 consecutive bytes. * They share the same input index. */ { /* rte_flow uses a bit mask for protocol ports */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint16_t), .field_index = SRCP_FIELD_IPV4, .input_index = SRCP_DESTP_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + offsetof(struct rte_tcp_hdr, src_port), }, { /* rte_flow uses a bit mask for protocol ports */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint16_t), .field_index = DSTP_FIELD_IPV4, .input_index = SRCP_DESTP_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + offsetof(struct rte_tcp_hdr, dst_port), }, }; /* parameters for rte_flow_classify_validate and rte_flow_classify_create */ /* test UDP pattern: * "eth / ipv4 src spec 2.2.2.3 src mask 255.255.255.00 dst spec 2.2.2.7 * dst mask 255.255.255.00 / udp src is 32 dst is 33 / end" */ static struct rte_flow_item_ipv4 ipv4_udp_spec_1 = { { 0, 0, 0, 0, 0, 0, IPPROTO_UDP, 0, RTE_IPV4(2, 2, 2, 3), RTE_IPV4(2, 2, 2, 7)} }; static const struct rte_flow_item_ipv4 ipv4_mask_24 = { .hdr = { .next_proto_id = 0xff, .src_addr = 0xffffff00, .dst_addr = 0xffffff00, }, }; static struct rte_flow_item_udp udp_spec_1 = { { 32, 33, 0, 0 } }; static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 0, 0, 0 }; static struct rte_flow_item eth_item_bad = { -1, 0, 0, 0 }; static struct rte_flow_item ipv4_udp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, &ipv4_udp_spec_1, 0, &ipv4_mask_24}; static struct rte_flow_item ipv4_udp_item_bad = { RTE_FLOW_ITEM_TYPE_IPV4, NULL, 0, NULL}; static struct rte_flow_item udp_item_1 = { RTE_FLOW_ITEM_TYPE_UDP, &udp_spec_1, 0, &rte_flow_item_udp_mask}; static struct rte_flow_item udp_item_bad = { RTE_FLOW_ITEM_TYPE_UDP, NULL, 0, NULL}; static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 0, 0, 0 }; /* test TCP pattern: * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8 * dst mask 255.255.255.00 / tcp src is 16 dst is 17 / end" */ static struct rte_flow_item_ipv4 ipv4_tcp_spec_1 = { { 0, 0, 0, 0, 0, 0, IPPROTO_TCP, 0, RTE_IPV4(1, 2, 3, 4), RTE_IPV4(5, 6, 7, 8)} }; static struct rte_flow_item_tcp tcp_spec_1 = { { 16, 17, 0, 0, 0, 0, 0, 0, 0} }; static struct rte_flow_item ipv4_tcp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, &ipv4_tcp_spec_1, 0, &ipv4_mask_24}; static struct rte_flow_item tcp_item_1 = { RTE_FLOW_ITEM_TYPE_TCP, &tcp_spec_1, 0, &rte_flow_item_tcp_mask}; /* test SCTP pattern: * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8 * dst mask 255.255.255.00 / sctp src is 16 dst is 17/ end" */ static struct rte_flow_item_ipv4 ipv4_sctp_spec_1 = { { 0, 0, 0, 0, 0, 0, IPPROTO_SCTP, 0, RTE_IPV4(11, 12, 13, 14), RTE_IPV4(15, 16, 17, 18)} }; static struct rte_flow_item_sctp sctp_spec_1 = { { 10, 11, 0, 0} }; static struct rte_flow_item ipv4_sctp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, &ipv4_sctp_spec_1, 0, &ipv4_mask_24}; static struct rte_flow_item sctp_item_1 = { RTE_FLOW_ITEM_TYPE_SCTP, &sctp_spec_1, 0, &rte_flow_item_sctp_mask}; /* test actions: * "actions count / end" */ static struct rte_flow_query_count count = { .reset = 1, .hits_set = 1, .bytes_set = 1, .hits = 0, .bytes = 0, }; static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, &count}; static struct rte_flow_action count_action_bad = { -1, 0}; static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; static struct rte_flow_action actions[2]; /* test attributes */ static struct rte_flow_attr attr; /* test error */ static struct rte_flow_error error; /* test pattern */ static struct rte_flow_item pattern[4]; /* flow classify data for UDP burst */ static struct rte_flow_classify_ipv4_5tuple_stats udp_ntuple_stats; static struct rte_flow_classify_stats udp_classify_stats = { .stats = (void *)&udp_ntuple_stats }; /* flow classify data for TCP burst */ static struct rte_flow_classify_ipv4_5tuple_stats tcp_ntuple_stats; static