/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iotlb.h" #include "vhost.h" #define MAX_BATCH_LEN 256 static __rte_always_inline uint16_t async_poll_dequeue_completed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id, bool legacy_ol_flags); /* DMA device copy operation tracking array. */ struct async_dma_info dma_copy_track[RTE_DMADEV_DEFAULT_MAX]; static __rte_always_inline bool rxvq_is_mergeable(struct virtio_net *dev) { return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF); } static __rte_always_inline bool virtio_net_is_inorder(struct virtio_net *dev) { return dev->features & (1ULL << VIRTIO_F_IN_ORDER); } static bool is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring) { return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring; } /* * This function must be called with virtqueue's access_lock taken. */ static inline void vhost_queue_stats_update(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint16_t count) { struct virtqueue_stats *stats = &vq->stats; int i; if (!(dev->flags & VIRTIO_DEV_STATS_ENABLED)) return; for (i = 0; i < count; i++) { struct rte_ether_addr *ea; struct rte_mbuf *pkt = pkts[i]; uint32_t pkt_len = rte_pktmbuf_pkt_len(pkt); stats->packets++; stats->bytes += pkt_len; if (pkt_len == 64) { stats->size_bins[1]++; } else if (pkt_len > 64 && pkt_len < 1024) { uint32_t bin; /* count zeros, and offset into correct bin */ bin = (sizeof(pkt_len) * 8) - __builtin_clz(pkt_len) - 5; stats->size_bins[bin]++; } else { if (pkt_len < 64) stats->size_bins[0]++; else if (pkt_len < 1519) stats->size_bins[6]++; else stats->size_bins[7]++; } ea = rte_pktmbuf_mtod(pkt, struct rte_ether_addr *); if (rte_is_multicast_ether_addr(ea)) { if (rte_is_broadcast_ether_addr(ea)) stats->broadcast++; else stats->multicast++; } } } static __rte_always_inline int64_t vhost_async_dma_transfer_one(struct virtio_net *dev, struct vhost_virtqueue *vq, int16_t dma_id, uint16_t vchan_id, uint16_t flag_idx, struct vhost_iov_iter *pkt) { struct async_dma_vchan_info *dma_info = &dma_copy_track[dma_id].vchans[vchan_id]; uint16_t ring_mask = dma_info->ring_mask; static bool vhost_async_dma_copy_log; struct vhost_iovec *iov = pkt->iov; int copy_idx = 0; uint32_t nr_segs = pkt->nr_segs; uint16_t i; if (rte_dma_burst_capacity(dma_id, vchan_id) < nr_segs) return -1; for (i = 0; i < nr_segs; i++) { copy_idx = rte_dma_copy(dma_id, vchan_id, (rte_iova_t)iov[i].src_addr, (rte_iova_t)iov[i].dst_addr, iov[i].len, RTE_DMA_OP_FLAG_LLC); /** * Since all memory is pinned and DMA vChannel * ring has enough space, failure should be a * rare case. If failure happens, it means DMA * device encounters serious errors; in this * case, please stop async data-path and check * what has happened to DMA device. */ if (unlikely(copy_idx < 0)) { if (!vhost_async_dma_copy_log) { VHOST_LOG_DATA(dev->ifname, ERR, "DMA copy failed for channel %d:%u\n", dma_id, vchan_id); vhost_async_dma_copy_log = true; } return -1; } } /** * Only store packet completion flag address in the last copy's * slot, and other slots are set to NULL. */ dma_info->pkts_cmpl_flag_addr[copy_idx & ring_mask] = &vq->async->pkts_cmpl_flag[flag_idx]; return nr_segs; } static __rte_always_inline uint16_t vhost_async_dma_transfer(struct virtio_net *dev, struct vhost_virtqueue *vq, int16_t dma_id, uint16_t vchan_id, uint16_t head_idx, struct vhost_iov_iter *pkts, uint16_t nr_pkts) { struct async_dma_vchan_info *dma_info = &dma_copy_track[dma_id].vchans[vchan_id]; int64_t ret, nr_copies = 0; uint16_t pkt_idx; rte_spinlock_lock(&dma_info->dma_lock); for (pkt_idx = 0; pkt_idx < nr_pkts; pkt_idx++) { ret = vhost_async_dma_transfer_one(dev, vq, dma_id, vchan_id, head_idx, &pkts[pkt_idx]); if (unlikely(ret < 0)) break; nr_copies += ret; head_idx++; if (head_idx >= vq->size) head_idx -= vq->size; } if (likely(nr_copies > 0)) rte_dma_submit(dma_id, vchan_id); rte_spinlock_unlock(&dma_info->dma_lock); return pkt_idx; } static __rte_always_inline uint16_t vhost_async_dma_check_completed(struct virtio_net *dev, int16_t dma_id, uint16_t vchan_id, uint16_t max_pkts) { struct async_dma_vchan_info *dma_info = &dma_copy_track[dma_id].vchans[vchan_id]; uint16_t ring_mask = dma_info->ring_mask; uint16_t last_idx = 0; uint16_t nr_copies; uint16_t copy_idx; uint16_t i; bool has_error = false; static bool vhost_async_dma_complete_log; rte_spinlock_lock(&dma_info->dma_lock); /** * Print error log for debugging, if DMA reports error during * DMA transfer. We do not handle error in vhost level. */ nr_copies = rte_dma_completed(dma_id, vchan_id, max_pkts, &last_idx, &has_error); if (unlikely(!vhost_async_dma_complete_log && has_error)) { VHOST_LOG_DATA(dev->ifname, ERR, "DMA completion failure on channel %d:%u\n", dma_id, vchan_id); vhost_async_dma_complete_log = true; } else if (nr_copies == 0) { goto out; } copy_idx = last_idx - nr_copies + 1; for (i = 0; i < nr_copies; i++) { bool *flag; flag = dma_info->pkts_cmpl_flag_addr[copy_idx & ring_mask]; if (flag) { /** * Mark the packet flag as received. The flag * could belong to another virtqueue but write * is atomic. */ *flag = true; dma_info->pkts_cmpl_flag_addr[copy_idx & ring_mask] = NULL; } copy_idx++; } out: rte_spinlock_unlock(&dma_info->dma_lock); return nr_copies; } static inline void do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq) { struct batch_copy_elem *elem = vq->batch_copy_elems; uint16_t count = vq->batch_copy_nb_elems; int i; for (i = 0; i < count; i++) { rte_memcpy(elem[i].dst, elem[i].src, elem[i].len); vhost_log_cache_write_iova(dev, vq, elem[i].log_addr, elem[i].len); PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0); } vq->batch_copy_nb_elems = 0; } static inline void do_data_copy_dequeue(struct vhost_virtqueue *vq) { struct batch_copy_elem *elem = vq->batch_copy_elems; uint16_t count = vq->batch_copy_nb_elems; int i; for (i = 0; i < count; i++) rte_memcpy(elem[i].dst, elem[i].src, elem[i].len); vq->batch_copy_nb_elems = 0; } static __rte_always_inline void do_flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t to, uint16_t from, uint16_t size) { rte_memcpy(&vq->used->ring[to], &vq->shadow_used_split[from], size * sizeof(struct vring_used_elem)); vhost_log_cache_used_vring(dev, vq, offsetof(struct vring_used, ring[to]), size * sizeof(struct vring_used_elem)); } static __rte_always_inline void flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq) { uint16_t used_idx = vq->last_used_idx & (vq->size - 1); if (used_idx + vq->shadow_used_idx <= vq->size) { do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, vq->shadow_used_idx); } else { uint16_t size; /* update used ring interval [used_idx, vq->size] */ size = vq->size - used_idx; do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size); /* update the left half used ring interval [0, left_size] */ do_flush_shadow_used_ring_split(dev, vq, 0, size, vq->shadow_used_idx - size); } vq->last_used_idx += vq->shadow_used_idx; vhost_log_cache_sync(dev, vq); __atomic_add_fetch(&vq->used->idx, vq->shadow_used_idx, __ATOMIC_RELEASE); vq->shadow_used_idx = 0; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx), sizeof(vq->used->idx)); } static __rte_always_inline void update_shadow_used_ring_split(struct vhost_virtqueue *vq, uint16_t desc_idx, uint32_t len) { uint16_t i = vq->shadow_used_idx++; vq->shadow_used_split[i].id = desc_idx; vq->shadow_used_split[i].len = len; } static __rte_always_inline void vhost_flush_enqueue_shadow_packed(struct virtio_net *dev, struct vhost_virtqueue *vq) { int i; uint16_t used_idx = vq->last_used_idx; uint16_t head_idx = vq->last_used_idx; uint16_t head_flags = 0; /* Split loop in two to save memory barriers */ for (i = 0; i < vq->shadow_used_idx; i++) { vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id; vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len; used_idx += vq->shadow_used_packed[i].count; if (used_idx >= vq->size) used_idx -= vq->size; } /* The ordering for storing desc flags needs to be enforced. */ rte_atomic_thread_fence(__ATOMIC_RELEASE); for (i = 0; i < vq->shadow_used_idx; i++) { uint16_t flags; if (vq->shadow_used_packed[i].len) flags = VRING_DESC_F_WRITE; else flags = 0; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (i > 0) { vq->desc_packed[vq->last_used_idx].flags = flags; vhost_log_cache_used_vring(dev, vq, vq->last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc)); } else { head_idx = vq->last_used_idx; head_flags = flags; } vq_inc_last_used_packed(vq, vq->shadow_used_packed[i].count); } vq->desc_packed[head_idx].flags = head_flags; vhost_log_cache_used_vring(dev, vq, head_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc)); vq->shadow_used_idx = 0; vhost_log_cache_sync(dev, vq); } static __rte_always_inline void vhost_flush_dequeue_shadow_packed(struct virtio_net *dev, struct vhost_virtqueue *vq) { struct vring_used_elem_packed *used_elem = &vq->shadow_used_packed[0]; vq->desc_packed[vq->shadow_last_used_idx].id = used_elem->id; /* desc flags is the synchronization point for virtio packed vring */ __atomic_store_n(&vq->desc_packed[vq->shadow_last_used_idx].flags, used_elem->flags, __ATOMIC_RELEASE); vhost_log_cache_used_vring(dev, vq, vq->shadow_last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc)); vq->shadow_used_idx = 0; vhost_log_cache_sync(dev, vq); } static __rte_always_inline void vhost_flush_enqueue_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t *lens, uint16_t *ids) { uint16_t i; uint16_t flags; uint16_t last_used_idx; struct vring_packed_desc *desc_base; last_used_idx = vq->last_used_idx; desc_base = &vq->desc_packed[last_used_idx]; flags = PACKED_DESC_ENQUEUE_USED_FLAG(vq->used_wrap_counter); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { desc_base[i].id = ids[i]; desc_base[i].len = lens[i]; } rte_atomic_thread_fence(__ATOMIC_RELEASE); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { desc_base[i].flags = flags; } vhost_log_cache_used_vring(dev, vq, last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc) * PACKED_BATCH_SIZE); vhost_log_cache_sync(dev, vq); vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE); } static __rte_always_inline void vhost_shadow_dequeue_batch_packed_inorder(struct vhost_virtqueue *vq, uint16_t id) { vq->shadow_used_packed[0].id = id; if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].flags = PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter); vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].count = 1; vq->shadow_used_idx++; } vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE); } static __rte_always_inline void vhost_shadow_dequeue_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t *ids) { uint16_t flags; uint16_t i; uint16_t begin; flags = PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter); if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].id = ids[0]; vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].count = 1; vq->shadow_used_packed[0].flags = flags; vq->shadow_used_idx++; begin = 1; } else begin = 0; vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE) { vq->desc_packed[vq->last_used_idx + i].id = ids[i]; vq->desc_packed[vq->last_used_idx + i].len = 0; } rte_atomic_thread_fence(__ATOMIC_RELEASE); vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE) vq->desc_packed[vq->last_used_idx + i].flags = flags; vhost_log_cache_used_vring(dev, vq, vq->last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc) * PACKED_BATCH_SIZE); vhost_log_cache_sync(dev, vq); vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE); } static __rte_always_inline void vhost_shadow_dequeue_single_packed(struct vhost_virtqueue *vq, uint16_t buf_id, uint16_t count) { uint16_t flags; flags = vq->desc_packed[vq->last_used_idx].flags; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].id = buf_id; vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].flags = flags; vq->shadow_used_idx++; } else { vq->desc_packed[vq->last_used_idx].id = buf_id; vq->desc_packed[vq->last_used_idx].len = 0; vq->desc_packed[vq->last_used_idx].flags = flags; } vq_inc_last_used_packed(vq, count); } static __rte_always_inline void vhost_shadow_dequeue_single_packed_inorder(struct vhost_virtqueue *vq, uint16_t buf_id, uint16_t count) { uint16_t flags; vq->shadow_used_packed[0].id = buf_id; flags = vq->desc_packed[vq->last_used_idx].flags; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (!vq->shadow_used_idx) { vq->shadow_last_used_idx = vq->last_used_idx; vq->shadow_used_packed[0].len = 0; vq->shadow_used_packed[0].flags = flags; vq->shadow_used_idx++; } vq_inc_last_used_packed(vq, count); } static __rte_always_inline void vhost_shadow_enqueue_packed(struct vhost_virtqueue *vq, uint32_t *len, uint16_t *id, uint16_t *count, uint16_t num_buffers) { uint16_t i; for (i = 0; i < num_buffers; i++) { /* enqueue shadow flush action aligned with batch num */ if (!vq->shadow_used_idx) vq->shadow_aligned_idx = vq->last_used_idx & PACKED_BATCH_MASK; vq->shadow_used_packed[vq->shadow_used_idx].id = id[i]; vq->shadow_used_packed[vq->shadow_used_idx].len = len[i]; vq->shadow_used_packed[vq->shadow_used_idx].count = count[i]; vq->shadow_aligned_idx += count[i]; vq->shadow_used_idx++; } } static __rte_always_inline void vhost_shadow_enqueue_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t *len, uint16_t *id, uint16_t *count, uint16_t num_buffers) { vhost_shadow_enqueue_packed(vq, len, id, count, num_buffers); if (vq->shadow_aligned_idx >= PACKED_BATCH_SIZE) { do_data_copy_enqueue(dev, vq); vhost_flush_enqueue_shadow_packed(dev, vq); } } /* avoid write operation when necessary, to lessen cache issues */ #define ASSIGN_UNLESS_EQUAL(var, val) do { \ if ((var) != (val)) \ (var) = (val); \ } while (0) static __rte_always_inline void virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr) { uint64_t csum_l4 = m_buf->ol_flags & RTE_MBUF_F_TX_L4_MASK; if (m_buf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) csum_l4 |= RTE_MBUF_F_TX_TCP_CKSUM; if (csum_l4) { /* * Pseudo-header checksum must be set as per Virtio spec. * * Note: We don't propagate rte_net_intel_cksum_prepare() * errors, as it would have an impact on performance, and an * error would mean the packet is dropped by the guest instead * of being dropped here. */ rte_net_intel_cksum_prepare(m_buf); net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len; switch (csum_l4) { case RTE_MBUF_F_TX_TCP_CKSUM: net_hdr->csum_offset = (offsetof(struct rte_tcp_hdr, cksum)); break; case RTE_MBUF_F_TX_UDP_CKSUM: net_hdr->csum_offset = (offsetof(struct rte_udp_hdr, dgram_cksum)); break; case RTE_MBUF_F_TX_SCTP_CKSUM: net_hdr->csum_offset = (offsetof(struct rte_sctp_hdr, cksum)); break; } } else { ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0); ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0); ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0); } /* IP cksum verification cannot be bypassed, then calculate here */ if (m_buf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) { struct rte_ipv4_hdr *ipv4_hdr; ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct rte_ipv4_hdr *, m_buf->l2_len); ipv4_hdr->hdr_checksum = 0; ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); } if (m_buf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) { if (m_buf->ol_flags & RTE_MBUF_F_TX_IPV4) net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; net_hdr->gso_size = m_buf->tso_segsz; net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len + m_buf->l4_len; } else if (m_buf->ol_flags & RTE_MBUF_F_TX_UDP_SEG) { net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP; net_hdr->gso_size = m_buf->tso_segsz; net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len + m_buf->l4_len; } else { ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0); ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0); ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0); } } static __rte_always_inline int map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, uint16_t *vec_idx, uint64_t desc_iova, uint64_t desc_len, uint8_t perm) { uint16_t vec_id = *vec_idx; while (desc_len) { uint64_t desc_addr; uint64_t desc_chunck_len = desc_len; if (unlikely(vec_id >= BUF_VECTOR_MAX)) return -1; desc_addr = vhost_iova_to_vva(dev, vq, desc_iova, &desc_chunck_len, perm); if (unlikely(!desc_addr)) return -1; rte_prefetch0((void *)(uintptr_t)desc_addr); buf_vec[vec_id].buf_iova = desc_iova; buf_vec[vec_id].buf_addr = desc_addr; buf_vec[vec_id].buf_len = desc_chunck_len; desc_len -= desc_chunck_len; desc_iova += desc_chunck_len; vec_id++; } *vec_idx = vec_id; return 0; } static __rte_always_inline int fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t avail_idx, uint16_t *vec_idx, struct buf_vector *buf_vec, uint16_t *desc_chain_head, uint32_t *desc_chain_len, uint8_t perm) { uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)]; uint16_t vec_id = *vec_idx; uint32_t len = 0; uint64_t dlen; uint32_t nr_descs = vq->size; uint32_t cnt = 0; struct vring_desc *descs = vq->desc; struct vring_desc *idesc = NULL; if (unlikely(idx >= vq->size)) return -1; *desc_chain_head = idx; if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) { dlen = vq->desc[idx].len; nr_descs = dlen / sizeof(struct vring_desc); if (unlikely(nr_descs > vq->size)) return -1; descs = (struct vring_desc *)(uintptr_t) vhost_iova_to_vva(dev, vq, vq->desc[idx].addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!descs)) return -1; if (unlikely(dlen < vq->desc[idx].len)) { /* * The indirect desc table is not contiguous * in process VA space, we have to copy it. */ idesc = vhost_alloc_copy_ind_table(dev, vq, vq->desc[idx].addr, vq->desc[idx].len); if (unlikely(!idesc)) return -1; descs = idesc; } idx = 0; } while (1) { if (unlikely(idx >= nr_descs || cnt++ >= nr_descs)) { free_ind_table(idesc); return -1; } dlen = descs[idx].len; len += dlen; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[idx].addr, dlen, perm))) { free_ind_table(idesc); return -1; } if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0) break; idx = descs[idx].next; } *desc_chain_len = len; *vec_idx = vec_id; if (unlikely(!!idesc)) free_ind_table(idesc); return 0; } /* * Returns -1 on fail, 0 on success */ static inline int reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t size, struct buf_vector *buf_vec, uint16_t *num_buffers, uint16_t avail_head, uint16_t *nr_vec) { uint16_t cur_idx; uint16_t vec_idx = 0; uint16_t max_tries, tries = 0; uint16_t head_idx = 0; uint32_t len = 0; *num_buffers = 0; cur_idx = vq->last_avail_idx; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { if (unlikely(cur_idx == avail_head)) return -1; /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_split(dev, vq, cur_idx, &vec_idx, buf_vec, &head_idx, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); update_shadow_used_ring_split(vq, head_idx, len); size -= len; cur_idx++; *num_buffers += 1; } *nr_vec = vec_idx; return 0; } static __rte_always_inline int fill_vec_buf_packed_indirect(struct virtio_net *dev, struct vhost_virtqueue *vq, struct vring_packed_desc *desc, uint16_t *vec_idx, struct buf_vector *buf_vec, uint32_t *len, uint8_t perm) { uint16_t i; uint32_t nr_descs; uint16_t vec_id = *vec_idx; uint64_t dlen; struct vring_packed_desc *descs, *idescs = NULL; dlen = desc->len; descs = (struct vring_packed_desc *)(uintptr_t) vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!descs)) return -1; if (unlikely(dlen < desc->len)) { /* * The indirect desc table is not contiguous * in process VA space, we have to copy it. */ idescs = vhost_alloc_copy_ind_table(dev, vq, desc->addr, desc->len); if (unlikely(!idescs)) return -1; descs = idescs; } nr_descs = desc->len / sizeof(struct vring_packed_desc); if (unlikely(nr_descs >= vq->size)) { free_ind_table(idescs); return -1; } for (i = 0; i < nr_descs; i++) { if (unlikely(vec_id >= BUF_VECTOR_MAX)) { free_ind_table(idescs); return -1; } dlen = descs[i].len; *len += dlen; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[i].addr, dlen, perm))) return -1; } *vec_idx = vec_id; if (unlikely(!!idescs)) free_ind_table(idescs); return 0; } static __rte_always_inline int fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t avail_idx, uint16_t *desc_count, struct buf_vector *buf_vec, uint16_t *vec_idx, uint16_t *buf_id, uint32_t *len, uint8_t perm) { bool wrap_counter = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint16_t vec_id = *vec_idx; uint64_t dlen; if (avail_idx < vq->last_avail_idx) wrap_counter ^= 1; /* * Perform a load-acquire barrier in desc_is_avail to * enforce the ordering between desc flags and desc * content. */ if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter))) return -1; *desc_count = 0; *len = 0; while (1) { if (unlikely(vec_id >= BUF_VECTOR_MAX)) return -1; if (unlikely(*desc_count >= vq->size)) return -1; *desc_count += 1; *buf_id = descs[avail_idx].id; if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) { if (unlikely(fill_vec_buf_packed_indirect(dev, vq, &descs[avail_idx], &vec_id, buf_vec, len, perm) < 0)) return -1; } else { dlen = descs[avail_idx].len; *len += dlen; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[avail_idx].addr, dlen, perm))) return -1; } if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0) break; if (++avail_idx >= vq->size) { avail_idx -= vq->size; wrap_counter ^= 1; } } *vec_idx = vec_id; return 0; } static __rte_noinline void copy_vnet_hdr_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, struct virtio_net_hdr_mrg_rxbuf *hdr) { uint64_t len; uint64_t remain = dev->vhost_hlen; uint64_t src = (uint64_t)(uintptr_t)hdr, dst; uint64_t iova = buf_vec->buf_iova; while (remain) { len = RTE_MIN(remain, buf_vec->buf_len); dst = buf_vec->buf_addr; rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); PRINT_PACKET(dev, (uintptr_t)dst, (uint32_t)len, 0); vhost_log_cache_write_iova(dev, vq, iova, len); remain -= len; iova += len; src += len; buf_vec++; } } static __rte_always_inline int async_iter_initialize(struct virtio_net *dev, struct