/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2021 Intel Corporation */ #ifndef __INCLUDE_RTE_SWX_PIPELINE_INTERNAL_H__ #define __INCLUDE_RTE_SWX_PIPELINE_INTERNAL_H__ #include #include #include #include #include #include #include #include #include #include #include #include #ifndef TRACE_LEVEL #define TRACE_LEVEL 0 #endif #if TRACE_LEVEL #define TRACE(...) printf(__VA_ARGS__) #else #define TRACE(...) #endif /* * Environment. */ #define ntoh64(x) rte_be_to_cpu_64(x) #define hton64(x) rte_cpu_to_be_64(x) /* * Struct. */ struct field { char name[RTE_SWX_NAME_SIZE]; uint32_t n_bits; uint32_t offset; int var_size; }; struct struct_type { TAILQ_ENTRY(struct_type) node; char name[RTE_SWX_NAME_SIZE]; struct field *fields; uint32_t n_fields; uint32_t n_bits; uint32_t n_bits_min; int var_size; }; TAILQ_HEAD(struct_type_tailq, struct_type); /* * Input port. */ struct port_in_type { TAILQ_ENTRY(port_in_type) node; char name[RTE_SWX_NAME_SIZE]; struct rte_swx_port_in_ops ops; }; TAILQ_HEAD(port_in_type_tailq, port_in_type); struct port_in { TAILQ_ENTRY(port_in) node; struct port_in_type *type; void *obj; uint32_t id; }; TAILQ_HEAD(port_in_tailq, port_in); struct port_in_runtime { rte_swx_port_in_pkt_rx_t pkt_rx; void *obj; }; /* * Output port. */ struct port_out_type { TAILQ_ENTRY(port_out_type) node; char name[RTE_SWX_NAME_SIZE]; struct rte_swx_port_out_ops ops; }; TAILQ_HEAD(port_out_type_tailq, port_out_type); struct port_out { TAILQ_ENTRY(port_out) node; struct port_out_type *type; void *obj; uint32_t id; }; TAILQ_HEAD(port_out_tailq, port_out); struct port_out_runtime { rte_swx_port_out_pkt_tx_t pkt_tx; rte_swx_port_out_pkt_fast_clone_tx_t pkt_fast_clone_tx; rte_swx_port_out_pkt_clone_tx_t pkt_clone_tx; rte_swx_port_out_flush_t flush; void *obj; }; /* * Packet mirroring. */ struct mirroring_session { uint32_t port_id; int fast_clone; uint32_t truncation_length; }; /* * Extern object. */ struct extern_type_member_func { TAILQ_ENTRY(extern_type_member_func) node; char name[RTE_SWX_NAME_SIZE]; rte_swx_extern_type_member_func_t func; uint32_t id; }; TAILQ_HEAD(extern_type_member_func_tailq, extern_type_member_func); struct extern_type { TAILQ_ENTRY(extern_type) node; char name[RTE_SWX_NAME_SIZE]; struct struct_type *mailbox_struct_type; rte_swx_extern_type_constructor_t constructor; rte_swx_extern_type_destructor_t destructor; struct extern_type_member_func_tailq funcs; uint32_t n_funcs; }; TAILQ_HEAD(extern_type_tailq, extern_type); struct extern_obj { TAILQ_ENTRY(extern_obj) node; char name[RTE_SWX_NAME_SIZE]; struct extern_type *type; void *obj; uint32_t struct_id; uint32_t id; }; TAILQ_HEAD(extern_obj_tailq, extern_obj); #ifndef RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX #define RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX 8 #endif struct extern_obj_runtime { void *obj; uint8_t *mailbox; rte_swx_extern_type_member_func_t funcs[RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX]; }; /* * Extern function. */ struct extern_func { TAILQ_ENTRY(extern_func) node; char name[RTE_SWX_NAME_SIZE]; struct struct_type *mailbox_struct_type; rte_swx_extern_func_t func; uint32_t struct_id; uint32_t id; }; TAILQ_HEAD(extern_func_tailq, extern_func); struct extern_func_runtime { uint8_t *mailbox; rte_swx_extern_func_t func; }; /* * Hash function. */ struct hash_func { TAILQ_ENTRY(hash_func) node; char name[RTE_SWX_NAME_SIZE]; rte_swx_hash_func_t func; uint32_t id; }; TAILQ_HEAD(hash_func_tailq, hash_func); struct hash_func_runtime { rte_swx_hash_func_t func; }; /* * Header. */ struct header { TAILQ_ENTRY(header) node; char name[RTE_SWX_NAME_SIZE]; struct struct_type *st; uint32_t struct_id; uint32_t id; }; TAILQ_HEAD(header_tailq, header); struct header_runtime { uint8_t *ptr0; uint32_t n_bytes; }; struct header_out_runtime { uint8_t *ptr0; uint8_t *ptr; uint32_t n_bytes; }; /* * Instruction. */ /* Packet headers are always in Network Byte Order (NBO), i.e. big endian. * Packet meta-data fields are always assumed to be in Host Byte Order (HBO). * Table entry fields can be in either NBO or HBO; they are assumed to be in HBO * when transferred to packet meta-data and in NBO when transferred to packet * headers. */ /* Notation conventions: * -Header field: H = h.header.field (dst/src) * -Meta-data field: M = m.field (dst/src) * -Extern object mailbox field: E = e.field (dst/src) * -Extern function mailbox field: F = f.field (dst/src) * -Table action data field: T = t.field (src only) * -Immediate value: I = 32-bit unsigned value (src only) */ enum instruction_type { /* rx m.port_in */ INSTR_RX, /* tx port_out * port_out = MI */ INSTR_TX, /* port_out = M */ INSTR_TX_I, /* port_out = I */ INSTR_DROP, /* * mirror slot_id session_id * slot_id = MEFT * session_id = MEFT */ INSTR_MIRROR, /* recirculate */ INSTR_RECIRCULATE, /* recircid m.recirc_pass_id * Read the internal recirculation pass ID into the specified meta-data field. */ INSTR_RECIRCID, /* extract h.header */ INSTR_HDR_EXTRACT, INSTR_HDR_EXTRACT2, INSTR_HDR_EXTRACT3, INSTR_HDR_EXTRACT4, INSTR_HDR_EXTRACT5, INSTR_HDR_EXTRACT6, INSTR_HDR_EXTRACT7, INSTR_HDR_EXTRACT8, /* extract h.header m.last_field_size */ INSTR_HDR_EXTRACT_M, /* lookahead h.header */ INSTR_HDR_LOOKAHEAD, /* emit h.header */ INSTR_HDR_EMIT, INSTR_HDR_EMIT_TX, INSTR_HDR_EMIT2_TX, INSTR_HDR_EMIT3_TX, INSTR_HDR_EMIT4_TX, INSTR_HDR_EMIT5_TX, INSTR_HDR_EMIT6_TX, INSTR_HDR_EMIT7_TX, INSTR_HDR_EMIT8_TX, /* validate h.header */ INSTR_HDR_VALIDATE, /* invalidate h.header */ INSTR_HDR_INVALIDATE, /* mov dst src * dst = src * dst = HMEF, src = HMEFTI */ INSTR_MOV, /* dst = MEF, src = MEFT; size(dst) <= 64 bits, size(src) <= 64 bits. */ INSTR_MOV_MH, /* dst = MEF, src = H; size(dst) <= 64 bits, size(src) <= 64 bits. */ INSTR_MOV_HM, /* dst = H, src = MEFT; size(dst) <= 64 bits, size(src) <= 64 bits. */ INSTR_MOV_HH, /* dst = H, src = H; size(dst) <= 64 bits, size(src) <= 64 bits. */ INSTR_MOV_DMA, /* dst = HMEF, src = HMEF; size(dst) = size(src) > 64 bits, NBO format. */ INSTR_MOV_128, /* dst = HMEF, src = HMEF; size(dst) = size(src) = 128 bits, NBO format. */ INSTR_MOV_I, /* dst = HMEF, src = I; size(dst) <= 64 bits. */ /* dma h.header t.field * memcpy(h.header, t.field, sizeof(h.header)) */ INSTR_DMA_HT, INSTR_DMA_HT2, INSTR_DMA_HT3, INSTR_DMA_HT4, INSTR_DMA_HT5, INSTR_DMA_HT6, INSTR_DMA_HT7, INSTR_DMA_HT8, /* add dst src * dst += src * dst = HMEF, src = HMEFTI */ INSTR_ALU_ADD, /* dst = MEF, src = MEF */ INSTR_ALU_ADD_MH, /* dst = MEF, src = H */ INSTR_ALU_ADD_HM, /* dst = H, src = MEF */ INSTR_ALU_ADD_HH, /* dst = H, src = H */ INSTR_ALU_ADD_MI, /* dst = MEF, src = I */ INSTR_ALU_ADD_HI, /* dst = H, src = I */ /* sub dst src * dst -= src * dst = HMEF, src = HMEFTI */ INSTR_ALU_SUB, /* dst = MEF, src = MEF */ INSTR_ALU_SUB_MH, /* dst = MEF, src = H */ INSTR_ALU_SUB_HM, /* dst = H, src = MEF */ INSTR_ALU_SUB_HH, /* dst = H, src = H */ INSTR_ALU_SUB_MI, /* dst = MEF, src = I */ INSTR_ALU_SUB_HI, /* dst = H, src = I */ /* ckadd dst src * dst = dst '+ src[0:1] '+ src[2:3] '+ ... * dst = H, src = {H, h.header}, '+ = 1's complement addition operator */ INSTR_ALU_CKADD_FIELD, /* src = H */ INSTR_ALU_CKADD_STRUCT20, /* src = h.header, with sizeof(header) = 20 bytes. */ INSTR_ALU_CKADD_STRUCT, /* src = h.header, with sizeof(header) any 4-byte multiple. */ /* cksub dst src * dst = dst '- src * dst = H, src = H, '- = 1's complement subtraction operator */ INSTR_ALU_CKSUB_FIELD, /* and dst src * dst &= src * dst = HMEF, src = HMEFTI */ INSTR_ALU_AND, /* dst = MEF, src = MEFT */ INSTR_ALU_AND_MH, /* dst = MEF, src = H */ INSTR_ALU_AND_HM, /* dst = H, src = MEFT */ INSTR_ALU_AND_HH, /* dst = H, src = H */ INSTR_ALU_AND_I, /* dst = HMEF, src = I */ /* or dst src * dst |= src * dst = HMEF, src = HMEFTI */ INSTR_ALU_OR, /* dst = MEF, src = MEFT */ INSTR_ALU_OR_MH, /* dst = MEF, src = H */ INSTR_ALU_OR_HM, /* dst = H, src = MEFT */ INSTR_ALU_OR_HH, /* dst = H, src = H */ INSTR_ALU_OR_I, /* dst = HMEF, src = I */ /* xor dst src * dst ^= src * dst = HMEF, src = HMEFTI */ INSTR_ALU_XOR, /* dst = MEF, src = MEFT */ INSTR_ALU_XOR_MH, /* dst = MEF, src = H */ INSTR_ALU_XOR_HM, /* dst = H, src = MEFT */ INSTR_ALU_XOR_HH, /* dst = H, src = H */ INSTR_ALU_XOR_I, /* dst = HMEF, src = I */ /* shl dst src * dst <<= src * dst = HMEF, src = HMEFTI */ INSTR_ALU_SHL, /* dst = MEF, src = MEF */ INSTR_ALU_SHL_MH, /* dst = MEF, src = H */ INSTR_ALU_SHL_HM, /* dst = H, src = MEF */ INSTR_ALU_SHL_HH, /* dst = H, src = H */ INSTR_ALU_SHL_MI, /* dst = MEF, src = I */ INSTR_ALU_SHL_HI, /* dst = H, src = I */ /* shr dst src * dst >>= src * dst = HMEF, src = HMEFTI */ INSTR_ALU_SHR, /* dst = MEF, src = MEF */ INSTR_ALU_SHR_MH, /* dst = MEF, src = H */ INSTR_ALU_SHR_HM, /* dst = H, src = MEF */ INSTR_ALU_SHR_HH, /* dst = H, src = H */ INSTR_ALU_SHR_MI, /* dst = MEF, src = I */ INSTR_ALU_SHR_HI, /* dst = H, src = I */ /* regprefetch REGARRAY index * prefetch REGARRAY[index] * index = HMEFTI */ INSTR_REGPREFETCH_RH, /* index = H */ INSTR_REGPREFETCH_RM, /* index = MEFT */ INSTR_REGPREFETCH_RI, /* index = I */ /* regrd dst REGARRAY index * dst = REGARRAY[index] * dst = HMEF, index = HMEFTI */ INSTR_REGRD_HRH, /* dst = H, index = H */ INSTR_REGRD_HRM, /* dst = H, index = MEFT */ INSTR_REGRD_HRI, /* dst = H, index = I */ INSTR_REGRD_MRH, /* dst = MEF, index = H */ INSTR_REGRD_MRM, /* dst = MEF, index = MEFT */ INSTR_REGRD_MRI, /* dst = MEF, index = I */ /* regwr REGARRAY index src * REGARRAY[index] = src * index = HMEFTI, src = HMEFTI */ INSTR_REGWR_RHH, /* index = H, src = H */ INSTR_REGWR_RHM, /* index = H, src = MEFT */ INSTR_REGWR_RHI, /* index = H, src = I */ INSTR_REGWR_RMH, /* index = MEFT, src = H */ INSTR_REGWR_RMM, /* index = MEFT, src = MEFT */ INSTR_REGWR_RMI, /* index = MEFT, src = I */ INSTR_REGWR_RIH, /* index = I, src = H */ INSTR_REGWR_RIM, /* index = I, src = MEFT */ INSTR_REGWR_RII, /* index = I, src = I */ /* regadd REGARRAY index src * REGARRAY[index] += src * index = HMEFTI, src = HMEFTI */ INSTR_REGADD_RHH, /* index = H, src = H */ INSTR_REGADD_RHM, /* index = H, src = MEFT */ INSTR_REGADD_RHI, /* index = H, src = I */ INSTR_REGADD_RMH, /* index = MEFT, src = H */ INSTR_REGADD_RMM, /* index = MEFT, src = MEFT */ INSTR_REGADD_RMI, /* index = MEFT, src = I */ INSTR_REGADD_RIH, /* index = I, src = H */ INSTR_REGADD_RIM, /* index = I, src = MEFT */ INSTR_REGADD_RII, /* index = I, src = I */ /* metprefetch METARRAY index * prefetch METARRAY[index] * index = HMEFTI */ INSTR_METPREFETCH_H, /* index = H */ INSTR_METPREFETCH_M, /* index = MEFT */ INSTR_METPREFETCH_I, /* index = I */ /* meter METARRAY index length color_in color_out * color_out = meter(METARRAY[index], length, color_in) * index = HMEFTI, length = HMEFT, color_in = MEFTI, color_out = MEF */ INSTR_METER_HHM, /* index = H, length = H, color_in = MEFT */ INSTR_METER_HHI, /* index = H, length = H, color_in = I */ INSTR_METER_HMM, /* index = H, length = MEFT, color_in = MEFT */ INSTR_METER_HMI, /* index = H, length = MEFT, color_in = I */ INSTR_METER_MHM, /* index = MEFT, length = H, color_in = MEFT */ INSTR_METER_MHI, /* index = MEFT, length = H, color_in = I */ INSTR_METER_MMM, /* index = MEFT, length = MEFT, color_in = MEFT */ INSTR_METER_MMI, /* index = MEFT, length = MEFT, color_in = I */ INSTR_METER_IHM, /* index = I, length = H, color_in = MEFT */ INSTR_METER_IHI, /* index = I, length = H, color_in = I */ INSTR_METER_IMM, /* index = I, length = MEFT, color_in = MEFT */ INSTR_METER_IMI, /* index = I, length = MEFT, color_in = I */ /* table TABLE */ INSTR_TABLE, INSTR_TABLE_AF, INSTR_SELECTOR, INSTR_LEARNER, INSTR_LEARNER_AF, /* learn ACTION_NAME [ m.action_first_arg ] m.timeout_id */ INSTR_LEARNER_LEARN, /* rearm [ m.timeout_id ] */ INSTR_LEARNER_REARM, INSTR_LEARNER_REARM_NEW, /* forget */ INSTR_LEARNER_FORGET, /* entryid m.table_entry_id * Read the internal table entry ID into the specified meta-data field. */ INSTR_ENTRYID, /* extern e.obj.func */ INSTR_EXTERN_OBJ, /* extern f.func */ INSTR_EXTERN_FUNC, /* hash HASH_FUNC_NAME dst src_first src_last * Compute hash value over range of struct fields. * dst = M * src_first = HMEFT * src_last = HMEFT * src_first and src_last must be fields within the same struct */ INSTR_HASH_FUNC, /* jmp LABEL * Unconditional jump */ INSTR_JMP, /* jmpv LABEL h.header * Jump if header is valid */ INSTR_JMP_VALID, /* jmpnv LABEL h.header * Jump if header is invalid */ INSTR_JMP_INVALID, /* jmph LABEL * Jump if table lookup hit */ INSTR_JMP_HIT, /* jmpnh LABEL * Jump if table lookup miss */ INSTR_JMP_MISS, /* jmpa LABEL ACTION * Jump if action run */ INSTR_JMP_ACTION_HIT, /* jmpna LABEL ACTION * Jump if action not run */ INSTR_JMP_ACTION_MISS, /* jmpeq LABEL a b * Jump if a is equal to b * a = HMEFT, b = HMEFTI */ INSTR_JMP_EQ, /* a = MEFT, b = MEFT */ INSTR_JMP_EQ_MH, /* a = MEFT, b = H */ INSTR_JMP_EQ_HM, /* a = H, b = MEFT */ INSTR_JMP_EQ_HH, /* a = H, b = H */ INSTR_JMP_EQ_I, /* (a, b) = (MEFT, I) or (a, b) = (H, I) */ /* jmpneq LABEL a b * Jump if a is not equal to b * a = HMEFT, b = HMEFTI */ INSTR_JMP_NEQ, /* a = MEFT, b = MEFT */ INSTR_JMP_NEQ_MH, /* a = MEFT, b = H */ INSTR_JMP_NEQ_HM, /* a = H, b = MEFT */ INSTR_JMP_NEQ_HH, /* a = H, b = H */ INSTR_JMP_NEQ_I, /* (a, b) = (MEFT, I) or (a, b) = (H, I) */ /* jmplt LABEL a b * Jump if a is less than b * a = HMEFT, b = HMEFTI */ INSTR_JMP_LT, /* a = MEFT, b = MEFT */ INSTR_JMP_LT_MH, /* a = MEFT, b = H */ INSTR_JMP_LT_HM, /* a = H, b = MEFT */ INSTR_JMP_LT_HH, /* a = H, b = H */ INSTR_JMP_LT_MI, /* a = MEFT, b = I */ INSTR_JMP_LT_HI, /* a = H, b = I */ /* jmpgt LABEL a b * Jump if a is greater than b * a = HMEFT, b = HMEFTI */ INSTR_JMP_GT, /* a = MEFT, b = MEFT */ INSTR_JMP_GT_MH, /* a = MEFT, b = H */ INSTR_JMP_GT_HM, /* a = H, b = MEFT */ INSTR_JMP_GT_HH, /* a = H, b = H */ INSTR_JMP_GT_MI, /* a = MEFT, b = I */ INSTR_JMP_GT_HI, /* a = H, b = I */ /* return * Return from action */ INSTR_RETURN, /* Start of custom instructions. */ INSTR_CUSTOM_0, }; struct instr_operand { uint8_t struct_id; uint8_t n_bits; uint8_t offset; uint8_t pad; }; struct instr_io { struct { union { struct { uint8_t offset; uint8_t n_bits; uint8_t pad[2]; }; uint32_t val; }; } io; struct { uint8_t header_id[8]; uint8_t struct_id[8]; uint8_t n_bytes[8]; } hdr; }; struct instr_hdr_validity { uint8_t header_id; uint8_t struct_id; }; struct instr_table { uint8_t table_id; }; struct instr_learn { uint8_t action_id; uint8_t mf_first_arg_offset; uint8_t mf_timeout_id_offset; uint8_t mf_timeout_id_n_bits; }; struct instr_extern_obj { uint8_t ext_obj_id; uint8_t func_id; }; struct instr_extern_func { uint8_t ext_func_id; }; struct instr_hash_func { uint8_t hash_func_id; struct { uint8_t offset; uint8_t n_bits; } dst; struct { uint8_t struct_id; uint16_t offset; uint16_t n_bytes; } src; }; struct instr_dst_src { struct instr_operand dst; union { struct instr_operand src; uint64_t src_val; }; }; struct instr_regarray { uint8_t regarray_id; uint8_t pad[3]; union { struct instr_operand idx; uint32_t idx_val; }; union { struct instr_operand dstsrc; uint64_t dstsrc_val; }; }; struct instr_meter { uint8_t metarray_id; uint8_t pad[3]; union { struct instr_operand idx; uint32_t idx_val; }; struct instr_operand length; union { struct instr_operand color_in; uint32_t color_in_val; }; struct instr_operand color_out; }; struct instr_dma { struct { uint8_t header_id[8]; uint8_t struct_id[8]; } dst; struct { uint8_t offset[8]; } src; uint16_t n_bytes[8]; }; struct instr_jmp { struct instruction *ip; union { struct instr_operand a; uint8_t header_id; uint8_t action_id; }; union { struct instr_operand b; uint64_t b_val; }; }; struct instruction { enum instruction_type type; union { struct instr_io io; struct instr_dst_src mirror; struct instr_hdr_validity valid; struct instr_dst_src mov; struct instr_regarray regarray; struct instr_meter meter; struct instr_dma dma; struct instr_dst_src alu; struct instr_table table; struct instr_learn learn; struct instr_extern_obj ext_obj; struct instr_extern_func ext_func; struct instr_hash_func hash_func; struct instr_jmp jmp; }; }; struct instruction_data { char label[RTE_SWX_NAME_SIZE]; char jmp_label[RTE_SWX_NAME_SIZE]; uint32_t n_users; /* user = jmp instruction to this instruction. */ int invalid; }; typedef void (*instr_exec_t)(struct rte_swx_pipeline *); /* * Action. */ typedef void (*action_func_t)(struct rte_swx_pipeline *p); struct action { TAILQ_ENTRY(action) node; char name[RTE_SWX_NAME_SIZE]; struct struct_type *st; int *args_endianness; /* 0 = Host Byte Order (HBO); 1 = Network Byte Order (NBO). */ struct instruction *instructions; struct instruction_data *instruction_data; uint32_t n_instructions; uint32_t id; }; TAILQ_HEAD(action_tailq, action); /* * Table. */ struct table_type { TAILQ_ENTRY(table_type) node; char name[RTE_SWX_NAME_SIZE]; enum rte_swx_table_match_type match_type; struct rte_swx_table_ops ops; }; TAILQ_HEAD(table_type_tailq, table_type); struct match_field { enum rte_swx_table_match_type match_type; struct field *field; }; struct table { TAILQ_ENTRY(table) node; char name[RTE_SWX_NAME_SIZE]; char args[RTE_SWX_NAME_SIZE]; struct table_type *type; /* NULL when n_fields == 0. */ /* Match. */ struct match_field *fields; uint32_t n_fields; struct header *header; /* Only valid when n_fields > 0. */ /* Action. */ struct action **actions; struct action *default_action; uint8_t *default_action_data; uint32_t n_actions; int default_action_is_const; uint32_t action_data_size_max; int *action_is_for_table_entries; int *action_is_for_default_entry; struct hash_func *hf; uint32_t size; uint32_t id; }; TAILQ_HEAD(table_tailq, table); struct table_runtime { rte_swx_table_lookup_t func; void *mailbox; uint8_t **key; }; struct table_statistics { uint64_t n_pkts_hit[2]; /* 0 = Miss, 1 = Hit. */ uint64_t *n_pkts_action; }; /* * Selector. */ struct selector { TAILQ_ENTRY(selector) node; char name[RTE_SWX_NAME_SIZE]; struct field *group_id_field; struct field **selector_fields; uint32_t n_selector_fields; struct header *selector_header; struct field *member_id_field; uint32_t n_groups_max; uint32_t n_members_per_group_max; uint32_t id; }; TAILQ_HEAD(selector_tailq, selector); struct selector_runtime { void *mailbox; uint8_t **group_id_buffer; uint8_t **selector_buffer; uint8_t **member_id_buffer; }; struct selector_statistics { uint64_t n_pkts; }; /* * Learner table. */ struct learner { TAILQ_ENTRY(learner) node; char name[RTE_SWX_NAME_SIZE]; /* Match. */ struct field **fields; uint32_t n_fields; struct header *header; /* Action. */ struct action **actions; struct action *default_action; uint8_t *default_action_data; uint32_t n_actions; int default_action_is_const; uint32_t action_data_size_max; int *action_is_for_table_entries; int *action_is_for_default_entry; struct hash_func *hf; uint32_t size; uint32_t timeout[RTE_SWX_TABLE_LEARNER_N_KEY_TIMEOUTS_MAX]; uint32_t n_timeouts; uint32_t id; }; TAILQ_HEAD(learner_tailq, learner); struct learner_runtime { void *mailbox; uint8_t **key; }; struct learner_statistics { uint64_t n_pkts_hit[2]; /* 0 = Miss, 1 = Hit. */ uint64_t n_pkts_learn[2]; /* 0 = Learn OK, 1 = Learn error. */ uint64_t n_pkts_rearm; uint64_t n_pkts_forget; uint64_t *n_pkts_action; }; /* * Register array. */ struct regarray { TAILQ_ENTRY(regarray) node; char name[RTE_SWX_NAME_SIZE]; uint64_t init_val; uint32_t size; uint32_t id; }; TAILQ_HEAD(regarray_tailq, regarray); struct regarray_runtime { uint64_t *regarray; uint32_t size_mask; }; /* * Meter array. */ struct meter_profile { TAILQ_ENTRY(meter_profile) node; char name[RTE_SWX_NAME_SIZE]; struct rte_meter_trtcm_params params; struct rte_meter_trtcm_profile profile; uint32_t n_users; }; TAILQ_HEAD(meter_profile_tailq, meter_profile); struct metarray { TAILQ_ENTRY(metarray) node; char name[RTE_SWX_NAME_SIZE]; uint32_t size; uint32_t id; }; TAILQ_HEAD(metarray_tailq, metarray); struct meter { struct rte_meter_trtcm m; struct meter_profile *profile; enum rte_color color_mask; uint8_t pad[20]; uint64_t n_pkts[RTE_COLORS]; uint64_t n_bytes[RTE_COLORS]; }; struct metarray_runtime { struct meter *metarray; uint32_t size_mask; }; /* * Pipeline. */ struct thread { /* Packet. */ struct rte_swx_pkt pkt; uint8_t *ptr; uint32_t *mirroring_slots; uint64_t mirroring_slots_mask; int recirculate; uint32_t recirc_pass_id; /* Structures. */ uint8_t **structs; /* Packet headers. */ struct header_runtime *headers; /* Extracted or generated headers. */ struct header_out_runtime *headers_out; /* Emitted headers. */ uint8_t *header_storage; uint8_t *header_out_storage; uint64_t valid_headers; uint32_t n_headers_out; /* Packet meta-data. */ uint8_t *metadata; /* Tables. */ struct table_runtime *tables; struct selector_runtime *selectors; struct learner_runtime *learners; struct rte_swx_table_state *table_state; uint64_t action_id; size_t entry_id; int hit; /* 0 = Miss, 1 = Hit. */ uint32_t learner_id; uint64_t time; /* Extern objects and functions. */ struct extern_obj_runtime *extern_objs; struct extern_func_runtime *extern_funcs; /* Instructions. */ struct instruction *ip; struct instruction *ret; }; #define MASK64_BIT_GET(mask, pos) ((mask) & (1LLU << (pos))) #define MASK64_BIT_SET(mask, pos) ((mask) | (1LLU << (pos))) #define MASK64_BIT_CLR(mask, pos) ((mask) & ~(1LLU << (pos))) #define HEADER_VALID(thread, header_id) \ MASK64_BIT_GET((thread)->valid_headers, header_id) static inline uint64_t instr_operand_hbo(struct thread *t, const struct instr_operand *x) { uint8_t *x_struct = t->structs[x->struct_id]; uint64_t *x64_ptr = (uint64_t *)&x_struct[x->offset]; uint64_t x64 = *x64_ptr; uint64_t x64_mask = UINT64_MAX >> (64 - x->n_bits); return x64 & x64_mask; } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN static inline uint64_t instr_operand_nbo(struct thread *t, const struct instr_operand *x) { uint8_t *x_struct = t->structs[x->struct_id]; uint64_t *x64_ptr = (uint64_t *)&x_struct[x->offset]; uint64_t x64 = *x64_ptr; return ntoh64(x64) >> (64 - x->n_bits); } #else #define instr_operand_nbo instr_operand_hbo #endif #define ALU(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = dst64 & dst64_mask; \ \ uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \ uint64_t src = src64 & src64_mask; \ \ uint64_t result = dst operator src; \ \ *dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \ } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN #define ALU_MH(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = dst64 & dst64_mask; \ \ uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src = ntoh64(src64) >> (64 - (ip)->alu.src.n_bits); \ \ uint64_t result = dst operator src; \ \ *dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \ } #define ALU_HM(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \ \ uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \ uint64_t src = src64 & src64_mask; \ \ uint64_t result = dst operator src; \ result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \ \ *dst64_ptr = (dst64 & ~dst64_mask) | result; \ } #define ALU_HM_FAST(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = dst64 & dst64_mask; \ \ uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \ uint64_t src = hton64(src64 & src64_mask) >> (64 - (ip)->alu.dst.n_bits); \ \ uint64_t result = dst operator src; \ \ *dst64_ptr = (dst64 & ~dst64_mask) | result; \ } #define ALU_HH(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \ \ uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src = ntoh64(src64) >> (64 - (ip)->alu.src.n_bits); \ \ uint64_t result = dst operator src; \ result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \ \ *dst64_ptr = (dst64 & ~dst64_mask) | result; \ } #define ALU_HH_FAST(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = dst64 & dst64_mask; \ \ uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src = (src64 << (64 - (ip)->alu.src.n_bits)) >> (64 - (ip)->alu.dst.n_bits); \ \ uint64_t result = dst operator src; \ \ *dst64_ptr = (dst64 & ~dst64_mask) | result; \ } #else #define ALU_MH ALU #define ALU_HM ALU #define ALU_HM_FAST ALU #define ALU_HH ALU #define ALU_HH_FAST ALU #endif #define ALU_I(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = dst64 & dst64_mask; \ \ uint64_t src = (ip)->alu.src_val; \ \ uint64_t result = dst operator src; \ \ *dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \ } #define ALU_MI ALU_I #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN #define ALU_HI(thread, ip, operator) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \ uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \ \ uint64_t src = (ip)->alu.src_val; \ \ uint64_t result = dst operator src; \ result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \ \ *dst64_ptr = (dst64 & ~dst64_mask) | result; \ } #else #define ALU_HI ALU_I #endif #define MOV(thread, ip) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \ \ uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->mov.src.n_bits); \ uint64_t src = src64 & src64_mask; \ \ *dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \ } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN #define MOV_MH(thread, ip) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \ \ uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src = ntoh64(src64) >> (64 - (ip)->mov.src.n_bits); \ \ *dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \ } #define MOV_HM(thread, ip) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \ \ uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \ uint64_t src64 = *src64_ptr; \ uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->mov.src.n_bits); \ uint64_t src = src64 & src64_mask; \ \ src = hton64(src) >> (64 - (ip)->mov.dst.n_bits); \ *dst64_ptr = (dst64 & ~dst64_mask) | src; \ } #define MOV_HH(thread, ip) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \ \ uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \ uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \ uint64_t src64 = *src64_ptr; \ \ uint64_t src = src64 << (64 - (ip)->mov.src.n_bits); \ src = src >> (64 - (ip)->mov.dst.n_bits); \ *dst64_ptr = (dst64 & ~dst64_mask) | src; \ } #else #define MOV_MH MOV #define MOV_HM MOV #define MOV_HH MOV #endif #define MOV_I(thread, ip) \ { \ uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \ uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \ uint64_t dst64 = *dst64_ptr; \ uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \ \ uint64_t src = (ip)->mov.src_val; \ \ *dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \ } #define JMP_CMP(thread, ip, operator) \ { \ uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \ uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \ uint64_t a64 = *a64_ptr; \ uint64_t a64_mask = UINT64_MAX >> (64 - (ip)->jmp.a.n_bits); \ uint64_t a = a64 & a64_mask; \ \ uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \ uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \ uint64_t b64 = *b64_ptr; \ uint64_t b64_mask = UINT64_MAX >> (64 - (ip)->jmp.b.n_bits); \ uint64_t b = b64 & b64_mask; \ \ (thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \ } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN #define JMP_CMP_MH(thread, ip, operator) \ { \ uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \ uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \ uint64_t a64 = *a64_ptr; \ uint64_t a64_mask = UINT64_MAX >> (64 - (ip)->jmp.a.n_bits); \ uint64_t a = a64 & a64_mask; \ \ uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \ uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \ uint64_t b64 = *b64_ptr; \ uint64_t b = ntoh64(b64) >> (64 - (ip)->jmp.b.n_bits); \ \ (thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \ } #define JMP_CMP_HM(thread, ip, operator) \ { \ uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \ uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \ uint64_t a64 = *a64_ptr; \ uint64_t a = ntoh64(a64) >> (64 - (ip)->jmp.a.n_bits); \ \ uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \ uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \ uint64_t b64 = *b64_ptr; \ uint64_t b64_mask = UINT64_MAX >> (64 - (ip)->jmp.b.n_bits); \ uint64_t b = b64 & b64_mask; \ \ (thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \ } #define JMP_CMP_HH(thread, ip, operator) \ { \ uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \ uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \ uint64_t a64 = *a64_ptr; \ uint64_t a = ntoh64(a64) >> (64 - (ip)->jmp.a.n_bits); \ \ uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \ uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \ uint64_t b64 = *b64_ptr; \ uint64_t b = ntoh64(b64) >> (64 - (ip)->jmp.b.n_bits); \ \ (thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \ } #define JMP_CMP_HH_FAST(thread, ip, operator) \ { \ uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \ uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \ uint64_t a64 = *a64_ptr; \ uint64_t a = a64 << (64 - (ip)->jmp.a.n_bits); \ \ uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \ uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \ uint64_t b64 = *b64_ptr; \ uint64_t b = b64 << (64 - (ip)->jmp.b.n_bits); \ \ (thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \ } #else #define JMP_CMP_MH JMP_CMP #define JMP_CMP_HM JMP_CMP #define JMP_CMP_HH JMP_CMP #define JMP_CMP_HH_FAST JMP_CMP #endif #define JMP_CMP_I(thread, ip, operator) \ { \ uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \ uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \ uint64_t a64 = *a64_ptr; \ uint64_t a64_mask = UINT64_MAX >> (64 - (ip)->jmp.a.n_bits); \ uint64_t a = a64 & a64_mask; \ \ uint64_t b = (ip)->jmp.b_val; \ \ (thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \ } #define JMP_CMP_MI JMP_CMP_I #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN #define JMP_CMP_HI(thread, ip, operator) \ { \ uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \ uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \ uint64_t a64 = *a64_ptr; \ uint64_t a = ntoh64(a64) >> (64 - (ip)->jmp.a.n_bits); \ \ uint64_t b = (ip)->jmp.b_val; \ \ (thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \ } #else #define JMP_CMP_HI JMP_CMP_I #endif #define METADATA_READ(thread, offset, n_bits) \ ({ \ uint64_t *m64_ptr = (uint64_t *)&(thread)->metadata[offset]; \ uint64_t m64 = *m64_ptr; \ uint64_t m64_mask = UINT64_MAX >> (64 - (n_bits)); \ (m64 & m64_mask); \ }) #define METADATA_WRITE(thread, offset, n_bits, value) \ { \ uint64_t *m64_ptr = (uint64_t *)&(thread)->metadata[offset]; \ uint64_t m64 = *m64_ptr; \ uint64_t m64_mask = UINT64_MAX >> (64 - (n_bits)); \ \ uint64_t m_new = value; \ \ *m64_ptr = (m64 & ~m64_mask) | (m_new & m64_mask); \ } #ifndef