struct rte_flow_classify_stats tcp_classify_stats = { .stats = (void *)&tcp_ntuple_stats }; /* flow classify data for SCTP burst */ static struct rte_flow_classify_ipv4_5tuple_stats sctp_ntuple_stats; static struct rte_flow_classify_stats sctp_classify_stats = { .stats = (void *)&sctp_ntuple_stats }; struct flow_classifier_acl *cls; struct flow_classifier_acl { struct rte_flow_classifier *cls; } __rte_cache_aligned; /* * test functions by passing invalid or * non-workable parameters. */ static int test_invalid_parameters(void) { struct rte_flow_classify_rule *rule; int ret; ret = rte_flow_classify_validate(NULL, NULL, NULL, NULL, NULL); if (!ret) { printf("Line %i: rte_flow_classify_validate", __LINE__); printf(" with NULL param should have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL, NULL, NULL); if (rule) { printf("Line %i: flow_classifier_table_entry_add", __LINE__); printf(" with NULL param should have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(NULL, NULL); if (!ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" with NULL param should have failed!\n"); return -1; } ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL); if (!ret) { printf("Line %i: flow_classifier_query", __LINE__); printf(" with NULL param should have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL, NULL, &error); if (rule) { printf("Line %i: flow_classify_table_entry_add ", __LINE__); printf("with NULL param should have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(NULL, NULL); if (!ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf("with NULL param should have failed!\n"); return -1; } ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL); if (!ret) { printf("Line %i: flow_classifier_query", __LINE__); printf(" with NULL param should have failed!\n"); return -1; } return 0; } static int test_valid_parameters(void) { struct rte_flow_classify_rule *rule; int ret; int key_found; /* * set up parameters for rte_flow_classify_validate, * rte_flow_classify_table_entry_add and * rte_flow_classify_table_entry_delete */ attr.ingress = 1; attr.priority = 1; pattern[0] = eth_item; pattern[1] = ipv4_udp_item_1; pattern[2] = udp_item_1; pattern[3] = end_item; actions[0] = count_action; actions[1] = end_action; ret = rte_flow_classify_validate(cls->cls, &attr, pattern, actions, &error); if (ret) { printf("Line %i: rte_flow_classify_validate", __LINE__); printf(" should not have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, actions, &key_found, &error); if (!rule) { printf("Line %i: flow_classify_table_entry_add", __LINE__); printf(" should not have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(cls->cls, rule); if (ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" should not have failed!\n"); return -1; } return 0; } static int test_invalid_patterns(void) { struct rte_flow_classify_rule *rule; int ret; int key_found; /* * set up parameters for rte_flow_classify_validate, * rte_flow_classify_table_entry_add and * rte_flow_classify_table_entry_delete */ attr.ingress = 1; attr.priority = 1; pattern[0] = eth_item_bad; pattern[1] = ipv4_udp_item_1; pattern[2] = udp_item_1; pattern[3] = end_item; actions[0] = count_action; actions[1] = end_action; pattern[0] = eth_item; pattern[1] = ipv4_udp_item_bad; ret = rte_flow_classify_validate(cls->cls, &attr, pattern, actions, &error); if (!ret) { printf("Line %i: rte_flow_classify_validate", __LINE__); printf(" should have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, actions, &key_found, &error); if (rule) { printf("Line %i: flow_classify_table_entry_add", __LINE__); printf(" should have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(cls->cls, rule); if (!ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" should have failed!