vhost_async *async) { struct vhost_iov_iter *iter; if (unlikely(async->iovec_idx >= VHOST_MAX_ASYNC_VEC)) { VHOST_LOG_DATA(dev->ifname, ERR, "no more async iovec available\n"); return -1; } iter = async->iov_iter + async->iter_idx; iter->iov = async->iovec + async->iovec_idx; iter->nr_segs = 0; return 0; } static __rte_always_inline int async_iter_add_iovec(struct virtio_net *dev, struct vhost_async *async, void *src, void *dst, size_t len) { struct vhost_iov_iter *iter; struct vhost_iovec *iovec; if (unlikely(async->iovec_idx >= VHOST_MAX_ASYNC_VEC)) { static bool vhost_max_async_vec_log; if (!vhost_max_async_vec_log) { VHOST_LOG_DATA(dev->ifname, ERR, "no more async iovec available\n"); vhost_max_async_vec_log = true; } return -1; } iter = async->iov_iter + async->iter_idx; iovec = async->iovec + async->iovec_idx; iovec->src_addr = src; iovec->dst_addr = dst; iovec->len = len; iter->nr_segs++; async->iovec_idx++; return 0; } static __rte_always_inline void async_iter_finalize(struct vhost_async *async) { async->iter_idx++; } static __rte_always_inline void async_iter_cancel(struct vhost_async *async) { struct vhost_iov_iter *iter; iter = async->iov_iter + async->iter_idx; async->iovec_idx -= iter->nr_segs; iter->nr_segs = 0; iter->iov = NULL; } static __rte_always_inline void async_iter_reset(struct vhost_async *async) { async->iter_idx = 0; async->iovec_idx = 0; } static __rte_always_inline int async_fill_seg(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, uint32_t mbuf_offset, uint64_t buf_iova, uint32_t cpy_len, bool to_desc) { struct vhost_async *async = vq->async; uint64_t mapped_len; uint32_t buf_offset = 0; void *src, *dst; void *host_iova; while (cpy_len) { host_iova = (void *)(uintptr_t)gpa_to_first_hpa(dev, buf_iova + buf_offset, cpy_len, &mapped_len); if (unlikely(!host_iova)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: failed to get host iova.\n", __func__); return -1; } if (to_desc) { src = (void *)(uintptr_t)rte_pktmbuf_iova_offset(m, mbuf_offset); dst = host_iova; } else { src = host_iova; dst = (void *)(uintptr_t)rte_pktmbuf_iova_offset(m, mbuf_offset); } if (unlikely(async_iter_add_iovec(dev, async, src, dst, (size_t)mapped_len))) return -1; cpy_len -= (uint32_t)mapped_len; mbuf_offset += (uint32_t)mapped_len; buf_offset += (uint32_t)mapped_len; } return 0; } static __rte_always_inline void sync_fill_seg(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, uint32_t mbuf_offset, uint64_t buf_addr, uint64_t buf_iova, uint32_t cpy_len, bool to_desc) { struct batch_copy_elem *batch_copy = vq->batch_copy_elems; if (likely(cpy_len > MAX_BATCH_LEN || vq->batch_copy_nb_elems >= vq->size)) { if (to_desc) { rte_memcpy((void *)((uintptr_t)(buf_addr)), rte_pktmbuf_mtod_offset(m, void *, mbuf_offset), cpy_len); vhost_log_cache_write_iova(dev, vq, buf_iova, cpy_len); PRINT_PACKET(dev, (uintptr_t)(buf_addr), cpy_len, 0); } else { rte_memcpy(rte_pktmbuf_mtod_offset(m, void *, mbuf_offset), (void *)((uintptr_t)(buf_addr)), cpy_len); } } else { if (to_desc) { batch_copy[vq->batch_copy_nb_elems].dst = (void *)((uintptr_t)(buf_addr)); batch_copy[vq->batch_copy_nb_elems].src = rte_pktmbuf_mtod_offset(m, void *, mbuf_offset); batch_copy[vq->batch_copy_nb_elems].log_addr = buf_iova; } else { batch_copy[vq->batch_copy_nb_elems].dst = rte_pktmbuf_mtod_offset(m, void *, mbuf_offset); batch_copy[vq->batch_copy_nb_elems].src = (void *)((uintptr_t)(buf_addr)); } batch_copy[vq->batch_copy_nb_elems].len = cpy_len; vq->batch_copy_nb_elems++; } } static __rte_always_inline int mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, struct buf_vector *buf_vec, uint16_t nr_vec, uint16_t num_buffers, bool is_async) { uint32_t vec_idx = 0; uint32_t mbuf_offset, mbuf_avail; uint32_t buf_offset, buf_avail; uint64_t buf_addr, buf_iova, buf_len; uint32_t cpy_len; uint64_t hdr_addr; struct rte_mbuf *hdr_mbuf; struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL; struct vhost_async *async = vq->async; if (unlikely(m == NULL)) return -1; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) return -1; hdr_mbuf = m; hdr_addr = buf_addr; if (unlikely(buf_len < dev->vhost_hlen)) { memset(&tmp_hdr, 0, sizeof(struct virtio_net_hdr_mrg_rxbuf)); hdr = &tmp_hdr; } else hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr; VHOST_LOG_DATA(dev->ifname, DEBUG, "RX: num merge buffers %d\n", num_buffers); if (unlikely(buf_len < dev->vhost_hlen)) { buf_offset = dev->vhost_hlen - buf_len; vec_idx++; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_avail = buf_len - buf_offset; } else { buf_offset = dev->vhost_hlen; buf_avail = buf_len - dev->vhost_hlen; } mbuf_avail = rte_pktmbuf_data_len(m); mbuf_offset = 0; if (is_async) { if (async_iter_initialize(dev, async)) return -1; } while (mbuf_avail != 0 || m->next != NULL) { /* done with current buf, get the next one */ if (buf_avail == 0) { vec_idx++; if (unlikely(vec_idx >= nr_vec)) goto error; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_offset = 0; buf_avail = buf_len; } /* done with current mbuf, get the next one */ if (mbuf_avail == 0) { m = m->next; mbuf_offset = 0; mbuf_avail = rte_pktmbuf_data_len(m); } if (hdr_addr) { virtio_enqueue_offload(hdr_mbuf, &hdr->hdr); if (rxvq_is_mergeable(dev)) ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers); if (unlikely(hdr == &tmp_hdr)) { copy_vnet_hdr_to_desc(dev, vq, buf_vec, hdr); } else { PRINT_PACKET(dev, (uintptr_t)hdr_addr, dev->vhost_hlen, 0); vhost_log_cache_write_iova(dev, vq, buf_vec[0].buf_iova, dev->vhost_hlen); } hdr_addr = 0; } cpy_len = RTE_MIN(buf_avail, mbuf_avail); if (is_async) { if (async_fill_seg(dev, vq, m, mbuf_offset, buf_iova + buf_offset, cpy_len, true) < 0) goto error; } else { sync_fill_seg(dev, vq, m, mbuf_offset, buf_addr + buf_offset, buf_iova + buf_offset, cpy_len, true); } mbuf_avail -= cpy_len; mbuf_offset += cpy_len; buf_avail -= cpy_len; buf_offset += cpy_len; } if (is_async) async_iter_finalize(async); return 0; error: if (is_async) async_iter_cancel(async); return -1; } static __rte_always_inline int vhost_enqueue_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt, struct buf_vector *buf_vec, uint16_t *nr_descs) { uint16_t nr_vec = 0; uint16_t avail_idx = vq->last_avail_idx; uint16_t max_tries, tries = 0; uint16_t buf_id = 0; uint32_t len = 0; uint16_t desc_count; uint64_t size = pkt->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf); uint16_t num_buffers = 0; uint32_t buffer_len[vq->size]; uint16_t buffer_buf_id[vq->size]; uint16_t buffer_desc_count[vq->size]; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_packed(dev, vq, avail_idx, &desc_count, buf_vec, &nr_vec, &buf_id, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); size -= len; buffer_len[num_buffers] = len; buffer_buf_id[num_buffers] = buf_id; buffer_desc_count[num_buffers] = desc_count; num_buffers += 1; *nr_descs += desc_count; avail_idx += desc_count; if (avail_idx >= vq->size) avail_idx -= vq->size; } if (mbuf_to_desc(dev, vq, pkt, buf_vec, nr_vec, num_buffers, false) < 0) return -1; vhost_shadow_enqueue_single_packed(dev, vq, buffer_len, buffer_buf_id, buffer_desc_count, num_buffers); return 0; } static __rte_noinline uint32_t virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count) { uint32_t pkt_idx = 0; uint16_t num_buffers; struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t avail_head; /* * The ordering between avail index and * desc reads needs to be enforced. */ avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE); rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint64_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen; uint16_t nr_vec = 0; if (unlikely(reserve_avail_buf_split(dev, vq, pkt_len, buf_vec, &num_buffers, avail_head, &nr_vec) < 0)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "failed to get enough desc from vring\n"); vq->shadow_used_idx -= num_buffers; break; } VHOST_LOG_DATA(dev->ifname, DEBUG, "current index %d | end index %d\n", vq->last_avail_idx, vq->last_avail_idx + num_buffers); if (mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec, num_buffers, false) < 0) { vq->shadow_used_idx -= num_buffers; break; } vq->last_avail_idx += num_buffers; } do_data_copy_enqueue(dev, vq); if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } return pkt_idx; } static __rte_always_inline int virtio_dev_rx_sync_batch_check(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint64_t *desc_addrs, uint64_t *lens) { bool wrap_counter = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint16_t avail_idx = vq->last_avail_idx; uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); uint16_t i; if (unlikely(avail_idx & PACKED_BATCH_MASK)) return -1; if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size)) return -1; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(pkts[i]->next != NULL)) return -1; if (unlikely(!desc_is_avail(&descs[avail_idx + i], wrap_counter))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) lens[i] = descs[avail_idx + i].len; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(pkts[i]->pkt_len > (lens[i] - buf_offset))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) desc_addrs[i] = vhost_iova_to_vva(dev, vq, descs[avail_idx + i].addr, &lens[i], VHOST_ACCESS_RW); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(!desc_addrs[i])) return -1; if (unlikely(lens[i] != descs[avail_idx + i].len)) return -1; } return 0; } static __rte_always_inline void virtio_dev_rx_batch_packed_copy(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint64_t *desc_addrs, uint64_t *lens) { uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); struct virtio_net_hdr_mrg_rxbuf *hdrs[PACKED_BATCH_SIZE]; struct vring_packed_desc *descs = vq->desc_packed; uint16_t avail_idx = vq->last_avail_idx; uint16_t ids[PACKED_BATCH_SIZE]; uint16_t i; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { rte_prefetch0((void *)(uintptr_t)desc_addrs[i]); hdrs[i] = (struct virtio_net_hdr_mrg_rxbuf *) (uintptr_t)desc_addrs[i]; lens[i] = pkts[i]->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf); } if (rxvq_is_mergeable(dev)) { vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { ASSIGN_UNLESS_EQUAL(hdrs[i]->num_buffers, 1); } } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) virtio_enqueue_offload(pkts[i], &hdrs[i]->hdr); vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { rte_memcpy((void *)(uintptr_t)(desc_addrs[i] + buf_offset), rte_pktmbuf_mtod_offset(pkts[i], void *, 0), pkts[i]->pkt_len); } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) vhost_log_cache_write_iova(dev, vq, descs[avail_idx + i].addr, lens[i]); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) ids[i] = descs[avail_idx + i].id; vhost_flush_enqueue_batch_packed(dev, vq, lens, ids); } static __rte_always_inline int virtio_dev_rx_sync_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts) { uint64_t desc_addrs[PACKED_BATCH_SIZE]; uint64_t lens[PACKED_BATCH_SIZE]; if (virtio_dev_rx_sync_batch_check(dev, vq, pkts, desc_addrs, lens) == -1) return -1; if (vq->shadow_used_idx) { do_data_copy_enqueue(dev, vq); vhost_flush_enqueue_shadow_packed(dev, vq); } virtio_dev_rx_batch_packed_copy(dev, vq, pkts, desc_addrs, lens); return 0; } static __rte_always_inline int16_t virtio_dev_rx_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t nr_descs = 0; if (unlikely(vhost_enqueue_single_packed(dev, vq, pkt, buf_vec, &nr_descs) < 0)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "failed to get enough desc from vring\n"); return -1; } VHOST_LOG_DATA(dev->ifname, DEBUG, "current index %d | end index %d\n", vq->last_avail_idx, vq->last_avail_idx + nr_descs); vq_inc_last_avail_packed(vq, nr_descs); return 0; } static __rte_noinline uint32_t virtio_dev_rx_packed(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mbuf **__rte_restrict pkts, uint32_t count) { uint32_t pkt_idx = 0; do { rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); if (count - pkt_idx >= PACKED_BATCH_SIZE) { if (!virtio_dev_rx_sync_batch_packed(dev, vq, &pkts[pkt_idx])) { pkt_idx += PACKED_BATCH_SIZE; continue; } } if (virtio_dev_rx_single_packed(dev, vq, pkts[pkt_idx])) break; pkt_idx++; } while (pkt_idx < count); if (vq->shadow_used_idx) { do_data_copy_enqueue(dev, vq); vhost_flush_enqueue_shadow_packed(dev, vq); } if (pkt_idx) vhost_vring_call_packed(dev, vq); return pkt_idx; } static __rte_always_inline uint32_t virtio_dev_rx(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count) { uint32_t nb_tx = 0; VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__); rte_spinlock_lock(&vq->access_lock); if (unlikely(!vq->enabled)) goto out_access_unlock; if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(!vq->access_ok)) if (unlikely(vring_translate(dev, vq) < 0)) goto out; count = RTE_MIN((uint32_t)MAX_PKT_BURST, count); if (count == 0) goto out; if (vq_is_packed(dev)) nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count); else nb_tx = virtio_dev_rx_split(dev, vq, pkts, count); vhost_queue_stats_update(dev, vq, pkts, nb_tx); out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); return nb_tx; } uint16_t rte_vhost_enqueue_burst(int vid, uint16_t queue_id, struct rte_mbuf **__rte_restrict pkts, uint16_t count) { struct virtio_net *dev = get_device(vid); if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: built-in vhost net backend is disabled.\n", __func__); return 0; } if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n", __func__, queue_id); return 0; } return virtio_dev_rx(dev, dev->virtqueue[queue_id], pkts, count); } static __rte_always_inline uint16_t async_get_first_inflight_pkt_idx(struct vhost_virtqueue *vq) { struct vhost_async *async = vq->async; if (async->pkts_idx >= async->pkts_inflight_n) return async->pkts_idx - async->pkts_inflight_n; else return vq->size - async->pkts_inflight_n + async->pkts_idx; } static __rte_always_inline void store_dma_desc_info_split(struct vring_used_elem *s_ring, struct vring_used_elem *d_ring, uint16_t ring_size, uint16_t s_idx, uint16_t d_idx, uint16_t count) { size_t elem_size = sizeof(struct vring_used_elem); if (d_idx + count <= ring_size) { rte_memcpy(d_ring + d_idx, s_ring + s_idx, count * elem_size); } else { uint16_t size = ring_size - d_idx; rte_memcpy(d_ring + d_idx, s_ring + s_idx, size * elem_size); rte_memcpy(d_ring, s_ring + s_idx + size, (count - size) * elem_size); } } static __rte_always_inline void store_dma_desc_info_packed(struct vring_used_elem_packed *s_ring, struct vring_used_elem_packed *d_ring, uint16_t ring_size, uint16_t s_idx, uint16_t d_idx, uint16_t count) { size_t elem_size = sizeof(struct vring_used_elem_packed); if (d_idx + count <= ring_size) { rte_memcpy(d_ring + d_idx, s_ring + s_idx, count * elem_size); } else { uint16_t size = ring_size - d_idx; rte_memcpy(d_ring + d_idx, s_ring + s_idx, size * elem_size); rte_memcpy(d_ring, s_ring + s_idx + size, (count - size) * elem_size); } } static __rte_noinline uint32_t virtio_dev_rx_async_submit_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count, int16_t dma_id, uint16_t vchan_id) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint32_t pkt_idx = 0; uint16_t num_buffers; uint16_t avail_head; struct vhost_async *async = vq->async; struct async_inflight_info *pkts_info = async->pkts_info; uint32_t pkt_err = 0; uint16_t n_xfer; uint16_t slot_idx = 0; /* * The ordering between avail index and desc reads need to be enforced. */ avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE); rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); async_iter_reset(async); for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint64_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen; uint16_t nr_vec = 0; if (unlikely(reserve_avail_buf_split(dev, vq, pkt_len, buf_vec, &num_buffers, avail_head, &nr_vec) < 0)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "failed to get enough desc from vring\n"); vq->shadow_used_idx -= num_buffers; break; } VHOST_LOG_DATA(dev->ifname, DEBUG, "current index %d | end index %d\n", vq->last_avail_idx, vq->last_avail_idx + num_buffers); if (mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec, num_buffers, true) < 0) { vq->shadow_used_idx -= num_buffers; break; } slot_idx = (async->pkts_idx + pkt_idx) & (vq->size - 1); pkts_info[slot_idx].descs = num_buffers; pkts_info[slot_idx].mbuf = pkts[pkt_idx]; vq->last_avail_idx += num_buffers; } if (unlikely(pkt_idx == 0)) return 0; n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx, async->iov_iter, pkt_idx); pkt_err = pkt_idx - n_xfer; if (unlikely(pkt_err)) { uint16_t num_descs = 0; VHOST_LOG_DATA(dev->ifname, DEBUG, "%s: failed to transfer %u packets for queue %u.\n", __func__, pkt_err, vq->index); /* update number of completed packets */ pkt_idx = n_xfer; /* calculate the sum of descriptors to revert */ while (pkt_err-- > 0) { num_descs += pkts_info[slot_idx & (vq->size - 1)].descs; slot_idx--; } /* recover shadow used ring and available ring */ vq->shadow_used_idx -= num_descs; vq->last_avail_idx -= num_descs; } /* keep used descriptors */ if (likely(vq->shadow_used_idx)) { uint16_t to = async->desc_idx_split & (vq->size - 1); store_dma_desc_info_split(vq->shadow_used_split, async->descs_split, vq->size, 0, to, vq->shadow_used_idx); async->desc_idx_split += vq->shadow_used_idx; async->pkts_idx += pkt_idx; if (async->pkts_idx >= vq->size) async->pkts_idx -= vq->size; async->pkts_inflight_n += pkt_idx; vq->shadow_used_idx = 0; } return pkt_idx; } static __rte_always_inline int vhost_enqueue_async_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt, struct buf_vector *buf_vec, uint16_t *nr_descs, uint16_t *nr_buffers) { uint16_t nr_vec = 0; uint16_t avail_idx = vq->last_avail_idx; uint16_t max_tries, tries = 0; uint16_t buf_id = 0; uint32_t len = 0; uint16_t desc_count = 0; uint64_t size = pkt->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf); uint32_t buffer_len[vq->size]; uint16_t buffer_buf_id[vq->size]; uint16_t buffer_desc_count[vq->size]; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_packed(dev, vq, avail_idx, &desc_count, buf_vec, &nr_vec, &buf_id, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); size -= len; buffer_len[*nr_buffers] = len; buffer_buf_id[*nr_buffers] = buf_id; buffer_desc_count[*nr_buffers] = desc_count; *nr_buffers += 1; *nr_descs += desc_count; avail_idx += desc_count; if (avail_idx >= vq->size) avail_idx -= vq->size; } if (unlikely(mbuf_to_desc(dev, vq, pkt, buf_vec, nr_vec, *nr_buffers, true) < 0)) return -1; vhost_shadow_enqueue_packed(vq, buffer_len, buffer_buf_id, buffer_desc_count, *nr_buffers); return 0; } static __rte_always_inline int16_t virtio_dev_rx_async_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *pkt, uint16_t *nr_descs, uint16_t *nr_buffers) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; if (unlikely(vhost_enqueue_async_packed(dev, vq, pkt, buf_vec, nr_descs, nr_buffers) < 0)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "failed to get enough desc from vring\n"); return -1; } VHOST_LOG_DATA(dev->ifname, DEBUG, "current index %d | end index %d\n", vq->last_avail_idx, vq->last_avail_idx + *nr_descs); return 0; } static __rte_always_inline void dma_error_handler_packed(struct vhost_virtqueue *vq, uint16_t slot_idx, uint32_t nr_err, uint32_t *pkt_idx) { uint16_t descs_err = 0; uint16_t buffers_err = 0; struct async_inflight_info *pkts_info = vq->async->pkts_info; *pkt_idx -= nr_err; /* calculate the sum of buffers and descs of DMA-error packets. */ while (nr_err-- > 0) { descs_err += pkts_info[slot_idx % vq->size].descs; buffers_err += pkts_info[slot_idx % vq->size].nr_buffers; slot_idx--; } if (vq->last_avail_idx >= descs_err) { vq->last_avail_idx -= descs_err; } else { vq->last_avail_idx = vq->last_avail_idx + vq->size - descs_err; vq->avail_wrap_counter ^= 1; } vq->shadow_used_idx -= buffers_err; } static __rte_noinline uint32_t virtio_dev_rx_async_submit_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count, int16_t dma_id, uint16_t vchan_id) { uint32_t pkt_idx = 0; uint16_t n_xfer; uint16_t num_buffers; uint16_t num_descs; struct vhost_async *async = vq->async; struct async_inflight_info *pkts_info = async->pkts_info; uint32_t pkt_err = 0; uint16_t slot_idx = 0; do { rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); num_buffers = 0; num_descs = 0; if (unlikely(virtio_dev_rx_async_packed(dev, vq, pkts[pkt_idx], &num_descs, &num_buffers) < 0)) break; slot_idx = (async->pkts_idx + pkt_idx) % vq->size; pkts_info[slot_idx].descs = num_descs; pkts_info[slot_idx].nr_buffers = num_buffers; pkts_info[slot_idx].mbuf = pkts[pkt_idx]; pkt_idx++; vq_inc_last_avail_packed(vq, num_descs); } while (pkt_idx < count); if (unlikely(pkt_idx == 0)) return 0; n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx, async->iov_iter, pkt_idx); async_iter_reset(async); pkt_err = pkt_idx - n_xfer; if (unlikely(pkt_err)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "%s: failed to transfer %u packets for queue %u.