RTE_SWX_PIPELINE_THREADS_MAX #define RTE_SWX_PIPELINE_THREADS_MAX 16 #endif #ifndef RTE_SWX_PIPELINE_INSTRUCTION_TABLE_SIZE_MAX #define RTE_SWX_PIPELINE_INSTRUCTION_TABLE_SIZE_MAX 256 #endif struct rte_swx_pipeline { char name[RTE_SWX_NAME_SIZE]; struct struct_type_tailq struct_types; struct port_in_type_tailq port_in_types; struct port_in_tailq ports_in; struct port_out_type_tailq port_out_types; struct port_out_tailq ports_out; struct extern_type_tailq extern_types; struct extern_obj_tailq extern_objs; struct extern_func_tailq extern_funcs; struct hash_func_tailq hash_funcs; struct header_tailq headers; struct struct_type *metadata_st; uint32_t metadata_struct_id; struct action_tailq actions; struct table_type_tailq table_types; struct table_tailq tables; struct selector_tailq selectors; struct learner_tailq learners; struct regarray_tailq regarrays; struct meter_profile_tailq meter_profiles; struct metarray_tailq metarrays; struct port_in_runtime *in; struct port_out_runtime *out; struct mirroring_session *mirroring_sessions; struct instruction **action_instructions; action_func_t *action_funcs; struct rte_swx_table_state *table_state; struct table_statistics *table_stats; struct selector_statistics *selector_stats; struct learner_statistics *learner_stats; struct hash_func_runtime *hash_func_runtime; struct regarray_runtime *regarray_runtime; struct metarray_runtime *metarray_runtime; struct instruction *instructions; struct instruction_data *instruction_data; instr_exec_t *instruction_table; struct thread threads[RTE_SWX_PIPELINE_THREADS_MAX]; void *lib; uint32_t n_structs; uint32_t n_ports_in; uint32_t n_ports_out; uint32_t n_mirroring_slots; uint32_t n_mirroring_sessions; uint32_t n_extern_objs; uint32_t n_extern_funcs; uint32_t n_hash_funcs; uint32_t n_actions; uint32_t n_tables; uint32_t n_selectors; uint32_t n_learners; uint32_t n_regarrays; uint32_t n_metarrays; uint32_t n_headers; uint32_t thread_id; uint32_t port_id; uint32_t n_instructions; int build_done; int numa_node; }; /* * Instruction. */ static inline void pipeline_port_inc(struct rte_swx_pipeline *p) { p->port_id = (p->port_id + 1) & (p->n_ports_in - 1); } static inline void thread_ip_reset(struct rte_swx_pipeline *p, struct thread *t) { t->ip = p->instructions; } static inline void thread_ip_set(struct thread *t, struct instruction *ip) { t->ip = ip; } static inline void thread_ip_action_call(struct rte_swx_pipeline *p, struct thread *t, uint32_t action_id) { t->ret = t->ip + 1; t->ip = p->action_instructions[action_id]; } static inline void thread_ip_inc(struct rte_swx_pipeline *p); static inline void thread_ip_inc(struct rte_swx_pipeline *p) { struct thread *t = &p->threads[p->thread_id]; t->ip++; } static inline void thread_ip_inc_cond(struct thread *t, int cond) { t->ip += cond; } static inline void thread_yield(struct rte_swx_pipeline *p) { p->thread_id = (p->thread_id + 1) & (RTE_SWX_PIPELINE_THREADS_MAX - 1); } static inline void thread_yield_cond(struct rte_swx_pipeline *p, int cond) { p->thread_id = (p->thread_id + cond) & (RTE_SWX_PIPELINE_THREADS_MAX - 1); } /* * rx. */ static inline int __instr_rx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct port_in_runtime *port = &p->in[p->port_id]; struct rte_swx_pkt *pkt = &t->pkt; int pkt_received; /* Recirculation: keep the current packet. */ if (t->recirculate) { TRACE("[Thread %2u] rx - recirculate (pass %u)\n", p->thread_id, t->recirc_pass_id + 1); /* Packet. */ t->ptr = &pkt->pkt[pkt->offset]; t->mirroring_slots_mask = 0; t->recirculate = 0; t->recirc_pass_id++; /* Headers. */ t->valid_headers = 0; t->n_headers_out = 0; /* Tables. */ t->table_state = p->table_state; return 1; } /* Packet. */ pkt_received = port->pkt_rx(port->obj, pkt); t->ptr = &pkt->pkt[pkt->offset]; rte_prefetch0(t->ptr); TRACE("[Thread %2u] rx %s from port %u\n", p->thread_id, pkt_received ? "1 pkt" : "0 pkts", p->port_id); t->mirroring_slots_mask = 0; t->recirc_pass_id = 0; /* Headers. */ t->valid_headers = 0; t->n_headers_out = 0; /* Meta-data. */ METADATA_WRITE(t, ip->io.io.offset, ip->io.io.n_bits, p->port_id); /* Tables. */ t->table_state = p->table_state; /* Thread. */ pipeline_port_inc(p); return pkt_received; } static inline void instr_rx_exec(struct rte_swx_pipeline *p) { struct thread *t = &p->threads[p->thread_id]; struct instruction *ip = t->ip; int pkt_received; /* Packet. */ pkt_received = __instr_rx_exec(p, t, ip); /* Thread. */ thread_ip_inc_cond(t, pkt_received); thread_yield(p); } /* * tx. */ static inline void emit_handler(struct thread *t) { struct header_out_runtime *h0 = &t->headers_out[0]; struct header_out_runtime *h1 = &t->headers_out[1]; uint32_t offset = 0, i; /* No header change or header decapsulation. */ if ((t->n_headers_out == 1) && (h0->ptr + h0->n_bytes == t->ptr)) { TRACE("Emit handler: no header change or header decap.\n"); t->pkt.offset -= h0->n_bytes; t->pkt.length += h0->n_bytes; return; } /* Header encapsulation (optionally, with prior header decapsulation). */ if ((t->n_headers_out == 2) && (h1->ptr + h1->n_bytes == t->ptr) && (h0->ptr == h0->ptr0)) { uint32_t offset; TRACE("Emit handler: header encapsulation.\n"); offset = h0->n_bytes + h1->n_bytes; memcpy(t->ptr - offset, h0->ptr, h0->n_bytes); t->pkt.offset -= offset; t->pkt.length += offset; return; } /* For any other case. */ TRACE("Emit handler: complex case.\n"); for (i = 0; i < t->n_headers_out; i++) { struct header_out_runtime *h = &t->headers_out[i]; memcpy(&t->header_out_storage[offset], h->ptr, h->n_bytes); offset += h->n_bytes; } if (offset) { memcpy(t->ptr - offset, t->header_out_storage, offset); t->pkt.offset -= offset; t->pkt.length += offset; } } static inline void mirroring_handler(struct rte_swx_pipeline *p, struct thread *t, struct rte_swx_pkt *pkt) { uint64_t slots_mask = t->mirroring_slots_mask, slot_mask; uint32_t slot_id; for (slot_id = 0, slot_mask = 1LLU ; slots_mask; slot_id++, slot_mask <<= 1) if (slot_mask & slots_mask) { struct port_out_runtime *port; struct mirroring_session *session; uint32_t port_id, session_id; session_id = t->mirroring_slots[slot_id]; session = &p->mirroring_sessions[session_id]; port_id = session->port_id; port = &p->out[port_id]; if (session->fast_clone) port->pkt_fast_clone_tx(port->obj, pkt); else port->pkt_clone_tx(port->obj, pkt, session->truncation_length); slots_mask &= ~slot_mask; } } static inline void __instr_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t port_id = METADATA_READ(t, ip->io.io.offset, ip->io.io.n_bits); struct port_out_runtime *port = &p->out[port_id]; struct rte_swx_pkt *pkt = &t->pkt; /* Recirculation: keep the current packet. */ if (t->recirculate) { TRACE("[Thread %2u]: tx 1 pkt - recirculate\n", p->thread_id); /* Headers. */ emit_handler(t); /* Packet. */ mirroring_handler(p, t, pkt); return; } TRACE("[Thread %2u]: tx 1 pkt to port %u\n", p->thread_id, (uint32_t)port_id); /* Headers. */ emit_handler(t); /* Packet. */ mirroring_handler(p, t, pkt); port->pkt_tx(port->obj, pkt); } static inline void __instr_tx_i_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t port_id = ip->io.io.val; struct port_out_runtime *port = &p->out[port_id]; struct rte_swx_pkt *pkt = &t->pkt; /* Recirculation: keep the current packet. */ if (t->recirculate) { TRACE("[Thread %2u]: tx (i) 1 pkt - recirculate\n", p->thread_id); /* Headers. */ emit_handler(t); /* Packet. */ mirroring_handler(p, t, pkt); return; } TRACE("[Thread %2u]: tx (i) 1 pkt to port %u\n", p->thread_id, (uint32_t)port_id); /* Headers. */ emit_handler(t); /* Packet. */ mirroring_handler(p, t, pkt); port->pkt_tx(port->obj, pkt); } static inline void __instr_drop_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip __rte_unused) { uint64_t port_id = p->n_ports_out - 1; struct port_out_runtime *port = &p->out[port_id]; struct rte_swx_pkt *pkt = &t->pkt; TRACE("[Thread %2u]: drop 1 pkt\n", p->thread_id); /* Headers. */ emit_handler(t); /* Packet. */ mirroring_handler(p, t, pkt); port->pkt_tx(port->obj, pkt); } static inline void __instr_mirror_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t slot_id = instr_operand_hbo(t, &ip->mirror.dst); uint64_t session_id = instr_operand_hbo(t, &ip->mirror.src); slot_id &= p->n_mirroring_slots - 1; session_id &= p->n_mirroring_sessions - 1; TRACE("[Thread %2u]: mirror pkt (slot = %u, session = %u)\n", p->thread_id, (uint32_t)slot_id, (uint32_t)session_id); t->mirroring_slots[slot_id] = session_id; t->mirroring_slots_mask |= 1LLU << slot_id; } static inline void __instr_recirculate_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip __rte_unused) { TRACE("[Thread %2u]: recirculate\n", p->thread_id); t->recirculate = 1; } static inline void __instr_recircid_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u]: recircid (pass %u)\n", p->thread_id, t->recirc_pass_id); /* Meta-data. */ METADATA_WRITE(t, ip->io.io.offset, ip->io.io.n_bits, t->recirc_pass_id); } /* * extract. */ static inline void __instr_hdr_extract_many_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip, uint32_t n_extract) { uint64_t valid_headers = t->valid_headers; uint8_t *ptr = t->ptr; uint32_t offset = t->pkt.offset; uint32_t length = t->pkt.length; uint32_t i; for (i = 0; i < n_extract; i++) { uint32_t header_id = ip->io.hdr.header_id[i]; uint32_t struct_id = ip->io.hdr.struct_id[i]; uint32_t n_bytes = ip->io.hdr.n_bytes[i]; TRACE("[Thread %2u]: extract header %u (%u bytes)\n", p->thread_id, header_id, n_bytes); /* Headers. */ t->structs[struct_id] = ptr; valid_headers = MASK64_BIT_SET(valid_headers, header_id); /* Packet. */ offset += n_bytes; length -= n_bytes; ptr += n_bytes; } /* Headers. */ t->valid_headers = valid_headers; /* Packet. */ t->pkt.offset = offset; t->pkt.length = length; t->ptr = ptr; } static inline void __instr_hdr_extract_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { __instr_hdr_extract_many_exec(p, t, ip, 1); } static inline void __instr_hdr_extract2_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n", p->thread_id); __instr_hdr_extract_many_exec(p, t, ip, 2); } static inline void __instr_hdr_extract3_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n", p->thread_id); __instr_hdr_extract_many_exec(p, t, ip, 3); } static inline void __instr_hdr_extract4_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n", p->thread_id); __instr_hdr_extract_many_exec(p, t, ip, 4); } static inline void __instr_hdr_extract5_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n", p->thread_id); __instr_hdr_extract_many_exec(p, t, ip, 5); } static inline void __instr_hdr_extract6_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n", p->thread_id); __instr_hdr_extract_many_exec(p, t, ip, 6); } static inline void __instr_hdr_extract7_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n", p->thread_id); __instr_hdr_extract_many_exec(p, t, ip, 7); } static inline void __instr_hdr_extract8_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n", p->thread_id); __instr_hdr_extract_many_exec(p, t, ip, 8); } static inline void __instr_hdr_extract_m_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint64_t valid_headers = t->valid_headers; uint8_t *ptr = t->ptr; uint32_t offset = t->pkt.offset; uint32_t length = t->pkt.length; uint32_t n_bytes_last = METADATA_READ(t, ip->io.io.offset, ip->io.io.n_bits); uint32_t header_id = ip->io.hdr.header_id[0]; uint32_t struct_id = ip->io.hdr.struct_id[0]; uint32_t n_bytes = ip->io.hdr.n_bytes[0]; struct header_runtime *h = &t->headers[header_id]; TRACE("[Thread %2u]: extract header %u (%u + %u bytes)\n", p->thread_id, header_id, n_bytes, n_bytes_last); n_bytes += n_bytes_last; /* Headers. */ t->structs[struct_id] = ptr; t->valid_headers = MASK64_BIT_SET(valid_headers, header_id); h->n_bytes = n_bytes; /* Packet. */ t->pkt.offset = offset + n_bytes; t->pkt.length = length - n_bytes; t->ptr = ptr + n_bytes; } static inline void __instr_hdr_lookahead_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint64_t valid_headers = t->valid_headers; uint8_t *ptr = t->ptr; uint32_t header_id = ip->io.hdr.header_id[0]; uint32_t struct_id = ip->io.hdr.struct_id[0]; TRACE("[Thread %2u]: lookahead header %u\n", p->thread_id, header_id); /* Headers. */ t->structs[struct_id] = ptr; t->valid_headers = MASK64_BIT_SET(valid_headers, header_id); } /* * emit. */ static inline void __instr_hdr_emit_many_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip, uint32_t n_emit) { uint64_t valid_headers = t->valid_headers; uint32_t n_headers_out = t->n_headers_out; struct header_out_runtime *ho = NULL; uint8_t *ho_ptr = NULL; uint32_t ho_nbytes = 0, i; for (i = 0; i < n_emit; i++) { uint32_t header_id = ip->io.hdr.header_id[i]; uint32_t struct_id = ip->io.hdr.struct_id[i]; struct header_runtime *hi = &t->headers[header_id]; uint8_t *hi_ptr0 = hi->ptr0; uint32_t n_bytes = hi->n_bytes; uint8_t *hi_ptr = t->structs[struct_id]; if (!MASK64_BIT_GET(valid_headers, header_id)) { TRACE("[Thread %2u]: emit header %u (invalid)\n", p->thread_id, header_id); continue; } TRACE("[Thread %2u]: emit header %u (valid)\n", p->thread_id, header_id); /* Headers. */ if (!ho) { if (!n_headers_out) { ho = &t->headers_out[0]; ho->ptr0 = hi_ptr0; ho->ptr = hi_ptr; ho_ptr = hi_ptr; ho_nbytes = n_bytes; n_headers_out = 1; continue; } else { ho = &t->headers_out[n_headers_out - 1]; ho_ptr = ho->ptr; ho_nbytes = ho->n_bytes; } } if (ho_ptr + ho_nbytes == hi_ptr) { ho_nbytes += n_bytes; } else { ho->n_bytes = ho_nbytes; ho++; ho->ptr0 = hi_ptr0; ho->ptr = hi_ptr; ho_ptr = hi_ptr; ho_nbytes = n_bytes; n_headers_out++; } } if (ho) ho->n_bytes = ho_nbytes; t->n_headers_out = n_headers_out; } static inline void __instr_hdr_emit_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { __instr_hdr_emit_many_exec(p, t, ip, 1); } static inline void __instr_hdr_emit_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 1); __instr_tx_exec(p, t, ip); } static inline void __instr_hdr_emit2_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 2); __instr_tx_exec(p, t, ip); } static inline void __instr_hdr_emit3_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 3); __instr_tx_exec(p, t, ip); } static inline void __instr_hdr_emit4_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 4); __instr_tx_exec(p, t, ip); } static inline void __instr_hdr_emit5_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 5); __instr_tx_exec(p, t, ip); } static inline void __instr_hdr_emit6_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 6); __instr_tx_exec(p, t, ip); } static inline void __instr_hdr_emit7_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 7); __instr_tx_exec(p, t, ip); } static inline void __instr_hdr_emit8_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 9 instructions are fused. ***\n", p->thread_id); __instr_hdr_emit_many_exec(p, t, ip, 8); __instr_tx_exec(p, t, ip); } /* * validate. */ static inline void __instr_hdr_validate_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint32_t header_id = ip->valid.header_id; uint32_t struct_id = ip->valid.struct_id; uint64_t valid_headers = t->valid_headers; struct header_runtime *h = &t->headers[header_id]; TRACE("[Thread %2u] validate header %u\n", p->thread_id, header_id); /* If this header is already valid, then its associated t->structs[] element is also valid * and therefore it should not be modified. It could point to the packet buffer (in case of * extracted header) and setting it to the default location (h->ptr0) would be incorrect. */ if (MASK64_BIT_GET(valid_headers, header_id)) return; /* Headers. */ t->structs[struct_id] = h->ptr0; t->valid_headers = MASK64_BIT_SET(valid_headers, header_id); } /* * invalidate. */ static inline void __instr_hdr_invalidate_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint32_t header_id = ip->valid.header_id; TRACE("[Thread %2u] invalidate header %u\n", p->thread_id, header_id); /* Headers. */ t->valid_headers = MASK64_BIT_CLR(t->valid_headers, header_id); } /* * learn. */ static inline void __instr_learn_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t action_id = ip->learn.action_id; uint32_t mf_first_arg_offset = ip->learn.mf_first_arg_offset; uint32_t timeout_id = METADATA_READ(t, ip->learn.mf_timeout_id_offset, ip->learn.mf_timeout_id_n_bits); uint32_t learner_id = t->learner_id; struct rte_swx_table_state *ts = &t->table_state[p->n_tables + p->n_selectors + learner_id]; struct learner_runtime *l = &t->learners[learner_id]; struct learner_statistics *stats = &p->learner_stats[learner_id]; uint32_t status; /* Table. */ status = rte_swx_table_learner_add(ts->obj, l->mailbox, t->time, action_id, &t->metadata[mf_first_arg_offset], timeout_id); TRACE("[Thread %2u] learner %u learn %s\n", p->thread_id, learner_id, status ? "ok" : "error"); stats->n_pkts_learn[status] += 1; } /* * rearm. */ static inline void __instr_rearm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip __rte_unused) { uint32_t learner_id = t->learner_id; struct rte_swx_table_state *ts = &t->table_state[p->n_tables + p->n_selectors + learner_id]; struct learner_runtime *l = &t->learners[learner_id]; struct learner_statistics *stats = &p->learner_stats[learner_id]; /* Table. */ rte_swx_table_learner_rearm(ts->obj, l->mailbox, t->time); TRACE("[Thread %2u] learner %u rearm\n", p->thread_id, learner_id); stats->n_pkts_rearm += 1; } static inline void __instr_rearm_new_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint32_t timeout_id = METADATA_READ(t, ip->learn.mf_timeout_id_offset, ip->learn.mf_timeout_id_n_bits); uint32_t learner_id = t->learner_id; struct rte_swx_table_state *ts = &t->table_state[p->n_tables + p->n_selectors + learner_id]; struct learner_runtime *l = &t->learners[learner_id]; struct learner_statistics *stats = &p->learner_stats[learner_id]; /* Table. */ rte_swx_table_learner_rearm_new(ts->obj, l->mailbox, t->time, timeout_id); TRACE("[Thread %2u] learner %u rearm with timeout ID %u\n", p->thread_id, learner_id, timeout_id); stats->n_pkts_rearm += 1; } /* * forget. */ static inline void __instr_forget_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip __rte_unused) { uint32_t learner_id = t->learner_id; struct rte_swx_table_state *ts = &t->table_state[p->n_tables + p->n_selectors + learner_id]; struct learner_runtime *l = &t->learners[learner_id]; struct learner_statistics *stats = &p->learner_stats[learner_id]; /* Table. */ rte_swx_table_learner_delete(ts->obj, l->mailbox); TRACE("[Thread %2u] learner %u forget\n", p->thread_id, learner_id); stats->n_pkts_forget += 1; } /* * entryid. */ static inline void __instr_entryid_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u]: entryid\n", p->thread_id); /* Meta-data. */ METADATA_WRITE(t, ip->mov.dst.offset, ip->mov.dst.n_bits, t->entry_id); } /* * extern. */ static inline uint32_t __instr_extern_obj_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint32_t obj_id = ip->ext_obj.ext_obj_id; uint32_t func_id = ip->ext_obj.func_id; struct extern_obj_runtime *obj = &t->extern_objs[obj_id]; rte_swx_extern_type_member_func_t func = obj->funcs[func_id]; uint32_t done; TRACE("[Thread %2u] extern obj %u member func %u\n", p->thread_id, obj_id, func_id); done = func(obj->obj, obj->mailbox); return done; } static inline uint32_t __instr_extern_func_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint32_t ext_func_id = ip->ext_func.ext_func_id; struct extern_func_runtime *ext_func = &t->extern_funcs[ext_func_id]; rte_swx_extern_func_t func = ext_func->func; uint32_t done; TRACE("[Thread %2u] extern func %u\n", p->thread_id, ext_func_id); done = func(ext_func->mailbox); return done; } /* * hash. */ static inline void __instr_hash_func_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint32_t hash_func_id = ip->hash_func.hash_func_id; uint32_t dst_offset = ip->hash_func.dst.offset; uint32_t n_dst_bits = ip->hash_func.dst.n_bits; uint32_t src_struct_id = ip->hash_func.src.struct_id; uint32_t src_offset = ip->hash_func.src.offset; uint32_t n_src_bytes = ip->hash_func.src.n_bytes; struct hash_func_runtime *func = &p->hash_func_runtime[hash_func_id]; uint8_t *src_ptr = t->structs[src_struct_id]; uint32_t result; TRACE("[Thread %2u] hash %u\n", p->thread_id, hash_func_id); result = func->func(&src_ptr[src_offset], n_src_bytes, 0); METADATA_WRITE(t, dst_offset, n_dst_bits, result); } /* * mov. */ static inline void __instr_mov_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] mov\n", p->thread_id); MOV(t, ip); } static inline void __instr_mov_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] mov (mh)\n", p->thread_id); MOV_MH(t, ip); } static inline void __instr_mov_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] mov (hm)\n", p->thread_id); MOV_HM(t, ip); } static inline void __instr_mov_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] mov (hh)\n", p->thread_id); MOV_HH(t, ip); } static inline void __instr_mov_dma_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint8_t *dst_struct = t->structs[ip->mov.dst.struct_id]; uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->mov.dst.offset]; uint32_t *dst32_ptr; uint16_t *dst16_ptr; uint8_t *dst8_ptr; uint8_t *src_struct = t->structs[ip->mov.src.struct_id]; uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->mov.src.offset]; uint32_t *src32_ptr; uint16_t *src16_ptr; uint8_t *src8_ptr; uint32_t n = ip->mov.dst.n_bits >> 3, i; TRACE("[Thread %2u] mov (dma) %u bytes\n", p->thread_id, n); /* 8-byte transfers. */ for (i = 0; i < n >> 3; i++) *dst64_ptr++ = *src64_ptr++; /* 4-byte transfers. */ n &= 7; dst32_ptr = (uint32_t *)dst64_ptr; src32_ptr = (uint32_t *)src64_ptr; for (i = 0; i < n >> 2; i++) *dst32_ptr++ = *src32_ptr++; /* 2-byte transfers. */ n &= 3; dst16_ptr = (uint16_t *)dst32_ptr; src16_ptr = (uint16_t *)src32_ptr; for (i = 0; i < n >> 1; i++) *dst16_ptr++ = *src16_ptr++; /* 1-byte transfer. */ n &= 1; dst8_ptr = (uint8_t *)dst16_ptr; src8_ptr = (uint8_t *)src16_ptr; if (n) *dst8_ptr = *src8_ptr; } static inline void __instr_mov_128_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint8_t *dst_struct = t->structs[ip->mov.dst.struct_id]; uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->mov.dst.offset]; uint8_t *src_struct = t->structs[ip->mov.src.struct_id]; uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->mov.src.offset]; TRACE("[Thread %2u] mov (128)\n", p->thread_id); dst64_ptr[0] = src64_ptr[0]; dst64_ptr[1] = src64_ptr[1]; } static inline void __instr_mov_i_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] mov m.f %" PRIx64 "\n", p->thread_id, ip->mov.src_val); MOV_I(t, ip); } /* * dma. */ static inline void __instr_dma_ht_many_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip, uint32_t n_dma) { uint8_t *action_data = t->structs[0]; uint64_t valid_headers = t->valid_headers; uint32_t i; for (i = 0; i < n_dma; i++) { uint32_t header_id = ip->dma.dst.header_id[i]; uint32_t struct_id = ip->dma.dst.struct_id[i]; uint32_t offset = ip->dma.src.offset[i]; uint32_t n_bytes = ip->dma.n_bytes[i]; struct header_runtime *h = &t->headers[header_id]; uint8_t *h_ptr0 = h->ptr0; uint8_t *h_ptr = t->structs[struct_id]; void *dst = MASK64_BIT_GET(valid_headers, header_id) ? h_ptr : h_ptr0; void *src = &action_data[offset]; TRACE("[Thread %2u] dma h.s t.f\n", p->thread_id); /* Headers. */ memcpy(dst, src, n_bytes); t->structs[struct_id] = dst; valid_headers = MASK64_BIT_SET(valid_headers, header_id); } t->valid_headers = valid_headers; } static inline void __instr_dma_ht_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { __instr_dma_ht_many_exec(p, t, ip, 1); } static inline void __instr_dma_ht2_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n", p->thread_id); __instr_dma_ht_many_exec(p, t, ip, 2); } static inline void __instr_dma_ht3_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n", p->thread_id); __instr_dma_ht_many_exec(p, t, ip, 3); } static inline void __instr_dma_ht4_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n", p->thread_id); __instr_dma_ht_many_exec(p, t, ip, 4); } static inline void __instr_dma_ht5_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n", p->thread_id); __instr_dma_ht_many_exec(p, t, ip, 5); } static inline void __instr_dma_ht6_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n", p->thread_id); __instr_dma_ht_many_exec(p, t, ip, 6); } static inline void __instr_dma_ht7_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n", p->thread_id); __instr_dma_ht_many_exec(p, t, ip, 7); } static inline void __instr_dma_ht8_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n", p->thread_id); __instr_dma_ht_many_exec(p, t, ip, 8); } /* * alu. */ static inline void __instr_alu_add_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] add\n", p->thread_id); ALU(t, ip, +); } static inline void __instr_alu_add_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] add (mh)\n", p->thread_id); ALU_MH(t, ip, +); } static inline void __instr_alu_add_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] add (hm)\n", p->thread_id); ALU_HM(t, ip, +); } static inline void __instr_alu_add_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] add (hh)\n", p->thread_id); ALU_HH(t, ip, +); } static inline void __instr_alu_add_mi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] add (mi)\n", p->thread_id); ALU_MI(t, ip, +); } static inline void __instr_alu_add_hi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] add (hi)\n", p->thread_id); ALU_HI(t, ip, +); } static inline void __instr_alu_sub_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] sub\n", p->thread_id); ALU(t, ip, -); } static inline void __instr_alu_sub_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] sub (mh)\n", p->thread_id); ALU_MH(t, ip, -); } static inline void __instr_alu_sub_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] sub (hm)\n", p->thread_id); ALU_HM(t, ip, -); } static inline void __instr_alu_sub_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] sub (hh)\n", p->thread_id); ALU_HH(t, ip, -); } static inline void __instr_alu_sub_mi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] sub (mi)\n", p->thread_id); ALU_MI(t, ip, -); } static inline void __instr_alu_sub_hi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] sub (hi)\n", p->thread_id); ALU_HI(t, ip, -); } static inline void __instr_alu_shl_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shl\n", p->thread_id); ALU(t, ip, <<); } static inline void __instr_alu_shl_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shl (mh)\n", p->thread_id); ALU_MH(t, ip, <<); } static inline void __instr_alu_shl_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shl (hm)\n", p->thread_id); ALU_HM(t, ip, <<); } static inline void __instr_alu_shl_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shl (hh)\n", p->thread_id); ALU_HH(t, ip, <<); } static inline void __instr_alu_shl_mi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shl (mi)\n", p->thread_id); ALU_MI(t, ip, <<); } static inline void __instr_alu_shl_hi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shl (hi)\n", p->thread_id); ALU_HI(t, ip, <<); } static inline void __instr_alu_shr_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shr\n", p->thread_id); ALU(t, ip, >>); } static inline void __instr_alu_shr_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shr (mh)\n", p->thread_id); ALU_MH(t, ip, >>); } static inline void __instr_alu_shr_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shr (hm)\n", p->thread_id); ALU_HM(t, ip, >>); } static inline void __instr_alu_shr_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shr (hh)\n", p->thread_id); ALU_HH(t, ip, >>); } static inline void __instr_alu_shr_mi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shr (mi)\n", p->thread_id); /* Structs. */ ALU_MI(t, ip, >>); } static inline void __instr_alu_shr_hi_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] shr (hi)\n", p->thread_id); ALU_HI(t, ip, >>); } static inline void __instr_alu_and_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] and\n", p->thread_id); ALU(t, ip, &); } static inline void __instr_alu_and_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] and (mh)\n", p->thread_id); ALU_MH(t, ip, &); } static inline void __instr_alu_and_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] and (hm)\n", p->thread_id); ALU_HM_FAST(t, ip, &); } static inline void __instr_alu_and_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] and (hh)\n", p->thread_id); ALU_HH_FAST(t, ip, &); } static inline void __instr_alu_and_i_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] and (i)\n", p->thread_id); ALU_I(t, ip, &); } static inline void __instr_alu_or_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] or\n", p->thread_id); ALU(t, ip, |); } static inline void __instr_alu_or_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] or (mh)\n", p->thread_id); ALU_MH(t, ip, |); } static inline void __instr_alu_or_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] or (hm)\n", p->thread_id); ALU_HM_FAST(t, ip, |); } static inline void __instr_alu_or_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] or (hh)\n", p->thread_id); ALU_HH_FAST(t, ip, |); } static inline void __instr_alu_or_i_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] or (i)\n", p->thread_id); ALU_I(t, ip, |); } static inline void __instr_alu_xor_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] xor\n", p->thread_id); ALU(t, ip, ^); } static inline void __instr_alu_xor_mh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] xor (mh)\n", p->thread_id); ALU_MH(t, ip, ^); } static inline void __instr_alu_xor_hm_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] xor (hm)\n", p->thread_id); ALU_HM_FAST(t, ip, ^); } static inline void __instr_alu_xor_hh_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] xor (hh)\n", p->thread_id); ALU_HH_FAST(t, ip, ^); } static inline void __instr_alu_xor_i_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { TRACE("[Thread %2u] xor (i)\n", p->thread_id); ALU_I(t, ip, ^); } static inline void __instr_alu_ckadd_field_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint8_t *dst_struct, *src_struct; uint16_t *dst16_ptr, dst; uint64_t *src64_ptr, src64, src64_mask, src; uint64_t r; TRACE("[Thread %2u] ckadd (field)\n", p->thread_id); /* Structs. */ dst_struct = t->structs[ip->alu.dst.struct_id]; dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset]; dst = *dst16_ptr; src_struct = t->structs[ip->alu.src.struct_id]; src64_ptr = (uint64_t *)&src_struct[ip->alu.src.offset]; src64 = *src64_ptr; src64_mask = UINT64_MAX >> (64 - ip->alu.src.n_bits); src = src64 & src64_mask; /* Initialize the result with destination 1's complement. */ r = dst; r = ~r & 0xFFFF; /* The first input (r) is a 16-bit number. The second and the third * inputs are 32-bit numbers. In the worst case scenario, the sum of the * three numbers (output r) is a 34-bit number. */ r += (src >> 32) + (src & 0xFFFFFFFF); /* The first input is a 16-bit number. The second input is an 18-bit * number. In the worst case scenario, the sum of the two numbers is a * 19-bit number. */ r = (r & 0xFFFF) + (r >> 16); /* The first input is a 16-bit number (0 .. 