\n"); return -1; } pattern[1] = ipv4_udp_item_1; pattern[2] = udp_item_bad; pattern[3] = end_item; ret = rte_flow_classify_validate(cls->cls, &attr, pattern, actions, &error); if (!ret) { printf("Line %i: rte_flow_classify_validate", __LINE__); printf(" should have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, actions, &key_found, &error); if (rule) { printf("Line %i: flow_classify_table_entry_add", __LINE__); printf(" should have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(cls->cls, rule); if (!ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" should have failed!\n"); return -1; } return 0; } static int test_invalid_actions(void) { struct rte_flow_classify_rule *rule; int ret; int key_found; /* * set up parameters for rte_flow_classify_validate, * rte_flow_classify_table_entry_add and * rte_flow_classify_table_entry_delete */ attr.ingress = 1; attr.priority = 1; pattern[0] = eth_item; pattern[1] = ipv4_udp_item_1; pattern[2] = udp_item_1; pattern[3] = end_item; actions[0] = count_action_bad; actions[1] = end_action; ret = rte_flow_classify_validate(cls->cls, &attr, pattern, actions, &error); if (!ret) { printf("Line %i: rte_flow_classify_validate", __LINE__); printf(" should have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, actions, &key_found, &error); if (rule) { printf("Line %i: flow_classify_table_entry_add", __LINE__); printf(" should have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(cls->cls, rule); if (!ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" should have failed!\n"); return -1; } return 0; } static int init_ipv4_udp_traffic(struct rte_mempool *mp, struct rte_mbuf **pkts_burst, uint32_t burst_size) { struct rte_ether_hdr pkt_eth_hdr; struct rte_ipv4_hdr pkt_ipv4_hdr; struct rte_udp_hdr pkt_udp_hdr; uint32_t src_addr = IPV4_ADDR(2, 2, 2, 3); uint32_t dst_addr = IPV4_ADDR(2, 2, 2, 7); uint16_t src_port = 32; uint16_t dst_port = 33; uint16_t pktlen; static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; printf("Set up IPv4 UDP traffic\n"); initialize_eth_header(&pkt_eth_hdr, (struct rte_ether_addr *)src_mac, (struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0); pktlen = (uint16_t)(sizeof(struct rte_ether_hdr)); printf("ETH pktlen %u\n", pktlen); pktlen = initialize_ipv4_header(&pkt_ipv4_hdr, src_addr, dst_addr, pktlen); printf("ETH + IPv4 pktlen %u\n", pktlen); pktlen = initialize_udp_header(&pkt_udp_hdr, src_port, dst_port, pktlen); printf("ETH + IPv4 + UDP pktlen %u\n\n", pktlen); return generate_packet_burst(mp, pkts_burst, &pkt_eth_hdr, 0, &pkt_ipv4_hdr, 1, &pkt_udp_hdr, burst_size, PACKET_BURST_GEN_PKT_LEN, 1); } static int init_ipv4_tcp_traffic(struct rte_mempool *mp, struct rte_mbuf **pkts_burst, uint32_t burst_size) { struct rte_ether_hdr pkt_eth_hdr; struct rte_ipv4_hdr pkt_ipv4_hdr; struct rte_tcp_hdr pkt_tcp_hdr; uint32_t src_addr = IPV4_ADDR(1, 2, 3, 4); uint32_t dst_addr = IPV4_ADDR(5, 6, 7, 8); uint16_t src_port = 16; uint16_t dst_port = 17; uint16_t pktlen; static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; printf("Set up IPv4 TCP traffic\n"); initialize_eth_header(&pkt_eth_hdr, (struct rte_ether_addr *)src_mac, (struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0); pktlen = (uint16_t)(sizeof(struct rte_ether_hdr)); printf("ETH pktlen %u\n", pktlen); pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr, dst_addr, pktlen, IPPROTO_TCP); printf("ETH + IPv4 pktlen %u\n", pktlen); pktlen = initialize_tcp_header(&pkt_tcp_hdr, src_port, dst_port, pktlen); printf("ETH + IPv4 + TCP pktlen %u\n\n", pktlen); return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr, 0, &pkt_ipv4_hdr, 1, IPPROTO_TCP, &pkt_tcp_hdr, burst_size, PACKET_BURST_GEN_PKT_LEN, 1); } static int init_ipv4_sctp_traffic(struct rte_mempool *mp, struct rte_mbuf **pkts_burst, uint32_t burst_size) { struct rte_ether_hdr pkt_eth_hdr; struct rte_ipv4_hdr pkt_ipv4_hdr; struct rte_sctp_hdr