\n", __func__, pkt_err, vq->index); dma_error_handler_packed(vq, slot_idx, pkt_err, &pkt_idx); } if (likely(vq->shadow_used_idx)) { /* keep used descriptors. */ store_dma_desc_info_packed(vq->shadow_used_packed, async->buffers_packed, vq->size, 0, async->buffer_idx_packed, vq->shadow_used_idx); async->buffer_idx_packed += vq->shadow_used_idx; if (async->buffer_idx_packed >= vq->size) async->buffer_idx_packed -= vq->size; async->pkts_idx += pkt_idx; if (async->pkts_idx >= vq->size) async->pkts_idx -= vq->size; vq->shadow_used_idx = 0; async->pkts_inflight_n += pkt_idx; } return pkt_idx; } static __rte_always_inline void write_back_completed_descs_split(struct vhost_virtqueue *vq, uint16_t n_descs) { struct vhost_async *async = vq->async; uint16_t nr_left = n_descs; uint16_t nr_copy; uint16_t to, from; do { from = async->last_desc_idx_split & (vq->size - 1); nr_copy = nr_left + from <= vq->size ? nr_left : vq->size - from; to = vq->last_used_idx & (vq->size - 1); if (to + nr_copy <= vq->size) { rte_memcpy(&vq->used->ring[to], &async->descs_split[from], nr_copy * sizeof(struct vring_used_elem)); } else { uint16_t size = vq->size - to; rte_memcpy(&vq->used->ring[to], &async->descs_split[from], size * sizeof(struct vring_used_elem)); rte_memcpy(&vq->used->ring[0], &async->descs_split[from + size], (nr_copy - size) * sizeof(struct vring_used_elem)); } async->last_desc_idx_split += nr_copy; vq->last_used_idx += nr_copy; nr_left -= nr_copy; } while (nr_left > 0); } static __rte_always_inline void write_back_completed_descs_packed(struct vhost_virtqueue *vq, uint16_t n_buffers) { struct vhost_async *async = vq->async; uint16_t from = async->last_buffer_idx_packed; uint16_t used_idx = vq->last_used_idx; uint16_t head_idx = vq->last_used_idx; uint16_t head_flags = 0; uint16_t i; /* Split loop in two to save memory barriers */ for (i = 0; i < n_buffers; i++) { vq->desc_packed[used_idx].id = async->buffers_packed[from].id; vq->desc_packed[used_idx].len = async->buffers_packed[from].len; used_idx += async->buffers_packed[from].count; if (used_idx >= vq->size) used_idx -= vq->size; from++; if (from >= vq->size) from = 0; } /* The ordering for storing desc flags needs to be enforced. */ rte_atomic_thread_fence(__ATOMIC_RELEASE); from = async->last_buffer_idx_packed; for (i = 0; i < n_buffers; i++) { uint16_t flags; if (async->buffers_packed[from].len) flags = VRING_DESC_F_WRITE; else flags = 0; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } if (i > 0) { vq->desc_packed[vq->last_used_idx].flags = flags; } else { head_idx = vq->last_used_idx; head_flags = flags; } vq_inc_last_used_packed(vq, async->buffers_packed[from].count); from++; if (from == vq->size) from = 0; } vq->desc_packed[head_idx].flags = head_flags; async->last_buffer_idx_packed = from; } static __rte_always_inline uint16_t vhost_poll_enqueue_completed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id) { struct vhost_async *async = vq->async; struct async_inflight_info *pkts_info = async->pkts_info; uint16_t nr_cpl_pkts = 0; uint16_t n_descs = 0, n_buffers = 0; uint16_t start_idx, from, i; /* Check completed copies for the given DMA vChannel */ vhost_async_dma_check_completed(dev, dma_id, vchan_id, VHOST_DMA_MAX_COPY_COMPLETE); start_idx = async_get_first_inflight_pkt_idx(vq); /** * Calculate the number of copy completed packets. * Note that there may be completed packets even if * no copies are reported done by the given DMA vChannel, * as it's possible that a virtqueue uses multiple DMA * vChannels. */ from = start_idx; while (vq->async->pkts_cmpl_flag[from] && count--) { vq->async->pkts_cmpl_flag[from] = false; from++; if (from >= vq->size) from -= vq->size; nr_cpl_pkts++; } if (nr_cpl_pkts == 0) return 0; for (i = 0; i < nr_cpl_pkts; i++) { from = (start_idx + i) % vq->size; /* Only used with packed ring */ n_buffers += pkts_info[from].nr_buffers; /* Only used with split ring */ n_descs += pkts_info[from].descs; pkts[i] = pkts_info[from].mbuf; } async->pkts_inflight_n -= nr_cpl_pkts; if (likely(vq->enabled && vq->access_ok)) { if (vq_is_packed(dev)) { write_back_completed_descs_packed(vq, n_buffers); vhost_vring_call_packed(dev, vq); } else { write_back_completed_descs_split(vq, n_descs); __atomic_add_fetch(&vq->used->idx, n_descs, __ATOMIC_RELEASE); vhost_vring_call_split(dev, vq); } } else { if (vq_is_packed(dev)) { async->last_buffer_idx_packed += n_buffers; if (async->last_buffer_idx_packed >= vq->size) async->last_buffer_idx_packed -= vq->size; } else { async->last_desc_idx_split += n_descs; } } return nr_cpl_pkts; } uint16_t rte_vhost_poll_enqueue_completed(int vid, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id) { struct virtio_net *dev = get_device(vid); struct vhost_virtqueue *vq; uint16_t n_pkts_cpl = 0; if (unlikely(!dev)) return 0; VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__); if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n", __func__, queue_id); return 0; } if (unlikely(!dma_copy_track[dma_id].vchans || !dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid channel %d:%u.\n", __func__, dma_id, vchan_id); return 0; } vq = dev->virtqueue[queue_id]; if (!rte_spinlock_trylock(&vq->access_lock)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "%s: virtqueue %u is busy.\n", __func__, queue_id); return 0; } if (unlikely(!vq->async)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: async not registered for virtqueue %d.\n", __func__, queue_id); goto out; } n_pkts_cpl = vhost_poll_enqueue_completed(dev, vq, pkts, count, dma_id, vchan_id); vhost_queue_stats_update(dev, vq, pkts, n_pkts_cpl); vq->stats.inflight_completed += n_pkts_cpl; out: rte_spinlock_unlock(&vq->access_lock); return n_pkts_cpl; } uint16_t rte_vhost_clear_queue_thread_unsafe(int vid, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id) { struct virtio_net *dev = get_device(vid); struct vhost_virtqueue *vq; uint16_t n_pkts_cpl = 0; if (!dev) return 0; VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__); if (unlikely(queue_id >= dev->nr_vring)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n", __func__, queue_id); return 0; } if (unlikely(dma_id < 0 || dma_id >= RTE_DMADEV_DEFAULT_MAX)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid dma id %d.\n", __func__, dma_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(!rte_spinlock_is_locked(&vq->access_lock))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s() called without access lock taken.\n", __func__); return -1; } if (unlikely(!vq->async)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: async not registered for virtqueue %d.\n", __func__, queue_id); return 0; } if (unlikely(!dma_copy_track[dma_id].vchans || !dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid channel %d:%u.\n", __func__, dma_id, vchan_id); return 0; } if ((queue_id & 1) == 0) n_pkts_cpl = vhost_poll_enqueue_completed(dev, vq, pkts, count, dma_id, vchan_id); else n_pkts_cpl = async_poll_dequeue_completed(dev, vq, pkts, count, dma_id, vchan_id, dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS); vhost_queue_stats_update(dev, vq, pkts, n_pkts_cpl); vq->stats.inflight_completed += n_pkts_cpl; return n_pkts_cpl; } uint16_t rte_vhost_clear_queue(int vid, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id) { struct virtio_net *dev = get_device(vid); struct vhost_virtqueue *vq; uint16_t n_pkts_cpl = 0; if (!dev) return 0; VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__); if (unlikely(queue_id >= dev->nr_vring)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %u.\n", __func__, queue_id); return 0; } if (unlikely(dma_id < 0 || dma_id >= RTE_DMADEV_DEFAULT_MAX)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid dma id %d.\n", __func__, dma_id); return 0; } vq = dev->virtqueue[queue_id]; if (!rte_spinlock_trylock(&vq->access_lock)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "%s: virtqueue %u is busy.\n", __func__, queue_id); return 0; } if (unlikely(!vq->async)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: async not registered for queue id %u.\n", __func__, queue_id); goto out_access_unlock; } if (unlikely(!dma_copy_track[dma_id].vchans || !dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid channel %d:%u.\n", __func__, dma_id, vchan_id); goto out_access_unlock; } if ((queue_id & 1) == 0) n_pkts_cpl = vhost_poll_enqueue_completed(dev, vq, pkts, count, dma_id, vchan_id); else n_pkts_cpl = async_poll_dequeue_completed(dev, vq, pkts, count, dma_id, vchan_id, dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS); vhost_queue_stats_update(dev, vq, pkts, n_pkts_cpl); vq->stats.inflight_completed += n_pkts_cpl; out_access_unlock: rte_spinlock_unlock(&vq->access_lock); return n_pkts_cpl; } static __rte_always_inline uint32_t virtio_dev_rx_async_submit(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count, int16_t dma_id, uint16_t vchan_id) { uint32_t nb_tx = 0; VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__); if (unlikely(!dma_copy_track[dma_id].vchans || !dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid channel %d:%u.\n", __func__, dma_id, vchan_id); return 0; } rte_spinlock_lock(&vq->access_lock); if (unlikely(!vq->enabled || !vq->async)) goto out_access_unlock; if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(!vq->access_ok)) if (unlikely(vring_translate(dev, vq) < 0)) goto out; count = RTE_MIN((uint32_t)MAX_PKT_BURST, count); if (count == 0) goto out; if (vq_is_packed(dev)) nb_tx = virtio_dev_rx_async_submit_packed(dev, vq, pkts, count, dma_id, vchan_id); else nb_tx = virtio_dev_rx_async_submit_split(dev, vq, pkts, count, dma_id, vchan_id); vq->stats.inflight_submitted += nb_tx; out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); return nb_tx; } uint16_t rte_vhost_submit_enqueue_burst(int vid, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id) { struct virtio_net *dev = get_device(vid); if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: built-in vhost net backend is disabled.\n", __func__); return 0; } if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n", __func__, queue_id); return 0; } return virtio_dev_rx_async_submit(dev, dev->virtqueue[queue_id], pkts, count, dma_id, vchan_id); } static inline bool virtio_net_with_host_offload(struct virtio_net *dev) { if (dev->features & ((1ULL << VIRTIO_NET_F_CSUM) | (1ULL << VIRTIO_NET_F_HOST_ECN) | (1ULL << VIRTIO_NET_F_HOST_TSO4) | (1ULL << VIRTIO_NET_F_HOST_TSO6) | (1ULL << VIRTIO_NET_F_HOST_UFO))) return true; return false; } static int parse_headers(struct rte_mbuf *m, uint8_t *l4_proto) { struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; struct rte_ether_hdr *eth_hdr; uint16_t ethertype; uint16_t data_len = rte_pktmbuf_data_len(m); if (data_len < sizeof(struct rte_ether_hdr)) return -EINVAL; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); m->l2_len = sizeof(struct rte_ether_hdr); ethertype = rte_be_to_cpu_16(eth_hdr->ether_type); if (ethertype == RTE_ETHER_TYPE_VLAN) { if (data_len < sizeof(struct rte_ether_hdr) + sizeof(struct rte_vlan_hdr)) goto error; struct rte_vlan_hdr *vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1); m->l2_len += sizeof(struct rte_vlan_hdr); ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto); } switch (ethertype) { case RTE_ETHER_TYPE_IPV4: if (data_len < m->l2_len + sizeof(struct rte_ipv4_hdr)) goto error; ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, m->l2_len); m->l3_len = rte_ipv4_hdr_len(ipv4_hdr); if (data_len < m->l2_len + m->l3_len) goto error; m->ol_flags |= RTE_MBUF_F_TX_IPV4; *l4_proto = ipv4_hdr->next_proto_id; break; case RTE_ETHER_TYPE_IPV6: if (data_len < m->l2_len + sizeof(struct rte_ipv6_hdr)) goto error; ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, m->l2_len); m->l3_len = sizeof(struct rte_ipv6_hdr); m->ol_flags |= RTE_MBUF_F_TX_IPV6; *l4_proto = ipv6_hdr->proto; break; default: /* a valid L3 header is needed for further L4 parsing */ goto error; } /* both CSUM and GSO need a valid L4 header */ switch (*l4_proto) { case IPPROTO_TCP: if (data_len < m->l2_len + m->l3_len + sizeof(struct rte_tcp_hdr)) goto error; break; case IPPROTO_UDP: if (data_len < m->l2_len + m->l3_len + sizeof(struct rte_udp_hdr)) goto error; break; case IPPROTO_SCTP: if (data_len < m->l2_len + m->l3_len + sizeof(struct rte_sctp_hdr)) goto error; break; default: goto error; } return 0; error: m->l2_len = 0; m->l3_len = 0; m->ol_flags = 0; return -EINVAL; } static __rte_always_inline void vhost_dequeue_offload_legacy(struct virtio_net *dev, struct virtio_net_hdr *hdr, struct rte_mbuf *m) { uint8_t l4_proto = 0; struct rte_tcp_hdr *tcp_hdr = NULL; uint16_t tcp_len; uint16_t data_len = rte_pktmbuf_data_len(m); if (parse_headers(m, &l4_proto) < 0) return; if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) { if (hdr->csum_start == (m->l2_len + m->l3_len)) { switch (hdr->csum_offset) { case (offsetof(struct rte_tcp_hdr, cksum)): if (l4_proto != IPPROTO_TCP) goto error; m->ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; break; case (offsetof(struct rte_udp_hdr, dgram_cksum)): if (l4_proto != IPPROTO_UDP) goto error; m->ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; break; case (offsetof(struct rte_sctp_hdr, cksum)): if (l4_proto != IPPROTO_SCTP) goto error; m->ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; break; default: goto error; } } else { goto error; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: if (l4_proto != IPPROTO_TCP) goto error; tcp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_tcp_hdr *, m->l2_len + m->l3_len); tcp_len = (tcp_hdr->data_off & 0xf0) >> 2; if (data_len < m->l2_len + m->l3_len + tcp_len) goto error; m->ol_flags |= RTE_MBUF_F_TX_TCP_SEG; m->tso_segsz = hdr->gso_size; m->l4_len = tcp_len; break; case VIRTIO_NET_HDR_GSO_UDP: if (l4_proto != IPPROTO_UDP) goto error; m->ol_flags |= RTE_MBUF_F_TX_UDP_SEG; m->tso_segsz = hdr->gso_size; m->l4_len = sizeof(struct rte_udp_hdr); break; default: VHOST_LOG_DATA(dev->ifname, WARNING, "unsupported gso type %u.\n", hdr->gso_type); goto error; } } return; error: m->l2_len = 0; m->l3_len = 0; m->ol_flags = 0; } static __rte_always_inline void vhost_dequeue_offload(struct virtio_net *dev, struct virtio_net_hdr *hdr, struct rte_mbuf *m, bool legacy_ol_flags) { struct rte_net_hdr_lens hdr_lens; int l4_supported = 0; uint32_t ptype; if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE) return; if (legacy_ol_flags) { vhost_dequeue_offload_legacy(dev, hdr, m); return; } m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN; ptype = rte_net_get_ptype(m, &hdr_lens, RTE_PTYPE_ALL_MASK); m->packet_type = ptype; if ((ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_TCP || (ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_UDP || (ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_SCTP) l4_supported = 1; /* According to Virtio 1.1 spec, the device only needs to look at * VIRTIO_NET_HDR_F_NEEDS_CSUM in the packet transmission path. * This differs from the processing incoming packets path where the * driver could rely on VIRTIO_NET_HDR_F_DATA_VALID flag set by the * device. * * 5.1.6.2.1 Driver Requirements: Packet Transmission * The driver MUST NOT set the VIRTIO_NET_HDR_F_DATA_VALID and * VIRTIO_NET_HDR_F_RSC_INFO bits in flags. * * 5.1.6.2.2 Device Requirements: Packet Transmission * The device MUST ignore flag bits that it does not recognize. */ if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { uint32_t hdrlen; hdrlen = hdr_lens.l2_len + hdr_lens.l3_len + hdr_lens.l4_len; if (hdr->csum_start <= hdrlen && l4_supported != 0) { m->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_NONE; } else { /* Unknown proto or tunnel, do sw cksum. We can assume * the cksum field is in the first segment since the * buffers we provided to the host are large enough. * In case of SCTP, this will be wrong since it's a CRC * but there's nothing we can do. */ uint16_t csum = 0, off; if (rte_raw_cksum_mbuf(m, hdr->csum_start, rte_pktmbuf_pkt_len(m) - hdr->csum_start, &csum) < 0) return; if (likely(csum != 0xffff)) csum = ~csum; off = hdr->csum_offset + hdr->csum_start; if (rte_pktmbuf_data_len(m) >= off + 1) *rte_pktmbuf_mtod_offset(m, uint16_t *, off) = csum; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { if (hdr->gso_size == 0) return; switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: if ((ptype & RTE_PTYPE_L4_MASK) != RTE_PTYPE_L4_TCP) break; m->ol_flags |= RTE_MBUF_F_RX_LRO | RTE_MBUF_F_RX_L4_CKSUM_NONE; m->tso_segsz = hdr->gso_size; break; case VIRTIO_NET_HDR_GSO_UDP: if ((ptype & RTE_PTYPE_L4_MASK) != RTE_PTYPE_L4_UDP) break; m->ol_flags |= RTE_MBUF_F_RX_LRO | RTE_MBUF_F_RX_L4_CKSUM_NONE; m->tso_segsz = hdr->gso_size; break; default: break; } } } static __rte_noinline void copy_vnet_hdr_from_desc(struct virtio_net_hdr *hdr, struct buf_vector *buf_vec) { uint64_t len; uint64_t remain = sizeof(struct virtio_net_hdr); uint64_t src; uint64_t dst = (uint64_t)(uintptr_t)hdr; while (remain) { len = RTE_MIN(remain, buf_vec->buf_len); src = buf_vec->buf_addr; rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); remain -= len; dst += len; buf_vec++; } } static __rte_always_inline int desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, uint16_t nr_vec, struct rte_mbuf *m, struct rte_mempool *mbuf_pool, bool legacy_ol_flags, uint16_t slot_idx, bool is_async) { uint32_t buf_avail, buf_offset, buf_len; uint64_t buf_addr, buf_iova; uint32_t mbuf_avail, mbuf_offset; uint32_t hdr_remain = dev->vhost_hlen; uint32_t cpy_len; struct rte_mbuf *cur = m, *prev = m; struct virtio_net_hdr tmp_hdr; struct virtio_net_hdr *hdr = NULL; uint16_t vec_idx; struct vhost_async *async = vq->async; struct async_inflight_info *pkts_info; /* * The caller has checked the descriptors chain is larger than the * header size. */ if (virtio_net_with_host_offload(dev)) { if (unlikely(buf_vec[0].buf_len < sizeof(struct virtio_net_hdr))) { /* * No luck, the virtio-net header doesn't fit * in a contiguous virtual area. */ copy_vnet_hdr_from_desc(&tmp_hdr, buf_vec); hdr = &tmp_hdr; } else { hdr = (struct virtio_net_hdr *)((uintptr_t)buf_vec[0].buf_addr); } } for (vec_idx = 0; vec_idx < nr_vec; vec_idx++) { if (buf_vec[vec_idx].buf_len > hdr_remain) break; hdr_remain -= buf_vec[vec_idx].buf_len; } buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_offset = hdr_remain; buf_avail = buf_vec[vec_idx].buf_len - hdr_remain; PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset), (uint32_t)buf_avail, 0); mbuf_offset = 0; mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM; if (is_async) { pkts_info = async->pkts_info; if (async_iter_initialize(dev, async)) return -1; } while (1) { cpy_len = RTE_MIN(buf_avail, mbuf_avail); if (is_async) { if (async_fill_seg(dev, vq, cur, mbuf_offset, buf_iova + buf_offset, cpy_len, false) < 0) goto error; } else if (likely(hdr && cur == m)) { rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset), (void *)((uintptr_t)(buf_addr + buf_offset)), cpy_len); } else { sync_fill_seg(dev, vq, cur, mbuf_offset, buf_addr + buf_offset, buf_iova + buf_offset, cpy_len, false); } mbuf_avail -= cpy_len; mbuf_offset += cpy_len; buf_avail -= cpy_len; buf_offset += cpy_len; /* This buf reaches to its end, get the next one */ if (buf_avail == 0) { if (++vec_idx >= nr_vec) break; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_offset = 0; buf_avail = buf_len; PRINT_PACKET(dev, (uintptr_t)buf_addr, (uint32_t)buf_avail, 0); } /* * This mbuf reaches to its end, get a new one * to hold more data. */ if (mbuf_avail == 0) { cur = rte_pktmbuf_alloc(mbuf_pool); if (unlikely(cur == NULL)) { VHOST_LOG_DATA(dev->ifname, ERR, "failed to allocate memory for mbuf.\n"); goto error; } prev->next = cur; prev->data_len = mbuf_offset; m->nb_segs += 1; m->pkt_len += mbuf_offset; prev = cur; mbuf_offset = 0; mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM; } } prev->data_len = mbuf_offset; m->pkt_len += mbuf_offset; if (is_async) { async_iter_finalize(async); if (hdr) pkts_info[slot_idx].nethdr = *hdr; } else if (hdr) { vhost_dequeue_offload(dev, hdr, m, legacy_ol_flags); } return 0; error: if (is_async) async_iter_cancel(async); return -1; } static void virtio_dev_extbuf_free(void *addr __rte_unused, void *opaque) { rte_free(opaque); } static int virtio_dev_extbuf_alloc(struct virtio_net *dev, struct rte_mbuf *pkt, uint32_t size) { struct rte_mbuf_ext_shared_info *shinfo = NULL; uint32_t total_len = RTE_PKTMBUF_HEADROOM + size; uint16_t buf_len; rte_iova_t iova; void *buf; total_len += sizeof(*shinfo) + sizeof(uintptr_t); total_len = RTE_ALIGN_CEIL(total_len, sizeof(uintptr_t)); if (unlikely(total_len > UINT16_MAX)) return -ENOSPC; buf_len = total_len; buf = rte_malloc(NULL, buf_len, RTE_CACHE_LINE_SIZE); if (unlikely(buf == NULL)) return -ENOMEM; /* Initialize shinfo */ shinfo = rte_pktmbuf_ext_shinfo_init_helper(buf, &buf_len, virtio_dev_extbuf_free, buf); if (unlikely(shinfo == NULL)) { rte_free(buf); VHOST_LOG_DATA(dev->ifname, ERR, "failed to init shinfo\n"); return -1; } iova = rte_malloc_virt2iova(buf); rte_pktmbuf_attach_extbuf(pkt, buf, iova, buf_len, shinfo); rte_pktmbuf_reset_headroom(pkt); return 0; } /* * Prepare a host supported pktmbuf. */ static __rte_always_inline int virtio_dev_pktmbuf_prep(struct virtio_net *dev, struct rte_mbuf *pkt, uint32_t data_len) { if (rte_pktmbuf_tailroom(pkt) >= data_len) return 0; /* attach an external buffer if supported */ if (dev->extbuf && !virtio_dev_extbuf_alloc(dev, pkt, data_len)) return 0; /* check if chained buffers are allowed */ if (!dev->linearbuf) return 0; return -1; } __rte_always_inline static uint16_t virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, bool legacy_ol_flags) { uint16_t i; uint16_t avail_entries; uint16_t dropped = 0; static bool allocerr_warned; /* * The ordering between avail index and * desc reads needs to be enforced. */ avail_entries = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE) - vq->last_avail_idx; if (avail_entries == 0) return 0; rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__); count = RTE_MIN(count, MAX_PKT_BURST); count = RTE_MIN(count, avail_entries); VHOST_LOG_DATA(dev->ifname, DEBUG, "about to dequeue %u buffers\n", count); if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts, count)) return 0; for (i = 0; i < count; i++) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t head_idx; uint32_t buf_len; uint16_t nr_vec = 0; int err; if (unlikely(fill_vec_buf_split(dev, vq, vq->last_avail_idx + i, &nr_vec, buf_vec, &head_idx, &buf_len, VHOST_ACCESS_RO) < 0)) break; update_shadow_used_ring_split(vq, head_idx, 0); if (unlikely(buf_len <= dev->vhost_hlen)) { dropped += 1; i++; break; } buf_len -= dev->vhost_hlen; err = virtio_dev_pktmbuf_prep(dev, pkts[i], buf_len); if (unlikely(err)) { /* * mbuf allocation fails for jumbo packets when external * buffer allocation is not allowed and linear buffer * is required. Drop this packet. */ if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "failed mbuf alloc of size %d from %s.