/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * See also: * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt * http://www.opengroup.org/onlinepubs/009629399/apdxa.htm * * Note that the generator state is itself an UUID, but the time and clock * sequence fields are written in the native byte order. */ CTASSERT(sizeof(struct uuid) == 16); /* We use an alternative, more convenient representation in the generator. */ struct uuid_private { union { uint64_t ll; /* internal, for uuid_last only */ struct { uint32_t low; uint16_t mid; uint16_t hi; } x; } time; uint16_t seq; /* Big-endian. */ uint16_t node[UUID_NODE_LEN>>1]; }; CTASSERT(sizeof(struct uuid_private) == 16); struct uuid_macaddr { uint16_t state; #define UUID_ETHER_EMPTY 0 #define UUID_ETHER_RANDOM 1 #define UUID_ETHER_UNIQUE 2 uint16_t node[UUID_NODE_LEN>>1]; }; static struct uuid_private uuid_last; #define UUID_NETHER 4 static struct uuid_macaddr uuid_ether[UUID_NETHER]; static struct mtx uuid_mutex; MTX_SYSINIT(uuid_lock, &uuid_mutex, "UUID generator mutex lock", MTX_DEF); /* * Return the first MAC address added in the array. If it's empty, then * construct a sufficiently random multicast MAC address first. Any * addresses added later will bump the random MAC address up tp the next * index. */ static void uuid_node(uint16_t *node) { int i; if (uuid_ether[0].state == UUID_ETHER_EMPTY) { for (i = 0; i < (UUID_NODE_LEN>>1); i++) uuid_ether[0].node[i] = (uint16_t)arc4random(); *((uint8_t*)uuid_ether[0].node) |= 0x01; uuid_ether[0].state = UUID_ETHER_RANDOM; } for (i = 0; i < (UUID_NODE_LEN>>1); i++) node[i] = uuid_ether[0].node[i]; } /* * Get the current time as a 60 bit count of 100-nanosecond intervals * since 00:00:00.00, October 15,1582. We apply a magic offset to convert * the Unix time since 00:00:00.00, January 1, 1970 to the date of the * Gregorian reform to the Christian calendar. */ static uint64_t uuid_time(void) { struct bintime bt; uint64_t time = 0x01B21DD213814000LL; bintime(&bt); time += (uint64_t)bt.sec * 10000000LL; time += (10000000LL * (uint32_t)(bt.frac >> 32)) >> 32; return (time & ((1LL << 60) - 1LL)); } struct uuid * kern_uuidgen(struct uuid *store, size_t count) { struct uuid_private uuid; uint64_t time; size_t n; mtx_lock(&uuid_mutex); uuid_node(uuid.node); time = uuid_time(); if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid.node[0] || uuid_last.node[1] != uuid.node[1] || uuid_last.node[2] != uuid.node[2]) uuid.seq = (uint16_t)arc4random() & 0x3fff; else if (uuid_last.time.ll >= time) uuid.seq = (uuid_last.seq + 1) & 0x3fff; else uuid.seq = uuid_last.seq; uuid_last = uuid; uuid_last.time.ll = (time + count - 1) & ((1LL << 60) - 1LL); mtx_unlock(&uuid_mutex); /* Set sequence and variant and deal with byte order. */ uuid.seq = htobe16(uuid.seq | 0x8000); for (n = 0; n < count; n++) { /* Set time and version (=1). */ uuid.time.x.low = (uint32_t)time; uuid.time.x.mid = (uint16_t)(time >> 32); uuid.time.x.hi = ((uint16_t)(time >> 48) & 0xfff) | (1 << 12); memcpy(store + n, &uuid, sizeof(struct uuid)); time++; } return (store); } #ifndef _SYS_SYSPROTO_H_ struct uuidgen_args { struct uuid *store; int count; }; #endif int sys_uuidgen(struct thread *td, struct uuidgen_args *uap) { struct uuid *store; size_t count; int error; /* * Limit the number of UUIDs that can be created at the same time * to some arbitrary number. This isn't really necessary, but I * like to have some sort of upper-bound that's less than 2G :-) * XXX probably needs to be tunable. */ if (uap->count < 1 || uap->count > 2048) return (EINVAL); count = uap->count; store = malloc(count * sizeof(struct uuid), M_TEMP, M_WAITOK); kern_uuidgen(store, count); error = copyout(store, uap->store, count * sizeof(struct uuid)); free(store, M_TEMP); return (error); } int uuid_ether_add(const uint8_t *addr) { int i, sum; /* * Validate input. No multicast (flag 0x1), no locally administered * (flag 0x2) and no 'all-zeroes' addresses. */ if (addr[0] & 0x03) return (EINVAL); sum = 0; for (i = 0; i < UUID_NODE_LEN; i++) sum += addr[i]; if (sum == 0) return (EINVAL); mtx_lock(&uuid_mutex); /* Make sure the MAC isn't known already and that there's space. */ i = 0; while (i < UUID_NETHER && uuid_ether[i].state == UUID_ETHER_UNIQUE) { if (!bcmp(addr, uuid_ether[i].node, UUID_NODE_LEN)) { mtx_unlock(&uuid_mutex); return (EEXIST); } i++; } if (i == UUID_NETHER) { mtx_unlock(&uuid_mutex); return (ENOSPC); } /* Insert MAC at index, moving the non-empty entry if possible. */ if (uuid_ether[i].state == UUID_ETHER_RANDOM && i < UUID_NETHER - 1) uuid_ether[i + 1] = uuid_ether[i]; uuid_ether[i].state = UUID_ETHER_UNIQUE; bcopy(addr, uuid_ether[i].node, UUID_NODE_LEN); mtx_unlock(&uuid_mutex); return (0); } int uuid_ether_del(const uint8_t *addr) { int i; mtx_lock(&uuid_mutex); i = 0; while (i < UUID_NETHER && uuid_ether[i].state == UUID_ETHER_UNIQUE && bcmp(addr, uuid_ether[i].node, UUID_NODE_LEN)) i++; if (i == UUID_NETHER || uuid_ether[i].state != UUID_ETHER_UNIQUE) { mtx_unlock(&uuid_mutex); return (ENOENT); } /* Remove it by shifting higher index entries down. */ while (i < UUID_NETHER - 1 && uuid_ether[i].state != UUID_ETHER_EMPTY) { uuid_ether[i] = uuid_ether[i + 1]; i++; } if (uuid_ether[i].state != UUID_ETHER_EMPTY) { uuid_ether[i].state = UUID_ETHER_EMPTY; bzero(uuid_ether[i].node, UUID_NODE_LEN); } mtx_unlock(&uuid_mutex); return (0); } int snprintf_uuid(char *buf, size_t sz, struct uuid *uuid) { struct uuid_private *id; int cnt; id = (struct uuid_private *)uuid; cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x", id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq), be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2])); return (cnt); } int printf_uuid(struct uuid *uuid) { char buf[38]; snprintf_uuid(buf, sizeof(buf), uuid); return (printf("%s", buf)); } int sbuf_printf_uuid(struct sbuf *sb, struct uuid *uuid) { char buf[38]; snprintf_uuid(buf, sizeof(buf), uuid); return (sbuf_cat(sb, buf)); } /* * Encode/Decode UUID into byte-stream. * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | time_low | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | time_mid | time_hi_and_version | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |clk_seq_hi_res | clk_seq_low | node (0-1) | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | node (2-5) | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ void le_uuid_enc(void *buf, struct uuid const *uuid) { u_char *p; int i; p = buf; le32enc(p, uuid->time_low); le16enc(p + 4, uuid->time_mid); le16enc(p + 6, uuid->time_hi_and_version); p[8] = uuid->clock_seq_hi_and_reserved; p[9] = uuid->clock_seq_low; for (i = 0; i < _UUID_NODE_LEN; i++) p[10 + i] = uuid->node[i]; } void le_uuid_dec(void const *buf, struct uuid *uuid) { u_char const *p; int i; p = buf; uuid->time_low = le32dec(p); uuid->time_mid = le16dec(p + 4); uuid->time_hi_and_version = le16dec(p + 6); uuid->clock_seq_hi_and_reserved = p[8]; uuid->clock_seq_low = p[9]; for (i = 0; i < _UUID_NODE_LEN; i++) uuid->node[i] = p[10 + i]; } void be_uuid_enc(void *buf, struct uuid const *uuid) { u_char *p; int i; p = buf; be32enc(p, uuid->time_low); be16enc(p + 4, uuid->time_mid); be16enc(p + 6, uuid->time_hi_and_version); p[8] = uuid->clock_seq_hi_and_reserved; p[9] = uuid->clock_seq_low; for (i = 0; i < _UUID_NODE_LEN; i++) p[10 + i] = uuid->node[i]; } void be_uuid_dec(void const *buf, struct uuid *uuid) { u_char const *p; int i; p = buf; uuid->time_low = be32dec(p); uuid->time_mid = be16dec(p + 4); uuid->time_hi_and_version = be16dec(p + 6); uuid->clock_seq_hi_and_reserved = p[8]; uuid->clock_seq_low = p[9]; for (i = 0; i < _UUID_NODE_LEN; i++) uuid->node[i] = p[10 + i]; } int validate_uuid(const char *str, size_t size, struct uuid *uuid, int flags) { u_int c[11]; int n; if (size == 0 || *str == '\0') { /* An empty string may represent a nil UUID. */ if ((flags & VUUIDF_EMPTYOK) != 0) { if (uuid != NULL) bzero(uuid, sizeof(*uuid)); return (0); } return (EINVAL); } /* The UUID string representation has a fixed length. */ if (size != 36) return (EINVAL); /* * We only work with "new" UUIDs. New UUIDs have the form: * 01234567-89ab-cdef-0123-456789abcdef * The so called "old" UUIDs, which we don't support, have the form: * 0123456789ab.cd.ef.01.23.45.67.89.ab */ if (str[8] != '-') return (EINVAL); /* Now check the format. */ n = sscanf(str, "%8x-%4x-%4x-%2x%2x-%2x%2x%2x%2x%2x%2x", c + 0, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9, c + 10); /* Make sure we have all conversions. */ if (n != 11) return (EINVAL); /* Successful scan. Build the UUID if requested. */ if (uuid != NULL) { uuid->time_low = c[0]; uuid->time_mid = c[1]; uuid->time_hi_and_version = c[2]; uuid->clock_seq_hi_and_reserved = c[3]; uuid->clock_seq_low = c[4]; for (n = 0; n < 6; n++) uuid->node[n] = c[n + 5]; } if ((flags & VUUIDF_CHECKSEMANTICS) == 0) return (0); return (((c[3] & 0x80) != 0x00 && /* variant 0? */ (c[3] & 0xc0) != 0x80 && /* variant 1? */ (c[3] & 0xe0) != 0xc0) ? EINVAL : 0); /* variant 2? */ } #define VUUIDF_PARSEFLAGS (VUUIDF_EMPTYOK | VUUIDF_CHECKSEMANTICS) int parse_uuid(const char *str, struct uuid *uuid) { return (validate_uuid(str, strlen(str), uuid, VUUIDF_PARSEFLAGS)); } int uuidcmp(const struct uuid *uuid1, const struct uuid *uuid2) { return (memcmp(uuid1, uuid2, sizeof(struct uuid))); }