pkt_sctp_hdr; uint32_t src_addr = IPV4_ADDR(11, 12, 13, 14); uint32_t dst_addr = IPV4_ADDR(15, 16, 17, 18); uint16_t src_port = 10; uint16_t dst_port = 11; uint16_t pktlen; static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; printf("Set up IPv4 SCTP traffic\n"); initialize_eth_header(&pkt_eth_hdr, (struct rte_ether_addr *)src_mac, (struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0); pktlen = (uint16_t)(sizeof(struct rte_ether_hdr)); printf("ETH pktlen %u\n", pktlen); pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr, dst_addr, pktlen, IPPROTO_SCTP); printf("ETH + IPv4 pktlen %u\n", pktlen); pktlen = initialize_sctp_header(&pkt_sctp_hdr, src_port, dst_port, pktlen); printf("ETH + IPv4 + SCTP pktlen %u\n\n", pktlen); return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr, 0, &pkt_ipv4_hdr, 1, IPPROTO_SCTP, &pkt_sctp_hdr, burst_size, PACKET_BURST_GEN_PKT_LEN, 1); } static int init_mbufpool(void) { int socketid; int ret = 0; unsigned int lcore_id; char s[64]; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; socketid = rte_lcore_to_socket_id(lcore_id); if (socketid >= NB_SOCKETS) { printf( "Socket %d of lcore %u is out of range %d\n", socketid, lcore_id, NB_SOCKETS); ret = -1; break; } if (mbufpool[socketid] == NULL) { snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); mbufpool[socketid] = rte_pktmbuf_pool_create(s, NB_MBUF, MEMPOOL_CACHE_SIZE, 0, MBUF_SIZE, socketid); if (mbufpool[socketid]) { printf("Allocated mbuf pool on socket %d\n", socketid); } else { printf("Cannot init mbuf pool on socket %d\n", socketid); ret = -ENOMEM; break; } } } return ret; } static int test_query_udp(void) { struct rte_flow_error error; struct rte_flow_classify_rule *rule; int ret; int i; int key_found; ret = init_ipv4_udp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); if (ret != MAX_PKT_BURST) { printf("Line %i: init_udp_ipv4_traffic has failed!\n", __LINE__); return -1; } for (i = 0; i < MAX_PKT_BURST; i++) bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; /* * set up parameters for rte_flow_classify_validate, * rte_flow_classify_table_entry_add and * rte_flow_classify_table_entry_delete */ attr.ingress = 1; attr.priority = 1; pattern[0] = eth_item; pattern[1] = ipv4_udp_item_1; pattern[2] = udp_item_1; pattern[3] = end_item; actions[0] = count_action; actions[1] = end_action; ret = rte_flow_classify_validate(cls->cls, &attr, pattern, actions, &error); if (ret) { printf("Line %i: rte_flow_classify_validate", __LINE__); printf(" should not have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, actions, &key_found, &error); if (!rule) { printf("Line %i: flow_classify_table_entry_add", __LINE__); printf(" should not have failed!\n"); return -1; } ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, rule, &udp_classify_stats); if (ret) { printf("Line %i: flow_classifier_query", __LINE__); printf(" should not have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(cls->cls, rule); if (ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" should not have failed!\n"); return -1; } return 0; } static int test_query_tcp(void) { struct rte_flow_classify_rule *rule; int ret; int i; int key_found; ret = init_ipv4_tcp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); if (ret != MAX_PKT_BURST) { printf("Line %i: init_ipv4_tcp_traffic has failed!\n", __LINE__); return -1; } for (i = 0; i < MAX_PKT_BURST; i++) bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; /* * set up parameters for rte_flow_classify_validate, * rte_flow_classify_table_entry_add and * rte_flow_classify_table_entry_delete */ attr.ingress = 1; attr.priority = 1; pattern[0] = eth_item; pattern[1] = ipv4_tcp_item_1; pattern[2] = tcp_item_1; pattern[3] = end_item; actions[0] = count_action; actions[1] = end_action; ret = rte_flow_classify_validate(cls->cls, &attr, pattern, actions, &error); if (ret) { printf("Line %i: flow_classifier_query", __LINE__); printf(" should not have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, actions, &key_found, &error); if (!rule) { printf("Line %i: flow_classify_table_entry_add", __LINE__); printf(" should not have failed!