\n", buf_len, mbuf_pool->name); allocerr_warned = true; } dropped += 1; i++; break; } err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i], mbuf_pool, legacy_ol_flags, 0, false); if (unlikely(err)) { if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "failed to copy desc to mbuf.\n"); allocerr_warned = true; } dropped += 1; i++; break; } } if (dropped) rte_pktmbuf_free_bulk(&pkts[i - 1], count - i + 1); vq->last_avail_idx += i; do_data_copy_dequeue(vq); if (unlikely(i < count)) vq->shadow_used_idx = i; if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } return (i - dropped); } __rte_noinline static uint16_t virtio_dev_tx_split_legacy(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { return virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count, true); } __rte_noinline static uint16_t virtio_dev_tx_split_compliant(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { return virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count, false); } static __rte_always_inline int vhost_reserve_avail_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint16_t avail_idx, uintptr_t *desc_addrs, uint16_t *ids) { bool wrap = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint64_t lens[PACKED_BATCH_SIZE]; uint64_t buf_lens[PACKED_BATCH_SIZE]; uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); uint16_t flags, i; if (unlikely(avail_idx & PACKED_BATCH_MASK)) return -1; if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size)) return -1; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { flags = descs[avail_idx + i].flags; if (unlikely((wrap != !!(flags & VRING_DESC_F_AVAIL)) || (wrap == !!(flags & VRING_DESC_F_USED)) || (flags & PACKED_DESC_SINGLE_DEQUEUE_FLAG))) return -1; } rte_atomic_thread_fence(__ATOMIC_ACQUIRE); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) lens[i] = descs[avail_idx + i].len; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { desc_addrs[i] = vhost_iova_to_vva(dev, vq, descs[avail_idx + i].addr, &lens[i], VHOST_ACCESS_RW); } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(!desc_addrs[i])) return -1; if (unlikely((lens[i] != descs[avail_idx + i].len))) return -1; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (virtio_dev_pktmbuf_prep(dev, pkts[i], lens[i])) goto err; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) buf_lens[i] = pkts[i]->buf_len - pkts[i]->data_off; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { if (unlikely(buf_lens[i] < (lens[i] - buf_offset))) goto err; } vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { pkts[i]->pkt_len = lens[i] - buf_offset; pkts[i]->data_len = pkts[i]->pkt_len; ids[i] = descs[avail_idx + i].id; } return 0; err: return -1; } static __rte_always_inline int virtio_dev_tx_batch_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, bool legacy_ol_flags) { uint16_t avail_idx = vq->last_avail_idx; uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf); struct virtio_net_hdr *hdr; uintptr_t desc_addrs[PACKED_BATCH_SIZE]; uint16_t ids[PACKED_BATCH_SIZE]; uint16_t i; if (vhost_reserve_avail_batch_packed(dev, vq, pkts, avail_idx, desc_addrs, ids)) return -1; vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) rte_prefetch0((void *)(uintptr_t)desc_addrs[i]); vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) rte_memcpy(rte_pktmbuf_mtod_offset(pkts[i], void *, 0), (void *)(uintptr_t)(desc_addrs[i] + buf_offset), pkts[i]->pkt_len); if (virtio_net_with_host_offload(dev)) { vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) { hdr = (struct virtio_net_hdr *)(desc_addrs[i]); vhost_dequeue_offload(dev, hdr, pkts[i], legacy_ol_flags); } } if (virtio_net_is_inorder(dev)) vhost_shadow_dequeue_batch_packed_inorder(vq, ids[PACKED_BATCH_SIZE - 1]); else vhost_shadow_dequeue_batch_packed(dev, vq, ids); vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE); return 0; } static __rte_always_inline int vhost_dequeue_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf *pkts, uint16_t *buf_id, uint16_t *desc_count, bool legacy_ol_flags) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint32_t buf_len; uint16_t nr_vec = 0; int err; static bool allocerr_warned; if (unlikely(fill_vec_buf_packed(dev, vq, vq->last_avail_idx, desc_count, buf_vec, &nr_vec, buf_id, &buf_len, VHOST_ACCESS_RO) < 0)) return -1; if (unlikely(buf_len <= dev->vhost_hlen)) return -1; buf_len -= dev->vhost_hlen; if (unlikely(virtio_dev_pktmbuf_prep(dev, pkts, buf_len))) { if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "failed mbuf alloc of size %d from %s.\n", buf_len, mbuf_pool->name); allocerr_warned = true; } return -1; } err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts, mbuf_pool, legacy_ol_flags, 0, false); if (unlikely(err)) { if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "failed to copy desc to mbuf.\n"); allocerr_warned = true; } return -1; } return 0; } static __rte_always_inline int virtio_dev_tx_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf *pkts, bool legacy_ol_flags) { uint16_t buf_id, desc_count = 0; int ret; ret = vhost_dequeue_single_packed(dev, vq, mbuf_pool, pkts, &buf_id, &desc_count, legacy_ol_flags); if (likely(desc_count > 0)) { if (virtio_net_is_inorder(dev)) vhost_shadow_dequeue_single_packed_inorder(vq, buf_id, desc_count); else vhost_shadow_dequeue_single_packed(vq, buf_id, desc_count); vq_inc_last_avail_packed(vq, desc_count); } return ret; } __rte_always_inline static uint16_t virtio_dev_tx_packed(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **__rte_restrict pkts, uint32_t count, bool legacy_ol_flags) { uint32_t pkt_idx = 0; if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts, count)) return 0; do { rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); if (count - pkt_idx >= PACKED_BATCH_SIZE) { if (!virtio_dev_tx_batch_packed(dev, vq, &pkts[pkt_idx], legacy_ol_flags)) { pkt_idx += PACKED_BATCH_SIZE; continue; } } if (virtio_dev_tx_single_packed(dev, vq, mbuf_pool, pkts[pkt_idx], legacy_ol_flags)) break; pkt_idx++; } while (pkt_idx < count); if (pkt_idx != count) rte_pktmbuf_free_bulk(&pkts[pkt_idx], count - pkt_idx); if (vq->shadow_used_idx) { do_data_copy_dequeue(vq); vhost_flush_dequeue_shadow_packed(dev, vq); vhost_vring_call_packed(dev, vq); } return pkt_idx; } __rte_noinline static uint16_t virtio_dev_tx_packed_legacy(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **__rte_restrict pkts, uint32_t count) { return virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count, true); } __rte_noinline static uint16_t virtio_dev_tx_packed_compliant(struct virtio_net *dev, struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **__rte_restrict pkts, uint32_t count) { return virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count, false); } uint16_t rte_vhost_dequeue_burst(int vid, uint16_t queue_id, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { struct virtio_net *dev; struct rte_mbuf *rarp_mbuf = NULL; struct vhost_virtqueue *vq; int16_t success = 1; dev = get_device(vid); if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: built-in vhost net backend is disabled.\n", __func__); return 0; } if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n", __func__, queue_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0)) return 0; if (unlikely(!vq->enabled)) { count = 0; goto out_access_unlock; } if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(!vq->access_ok)) if (unlikely(vring_translate(dev, vq) < 0)) { count = 0; goto out; } /* * Construct a RARP broadcast packet, and inject it to the "pkts" * array, to looks like that guest actually send such packet. * * Check user_send_rarp() for more information. * * broadcast_rarp shares a cacheline in the virtio_net structure * with some fields that are accessed during enqueue and * __atomic_compare_exchange_n causes a write if performed compare * and exchange. This could result in false sharing between enqueue * and dequeue. * * Prevent unnecessary false sharing by reading broadcast_rarp first * and only performing compare and exchange if the read indicates it * is likely to be set. */ if (unlikely(__atomic_load_n(&dev->broadcast_rarp, __ATOMIC_ACQUIRE) && __atomic_compare_exchange_n(&dev->broadcast_rarp, &success, 0, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED))) { rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac); if (rarp_mbuf == NULL) { VHOST_LOG_DATA(dev->ifname, ERR, "failed to make RARP packet.\n"); count = 0; goto out; } /* * Inject it to the head of "pkts" array, so that switch's mac * learning table will get updated first. */ pkts[0] = rarp_mbuf; vhost_queue_stats_update(dev, vq, pkts, 1); pkts++; count -= 1; } if (vq_is_packed(dev)) { if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS) count = virtio_dev_tx_packed_legacy(dev, vq, mbuf_pool, pkts, count); else count = virtio_dev_tx_packed_compliant(dev, vq, mbuf_pool, pkts, count); } else { if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS) count = virtio_dev_tx_split_legacy(dev, vq, mbuf_pool, pkts, count); else count = virtio_dev_tx_split_compliant(dev, vq, mbuf_pool, pkts, count); } vhost_queue_stats_update(dev, vq, pkts, count); out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); if (unlikely(rarp_mbuf != NULL)) count += 1; return count; } static __rte_always_inline uint16_t async_poll_dequeue_completed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id, bool legacy_ol_flags) { uint16_t start_idx, from, i; uint16_t nr_cpl_pkts = 0; struct async_inflight_info *pkts_info = vq->async->pkts_info; vhost_async_dma_check_completed(dev, dma_id, vchan_id, VHOST_DMA_MAX_COPY_COMPLETE); start_idx = async_get_first_inflight_pkt_idx(vq); from = start_idx; while (vq->async->pkts_cmpl_flag[from] && count--) { vq->async->pkts_cmpl_flag[from] = false; from = (from + 1) % vq->size; nr_cpl_pkts++; } if (nr_cpl_pkts == 0) return 0; for (i = 0; i < nr_cpl_pkts; i++) { from = (start_idx + i) % vq->size; pkts[i] = pkts_info[from].mbuf; if (virtio_net_with_host_offload(dev)) vhost_dequeue_offload(dev, &pkts_info[from].nethdr, pkts[i], legacy_ol_flags); } /* write back completed descs to used ring and update used idx */ if (vq_is_packed(dev)) { write_back_completed_descs_packed(vq, nr_cpl_pkts); vhost_vring_call_packed(dev, vq); } else { write_back_completed_descs_split(vq, nr_cpl_pkts); __atomic_add_fetch(&vq->used->idx, nr_cpl_pkts, __ATOMIC_RELEASE); vhost_vring_call_split(dev, vq); } vq->async->pkts_inflight_n -= nr_cpl_pkts; return nr_cpl_pkts; } static __rte_always_inline uint16_t virtio_dev_tx_async_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id, bool legacy_ol_flags) { static bool allocerr_warned; bool dropped = false; uint16_t avail_entries; uint16_t pkt_idx, slot_idx = 0; uint16_t nr_done_pkts = 0; uint16_t pkt_err = 0; uint16_t n_xfer; struct vhost_async *async = vq->async; struct async_inflight_info *pkts_info = async->pkts_info; struct rte_mbuf *pkts_prealloc[MAX_PKT_BURST]; uint16_t pkts_size = count; /** * The ordering between avail index