\n"); return -1; } ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, rule, &tcp_classify_stats); if (ret) { printf("Line %i: flow_classifier_query", __LINE__); printf(" should not have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(cls->cls, rule); if (ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" should not have failed!\n"); return -1; } return 0; } static int test_query_sctp(void) { struct rte_flow_classify_rule *rule; int ret; int i; int key_found; ret = init_ipv4_sctp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); if (ret != MAX_PKT_BURST) { printf("Line %i: init_ipv4_tcp_traffic has failed!\n", __LINE__); return -1; } for (i = 0; i < MAX_PKT_BURST; i++) bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; /* * set up parameters rte_flow_classify_validate, * rte_flow_classify_table_entry_add and * rte_flow_classify_table_entry_delete */ attr.ingress = 1; attr.priority = 1; pattern[0] = eth_item; pattern[1] = ipv4_sctp_item_1; pattern[2] = sctp_item_1; pattern[3] = end_item; actions[0] = count_action; actions[1] = end_action; ret = rte_flow_classify_validate(cls->cls, &attr, pattern, actions, &error); if (ret) { printf("Line %i: flow_classifier_query", __LINE__); printf(" should not have failed!\n"); return -1; } rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, actions, &key_found, &error); if (!rule) { printf("Line %i: flow_classify_table_entry_add", __LINE__); printf(" should not have failed!\n"); return -1; } ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, rule, &sctp_classify_stats); if (ret) { printf("Line %i: flow_classifier_query", __LINE__); printf(" should not have failed!\n"); return -1; } ret = rte_flow_classify_table_entry_delete(cls->cls, rule); if (ret) { printf("Line %i: rte_flow_classify_table_entry_delete", __LINE__); printf(" should not have failed!\n"); return -1; } return 0; } static int test_flow_classify(void) { struct rte_table_acl_params table_acl_params; struct rte_flow_classify_table_params cls_table_params; struct rte_flow_classifier_params cls_params; int ret; uint32_t size; /* Memory allocation */ size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); cls = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); cls_params.name = "flow_classifier"; cls_params.socket_id = 0; cls->cls = rte_flow_classifier_create(&cls_params); /* initialise ACL table params */ table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); table_acl_params.name = "table_acl_ipv4_5tuple"; table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); /* initialise table create params */ cls_table_params.ops = &rte_table_acl_ops; cls_table_params.arg_create = &table_acl_params; cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; ret = rte_flow_classify_table_create(cls->cls, &cls_table_params); if (ret) { printf("Line %i: f_create has failed!\n", __LINE__); rte_flow_classifier_free(cls->cls); rte_free(cls); return TEST_FAILED; } printf("Created table_acl for for IPv4 five tuple packets\n"); ret = init_mbufpool(); if (ret) { printf("Line %i: init_mbufpool has failed!\n", __LINE__); return TEST_FAILED; } if (test_invalid_parameters() < 0) return TEST_FAILED; if (test_valid_parameters() < 0) return TEST_FAILED; if (test_invalid_patterns() < 0) return TEST_FAILED; if (test_invalid_actions() < 0) return TEST_FAILED; if (test_query_udp() < 0) return TEST_FAILED; if (test_query_tcp() < 0) return TEST_FAILED; if (test_query_sctp() < 0) return TEST_FAILED; return TEST_SUCCESS; } REGISTER_TEST_COMMAND(flow_classify_autotest, test_flow_classify);