and * desc reads needs to be enforced. */ avail_entries = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE) - vq->last_avail_idx; if (avail_entries == 0) goto out; rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); async_iter_reset(async); count = RTE_MIN(count, MAX_PKT_BURST); count = RTE_MIN(count, avail_entries); VHOST_LOG_DATA(dev->ifname, DEBUG, "about to dequeue %u buffers\n", count); if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts_prealloc, count)) goto out; for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint16_t head_idx = 0; uint16_t nr_vec = 0; uint16_t to; uint32_t buf_len; int err; struct buf_vector buf_vec[BUF_VECTOR_MAX]; struct rte_mbuf *pkt = pkts_prealloc[pkt_idx]; if (unlikely(fill_vec_buf_split(dev, vq, vq->last_avail_idx, &nr_vec, buf_vec, &head_idx, &buf_len, VHOST_ACCESS_RO) < 0)) { dropped = true; break; } if (unlikely(buf_len <= dev->vhost_hlen)) { dropped = true; break; } buf_len -= dev->vhost_hlen; err = virtio_dev_pktmbuf_prep(dev, pkt, buf_len); if (unlikely(err)) { /** * mbuf allocation fails for jumbo packets when external * buffer allocation is not allowed and linear buffer * is required. Drop this packet. */ if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: Failed mbuf alloc of size %d from %s\n", __func__, buf_len, mbuf_pool->name); allocerr_warned = true; } dropped = true; slot_idx--; break; } slot_idx = (async->pkts_idx + pkt_idx) & (vq->size - 1); err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkt, mbuf_pool, legacy_ol_flags, slot_idx, true); if (unlikely(err)) { if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: Failed to offload copies to async channel.\n", __func__); allocerr_warned = true; } dropped = true; slot_idx--; break; } pkts_info[slot_idx].mbuf = pkt; /* store used descs */ to = async->desc_idx_split & (vq->size - 1); async->descs_split[to].id = head_idx; async->descs_split[to].len = 0; async->desc_idx_split++; vq->last_avail_idx++; } if (unlikely(dropped)) rte_pktmbuf_free_bulk(&pkts_prealloc[pkt_idx], count - pkt_idx); n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx, async->iov_iter, pkt_idx); async->pkts_inflight_n += n_xfer; pkt_err = pkt_idx - n_xfer; if (unlikely(pkt_err)) { VHOST_LOG_DATA(dev->ifname, DEBUG, "%s: failed to transfer data.\n", __func__); pkt_idx = n_xfer; /* recover available ring */ vq->last_avail_idx -= pkt_err; /** * recover async channel copy related structures and free pktmbufs * for error pkts. */ async->desc_idx_split -= pkt_err; while (pkt_err-- > 0) { rte_pktmbuf_free(pkts_info[slot_idx & (vq->size - 1)].mbuf); slot_idx--; } } async->pkts_idx += pkt_idx; if (async->pkts_idx >= vq->size) async->pkts_idx -= vq->size; out: /* DMA device may serve other queues, unconditionally check completed. */ nr_done_pkts = async_poll_dequeue_completed(dev, vq, pkts, pkts_size, dma_id, vchan_id, legacy_ol_flags); return nr_done_pkts; } __rte_noinline static uint16_t virtio_dev_tx_async_split_legacy(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id) { return virtio_dev_tx_async_split(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id, true); } __rte_noinline static uint16_t virtio_dev_tx_async_split_compliant(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id) { return virtio_dev_tx_async_split(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id, false); } static __rte_always_inline void vhost_async_shadow_dequeue_single_packed(struct vhost_virtqueue *vq, uint16_t buf_id, uint16_t count) { struct vhost_async *async = vq->async; uint16_t idx = async->buffer_idx_packed; async->buffers_packed[idx].id = buf_id; async->buffers_packed[idx].len = 0; async->buffers_packed[idx].count = count; async->buffer_idx_packed++; if (async->buffer_idx_packed >= vq->size) async->buffer_idx_packed -= vq->size; } static __rte_always_inline int virtio_dev_tx_async_single_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf *pkts, uint16_t slot_idx, bool legacy_ol_flags) { int err; uint16_t buf_id, desc_count = 0; uint16_t nr_vec = 0; uint32_t buf_len; struct buf_vector buf_vec[BUF_VECTOR_MAX]; struct vhost_async *async = vq->async; struct async_inflight_info *pkts_info = async->pkts_info; static bool allocerr_warned; if (unlikely(fill_vec_buf_packed(dev, vq, vq->last_avail_idx, &desc_count, buf_vec, &nr_vec, &buf_id, &buf_len, VHOST_ACCESS_RO) < 0)) return -1; if (unlikely(virtio_dev_pktmbuf_prep(dev, pkts, buf_len))) { if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "Failed mbuf alloc of size %d from %s.\n", buf_len, mbuf_pool->name); allocerr_warned = true; } return -1; } err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts, mbuf_pool, legacy_ol_flags, slot_idx, true); if (unlikely(err)) { rte_pktmbuf_free(pkts); if (!allocerr_warned) { VHOST_LOG_DATA(dev->ifname, ERR, "Failed to copy desc to mbuf on.\n"); allocerr_warned = true; } return -1; } pkts_info[slot_idx].descs = desc_count; /* update async shadow packed ring */ vhost_async_shadow_dequeue_single_packed(vq, buf_id, desc_count); vq_inc_last_avail_packed(vq, desc_count); return err; } static __rte_always_inline uint16_t virtio_dev_tx_async_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, uint16_t dma_id, uint16_t vchan_id, bool legacy_ol_flags) { uint16_t pkt_idx; uint16_t slot_idx = 0; uint16_t nr_done_pkts = 0; uint16_t pkt_err = 0; uint32_t n_xfer; struct vhost_async *async = vq->async; struct async_inflight_info *pkts_info = async->pkts_info; struct rte_mbuf *pkts_prealloc[MAX_PKT_BURST]; VHOST_LOG_DATA(dev->ifname, DEBUG, "(%d) about to dequeue %u buffers\n", dev->vid, count); async_iter_reset(async); if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts_prealloc, count)) goto out; for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { struct rte_mbuf *pkt = pkts_prealloc[pkt_idx]; rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); slot_idx = (async->pkts_idx + pkt_idx) % vq->size; if (unlikely(virtio_dev_tx_async_single_packed(dev, vq, mbuf_pool, pkt, slot_idx, legacy_ol_flags))) { rte_pktmbuf_free_bulk(&pkts_prealloc[pkt_idx], count - pkt_idx); if (slot_idx == 0) slot_idx = vq->size - 1; else slot_idx--; break; } pkts_info[slot_idx].mbuf = pkt; } n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx, async->iov_iter, pkt_idx); async->pkts_inflight_n += n_xfer; pkt_err = pkt_idx - n_xfer; if (unlikely(pkt_err)) { uint16_t descs_err = 0; pkt_idx -= pkt_err; /** * recover DMA-copy related structures and free pktmbuf for DMA-error pkts. */ if (async->buffer_idx_packed >= pkt_err) async->buffer_idx_packed -= pkt_err; else async->buffer_idx_packed += vq->size - pkt_err; while (pkt_err-- > 0) { rte_pktmbuf_free(pkts_info[slot_idx].mbuf); descs_err += pkts_info[slot_idx].descs; if (slot_idx == 0) slot_idx = vq->size - 1; else slot_idx--; } /* recover available ring */ if (vq->last_avail_idx >= descs_err) { vq->last_avail_idx -= descs_err; } else { vq->last_avail_idx += vq->size - descs_err; vq->avail_wrap_counter ^= 1; } } async->pkts_idx += pkt_idx; if (async->pkts_idx >= vq->size) async->pkts_idx -= vq->size; out: nr_done_pkts = async_poll_dequeue_completed(dev, vq, pkts, count, dma_id, vchan_id, legacy_ol_flags); return nr_done_pkts; } __rte_noinline static uint16_t virtio_dev_tx_async_packed_legacy(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, uint16_t dma_id, uint16_t vchan_id) { return virtio_dev_tx_async_packed(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id, true); } __rte_noinline static uint16_t virtio_dev_tx_async_packed_compliant(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, uint16_t dma_id, uint16_t vchan_id) { return virtio_dev_tx_async_packed(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id, false); } uint16_t rte_vhost_async_try_dequeue_burst(int vid, uint16_t queue_id, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count, int *nr_inflight, int16_t dma_id, uint16_t vchan_id) { struct virtio_net *dev; struct rte_mbuf *rarp_mbuf = NULL; struct vhost_virtqueue *vq; int16_t success = 1; dev = get_device(vid); if (!dev || !nr_inflight) return 0; *nr_inflight = -1; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: built-in vhost net backend is disabled.\n", __func__); return 0; } if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n", __func__, queue_id); return 0; } if (unlikely(dma_id < 0 || dma_id >= RTE_DMADEV_DEFAULT_MAX)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid dma id %d.\n", __func__, dma_id); return 0; } if (unlikely(!dma_copy_track[dma_id].vchans || !dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid channel %d:%u.\n", __func__, dma_id, vchan_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0)) return 0; if (unlikely(vq->enabled == 0)) { count = 0; goto out_access_unlock; } if (unlikely(!vq->async)) { VHOST_LOG_DATA(dev->ifname, ERR, "%s: async not registered for queue id %d.\n", __func__, queue_id); count = 0; goto out_access_unlock; } if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(vq->access_ok == 0)) if (unlikely(vring_translate(dev, vq) < 0)) { count = 0; goto out; } /* * Construct a RARP broadcast packet, and inject it to the "pkts" * array, to looks like that guest actually send such packet. * * Check user_send_rarp() for more information. * * broadcast_rarp shares a cacheline in the virtio_net structure * with some fields that are accessed during enqueue and * __atomic_compare_exchange_n causes a write if performed compare * and exchange. This could result in false sharing between enqueue * and dequeue. * * Prevent unnecessary false sharing by reading broadcast_rarp first * and only performing compare and exchange if the read indicates it * is likely to be set. */ if (unlikely(__atomic_load_n(&dev->broadcast_rarp, __ATOMIC_ACQUIRE) && __atomic_compare_exchange_n(&dev->broadcast_rarp, &success, 0, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED))) { rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac); if (rarp_mbuf == NULL) { VHOST_LOG_DATA(dev->ifname, ERR, "failed to make RARP packet.\n"); count = 0; goto out; } /* * Inject it to the head of "pkts" array, so that switch's mac * learning table will get updated first. */ pkts[0] = rarp_mbuf; vhost_queue_stats_update(dev, vq, pkts, 1); pkts++; count -= 1; } if (vq_is_packed(dev)) { if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS) count = virtio_dev_tx_async_packed_legacy(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id); else count = virtio_dev_tx_async_packed_compliant(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id); } else { if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS) count = virtio_dev_tx_async_split_legacy(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id); else count = virtio_dev_tx_async_split_compliant(dev, vq, mbuf_pool, pkts, count, dma_id, vchan_id); } *nr_inflight = vq->async->pkts_inflight_n; vhost_queue_stats_update(dev, vq, pkts, count); out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); if (unlikely(rarp_mbuf != NULL)) count += 1; return count; }