0xFFFF). The second input is * a 3-bit number (0 .. 7). Their sum is a 17-bit number (0 .. 0x10006). */ r = (r & 0xFFFF) + (r >> 16); /* When the input r is (0 .. 0xFFFF), the output r is equal to the input * r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 .. * 0x10006), the output r is (0 .. 7). So no carry bit can be generated, * therefore the output r is always a 16-bit number. */ r = (r & 0xFFFF) + (r >> 16); /* Apply 1's complement to the result. */ r = ~r & 0xFFFF; r = r ? r : 0xFFFF; *dst16_ptr = (uint16_t)r; } static inline void __instr_alu_cksub_field_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint8_t *dst_struct, *src_struct; uint16_t *dst16_ptr, dst; uint64_t *src64_ptr, src64, src64_mask, src; uint64_t r; TRACE("[Thread %2u] cksub (field)\n", p->thread_id); /* Structs. */ dst_struct = t->structs[ip->alu.dst.struct_id]; dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset]; dst = *dst16_ptr; src_struct = t->structs[ip->alu.src.struct_id]; src64_ptr = (uint64_t *)&src_struct[ip->alu.src.offset]; src64 = *src64_ptr; src64_mask = UINT64_MAX >> (64 - ip->alu.src.n_bits); src = src64 & src64_mask; /* Initialize the result with destination 1's complement. */ r = dst; r = ~r & 0xFFFF; /* Subtraction in 1's complement arithmetic (i.e. a '- b) is the same as * the following sequence of operations in 2's complement arithmetic: * a '- b = (a - b) % 0xFFFF. * * In order to prevent an underflow for the below subtraction, in which * a 33-bit number (the subtrahend) is taken out of a 16-bit number (the * minuend), we first add a multiple of the 0xFFFF modulus to the * minuend. The number we add to the minuend needs to be a 34-bit number * or higher, so for readability reasons we picked the 36-bit multiple. * We are effectively turning the 16-bit minuend into a 36-bit number: * (a - b) % 0xFFFF = (a + 0xFFFF00000 - b) % 0xFFFF. */ r += 0xFFFF00000ULL; /* The output r is a 36-bit number. */ /* A 33-bit number is subtracted from a 36-bit number (the input r). The * result (the output r) is a 36-bit number. */ r -= (src >> 32) + (src & 0xFFFFFFFF); /* The first input is a 16-bit number. The second input is a 20-bit * number. Their sum is a 21-bit number. */ r = (r & 0xFFFF) + (r >> 16); /* The first input is a 16-bit number (0 .. 0xFFFF). The second input is * a 5-bit number (0 .. 31). The sum is a 17-bit number (0 .. 0x1001E). */ r = (r & 0xFFFF) + (r >> 16); /* When the input r is (0 .. 0xFFFF), the output r is equal to the input * r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 .. * 0x1001E), the output r is (0 .. 31). So no carry bit can be * generated, therefore the output r is always a 16-bit number. */ r = (r & 0xFFFF) + (r >> 16); /* Apply 1's complement to the result. */ r = ~r & 0xFFFF; r = r ? r : 0xFFFF; *dst16_ptr = (uint16_t)r; } static inline void __instr_alu_ckadd_struct20_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint8_t *dst_struct, *src_struct; uint16_t *dst16_ptr, dst; uint32_t *src32_ptr; uint64_t r0, r1; TRACE("[Thread %2u] ckadd (struct of 20 bytes)\n", p->thread_id); /* Structs. */ dst_struct = t->structs[ip->alu.dst.struct_id]; dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset]; dst = *dst16_ptr; src_struct = t->structs[ip->alu.src.struct_id]; src32_ptr = (uint32_t *)&src_struct[0]; /* Initialize the result with destination 1's complement. */ r0 = dst; r0 = ~r0 & 0xFFFF; r0 += src32_ptr[0]; /* The output r0 is a 33-bit number. */ r1 = src32_ptr[1]; /* r1 is a 32-bit number. */ r0 += src32_ptr[2]; /* The output r0 is a 34-bit number. */ r1 += src32_ptr[3]; /* The output r1 is a 33-bit number. */ r0 += r1 + src32_ptr[4]; /* The output r0 is a 35-bit number. */ /* The first input is a 16-bit number. The second input is a 19-bit * number. Their sum is a 20-bit number. */ r0 = (r0 & 0xFFFF) + (r0 >> 16); /* The first input is a 16-bit number (0 .. 0xFFFF). The second input is * a 4-bit number (0 .. 15). The sum is a 17-bit number (0 .. 0x1000E). */ r0 = (r0 & 0xFFFF) + (r0 >> 16); /* When the input r is (0 .. 0xFFFF), the output r is equal to the input * r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 .. * 0x1000E), the output r is (0 .. 15). So no carry bit can be * generated, therefore the output r is always a 16-bit number. */ r0 = (r0 & 0xFFFF) + (r0 >> 16); /* Apply 1's complement to the result. */ r0 = ~r0 & 0xFFFF; r0 = r0 ? r0 : 0xFFFF; *dst16_ptr = (uint16_t)r0; } static inline void __instr_alu_ckadd_struct_exec(struct rte_swx_pipeline *p __rte_unused, struct thread *t, const struct instruction *ip) { uint32_t src_header_id = ip->alu.src.n_bits; /* The src header ID is stored here. */ uint32_t n_src_header_bytes = t->headers[src_header_id].n_bytes; uint8_t *dst_struct, *src_struct; uint16_t *dst16_ptr, dst; uint32_t *src32_ptr; uint64_t r; uint32_t i; if (n_src_header_bytes == 20) { __instr_alu_ckadd_struct20_exec(p, t, ip); return; } TRACE("[Thread %2u] ckadd (struct)\n", p->thread_id); /* Structs. */ dst_struct = t->structs[ip->alu.dst.struct_id]; dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset]; dst = *dst16_ptr; src_struct = t->structs[ip->alu.src.struct_id]; src32_ptr = (uint32_t *)&src_struct[0]; /* Initialize the result with destination 1's complement. */ r = dst; r = ~r & 0xFFFF; /* The max number of 32-bit words in a 32K-byte header is 2^13. * Therefore, in the worst case scenario, a 45-bit number is added to a * 16-bit number (the input r), so the output r is 46-bit number. */ for (i = 0; i < n_src_header_bytes / 4; i++, src32_ptr++) r += *src32_ptr; /* The first input is a 16-bit number. The second input is a 30-bit * number. Their sum is a 31-bit number. */ r = (r & 0xFFFF) + (r >> 16); /* The first input is a 16-bit number (0 .. 0xFFFF). The second input is * a 15-bit number (0 .. 0x7FFF). The sum is a 17-bit number (0 .. 0x17FFE). */ r = (r & 0xFFFF) + (r >> 16); /* When the input r is (0 .. 0xFFFF), the output r is equal to the input * r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 .. * 0x17FFE), the output r is (0 .. 0x7FFF). So no carry bit can be * generated, therefore the output r is always a 16-bit number. */ r = (r & 0xFFFF) + (r >> 16); /* Apply 1's complement to the result. */ r = ~r & 0xFFFF; r = r ? r : 0xFFFF; *dst16_ptr = (uint16_t)r; } /* * Register array. */ static inline uint64_t * instr_regarray_regarray(struct rte_swx_pipeline *p, const struct instruction *ip) { struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id]; return r->regarray; } static inline uint64_t instr_regarray_idx_hbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id]; uint8_t *idx_struct = t->structs[ip->regarray.idx.struct_id]; uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->regarray.idx.offset]; uint64_t idx64 = *idx64_ptr; uint64_t idx64_mask = UINT64_MAX >> (64 - ip->regarray.idx.n_bits); uint64_t idx = idx64 & idx64_mask & r->size_mask; return idx; } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN static inline uint64_t instr_regarray_idx_nbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id]; uint8_t *idx_struct = t->structs[ip->regarray.idx.struct_id]; uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->regarray.idx.offset]; uint64_t idx64 = *idx64_ptr; uint64_t idx = (ntoh64(idx64) >> (64 - ip->regarray.idx.n_bits)) & r->size_mask; return idx; } #else #define instr_regarray_idx_nbo instr_regarray_idx_hbo #endif static inline uint64_t instr_regarray_idx_imm(struct rte_swx_pipeline *p, const struct instruction *ip) { struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id]; uint64_t idx = ip->regarray.idx_val & r->size_mask; return idx; } static inline uint64_t instr_regarray_src_hbo(struct thread *t, const struct instruction *ip) { uint8_t *src_struct = t->structs[ip->regarray.dstsrc.struct_id]; uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->regarray.dstsrc.offset]; uint64_t src64 = *src64_ptr; uint64_t src64_mask = UINT64_MAX >> (64 - ip->regarray.dstsrc.n_bits); uint64_t src = src64 & src64_mask; return src; } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN static inline uint64_t instr_regarray_src_nbo(struct thread *t, const struct instruction *ip) { uint8_t *src_struct = t->structs[ip->regarray.dstsrc.struct_id]; uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->regarray.dstsrc.offset]; uint64_t src64 = *src64_ptr; uint64_t src = ntoh64(src64) >> (64 - ip->regarray.dstsrc.n_bits); return src; } #else #define instr_regarray_src_nbo instr_regarray_src_hbo #endif static inline void instr_regarray_dst_hbo_src_hbo_set(struct thread *t, const struct instruction *ip, uint64_t src) { uint8_t *dst_struct = t->structs[ip->regarray.dstsrc.struct_id]; uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->regarray.dstsrc.offset]; uint64_t dst64 = *dst64_ptr; uint64_t dst64_mask = UINT64_MAX >> (64 - ip->regarray.dstsrc.n_bits); *dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN static inline void instr_regarray_dst_nbo_src_hbo_set(struct thread *t, const struct instruction *ip, uint64_t src) { uint8_t *dst_struct = t->structs[ip->regarray.dstsrc.struct_id]; uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->regarray.dstsrc.offset]; uint64_t dst64 = *dst64_ptr; uint64_t dst64_mask = UINT64_MAX >> (64 - ip->regarray.dstsrc.n_bits); src = hton64(src) >> (64 - ip->regarray.dstsrc.n_bits); *dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); } #else #define instr_regarray_dst_nbo_src_hbo_set instr_regarray_dst_hbo_src_hbo_set #endif static inline void __instr_regprefetch_rh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regprefetch (r[h])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); rte_prefetch0(®array[idx]); } static inline void __instr_regprefetch_rm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regprefetch (r[m])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); rte_prefetch0(®array[idx]); } static inline void __instr_regprefetch_ri_exec(struct rte_swx_pipeline *p, struct thread *t __rte_unused, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regprefetch (r[i])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); rte_prefetch0(®array[idx]); } static inline void __instr_regrd_hrh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regrd (h = r[h])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); instr_regarray_dst_nbo_src_hbo_set(t, ip, regarray[idx]); } static inline void __instr_regrd_hrm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regrd (h = r[m])\n", p->thread_id); /* Structs. */ regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); instr_regarray_dst_nbo_src_hbo_set(t, ip, regarray[idx]); } static inline void __instr_regrd_mrh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regrd (m = r[h])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); instr_regarray_dst_hbo_src_hbo_set(t, ip, regarray[idx]); } static inline void __instr_regrd_mrm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regrd (m = r[m])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); instr_regarray_dst_hbo_src_hbo_set(t, ip, regarray[idx]); } static inline void __instr_regrd_hri_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regrd (h = r[i])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); instr_regarray_dst_nbo_src_hbo_set(t, ip, regarray[idx]); } static inline void __instr_regrd_mri_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx; TRACE("[Thread %2u] regrd (m = r[i])\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); instr_regarray_dst_hbo_src_hbo_set(t, ip, regarray[idx]); } static inline void __instr_regwr_rhh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[h] = h)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); src = instr_regarray_src_nbo(t, ip); regarray[idx] = src; } static inline void __instr_regwr_rhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[h] = m)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); src = instr_regarray_src_hbo(t, ip); regarray[idx] = src; } static inline void __instr_regwr_rmh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[m] = h)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); src = instr_regarray_src_nbo(t, ip); regarray[idx] = src; } static inline void __instr_regwr_rmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[m] = m)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); src = instr_regarray_src_hbo(t, ip); regarray[idx] = src; } static inline void __instr_regwr_rhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[h] = i)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); src = ip->regarray.dstsrc_val; regarray[idx] = src; } static inline void __instr_regwr_rmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[m] = i)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); src = ip->regarray.dstsrc_val; regarray[idx] = src; } static inline void __instr_regwr_rih_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[i] = h)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); src = instr_regarray_src_nbo(t, ip); regarray[idx] = src; } static inline void __instr_regwr_rim_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[i] = m)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); src = instr_regarray_src_hbo(t, ip); regarray[idx] = src; } static inline void __instr_regwr_rii_exec(struct rte_swx_pipeline *p, struct thread *t __rte_unused, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regwr (r[i] = i)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); src = ip->regarray.dstsrc_val; regarray[idx] = src; } static inline void __instr_regadd_rhh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[h] += h)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); src = instr_regarray_src_nbo(t, ip); regarray[idx] += src; } static inline void __instr_regadd_rhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[h] += m)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); src = instr_regarray_src_hbo(t, ip); regarray[idx] += src; } static inline void __instr_regadd_rmh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[m] += h)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); src = instr_regarray_src_nbo(t, ip); regarray[idx] += src; } static inline void __instr_regadd_rmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[m] += m)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); src = instr_regarray_src_hbo(t, ip); regarray[idx] += src; } static inline void __instr_regadd_rhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[h] += i)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_nbo(p, t, ip); src = ip->regarray.dstsrc_val; regarray[idx] += src; } static inline void __instr_regadd_rmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[m] += i)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_hbo(p, t, ip); src = ip->regarray.dstsrc_val; regarray[idx] += src; } static inline void __instr_regadd_rih_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[i] += h)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); src = instr_regarray_src_nbo(t, ip); regarray[idx] += src; } static inline void __instr_regadd_rim_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[i] += m)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); src = instr_regarray_src_hbo(t, ip); regarray[idx] += src; } static inline void __instr_regadd_rii_exec(struct rte_swx_pipeline *p, struct thread *t __rte_unused, const struct instruction *ip) { uint64_t *regarray, idx, src; TRACE("[Thread %2u] regadd (r[i] += i)\n", p->thread_id); regarray = instr_regarray_regarray(p, ip); idx = instr_regarray_idx_imm(p, ip); src = ip->regarray.dstsrc_val; regarray[idx] += src; } /* * metarray. */ static inline struct meter * instr_meter_idx_hbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct metarray_runtime *r = &p->metarray_runtime[ip->meter.metarray_id]; uint8_t *idx_struct = t->structs[ip->meter.idx.struct_id]; uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->meter.idx.offset]; uint64_t idx64 = *idx64_ptr; uint64_t idx64_mask = UINT64_MAX >> (64 - (ip)->meter.idx.n_bits); uint64_t idx = idx64 & idx64_mask & r->size_mask; return &r->metarray[idx]; } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN static inline struct meter * instr_meter_idx_nbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct metarray_runtime *r = &p->metarray_runtime[ip->meter.metarray_id]; uint8_t *idx_struct = t->structs[ip->meter.idx.struct_id]; uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->meter.idx.offset]; uint64_t idx64 = *idx64_ptr; uint64_t idx = (ntoh64(idx64) >> (64 - ip->meter.idx.n_bits)) & r->size_mask; return &r->metarray[idx]; } #else #define instr_meter_idx_nbo instr_meter_idx_hbo #endif static inline struct meter * instr_meter_idx_imm(struct rte_swx_pipeline *p, const struct instruction *ip) { struct metarray_runtime *r = &p->metarray_runtime[ip->meter.metarray_id]; uint64_t idx = ip->meter.idx_val & r->size_mask; return &r->metarray[idx]; } static inline uint32_t instr_meter_length_hbo(struct thread *t, const struct instruction *ip) { uint8_t *src_struct = t->structs[ip->meter.length.struct_id]; uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->meter.length.offset]; uint64_t src64 = *src64_ptr; uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->meter.length.n_bits); uint64_t src = src64 & src64_mask; return (uint32_t)src; } #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN static inline uint32_t instr_meter_length_nbo(struct thread *t, const struct instruction *ip) { uint8_t *src_struct = t->structs[ip->meter.length.struct_id]; uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->meter.length.offset]; uint64_t src64 = *src64_ptr; uint64_t src = ntoh64(src64) >> (64 - ip->meter.length.n_bits); return (uint32_t)src; } #else #define instr_meter_length_nbo instr_meter_length_hbo #endif static inline enum rte_color instr_meter_color_in_hbo(struct thread *t, const struct instruction *ip) { uint8_t *src_struct = t->structs[ip->meter.color_in.struct_id]; uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->meter.color_in.offset]; uint64_t src64 = *src64_ptr; uint64_t src64_mask = UINT64_MAX >> (64 - ip->meter.color_in.n_bits); uint64_t src = src64 & src64_mask; return (enum rte_color)src; } static inline void instr_meter_color_out_hbo_set(struct thread *t, const struct instruction *ip, enum rte_color color_out) { uint8_t *dst_struct = t->structs[ip->meter.color_out.struct_id]; uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->meter.color_out.offset]; uint64_t dst64 = *dst64_ptr; uint64_t dst64_mask = UINT64_MAX >> (64 - ip->meter.color_out.n_bits); uint64_t src = (uint64_t)color_out; *dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); } static inline void __instr_metprefetch_h_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; TRACE("[Thread %2u] metprefetch (h)\n", p->thread_id); m = instr_meter_idx_nbo(p, t, ip); rte_prefetch0(m); } static inline void __instr_metprefetch_m_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; TRACE("[Thread %2u] metprefetch (m)\n", p->thread_id); m = instr_meter_idx_hbo(p, t, ip); rte_prefetch0(m); } static inline void __instr_metprefetch_i_exec(struct rte_swx_pipeline *p, struct thread *t __rte_unused, const struct instruction *ip) { struct meter *m; TRACE("[Thread %2u] metprefetch (i)\n", p->thread_id); m = instr_meter_idx_imm(p, ip); rte_prefetch0(m); } static inline void __instr_meter_hhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (hhm)\n", p->thread_id); m = instr_meter_idx_nbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_nbo(t, ip); color_in = instr_meter_color_in_hbo(t, ip); color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_hhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (hhi)\n", p->thread_id); m = instr_meter_idx_nbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_nbo(t, ip); color_in = (enum rte_color)ip->meter.color_in_val; color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_hmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (hmm)\n", p->thread_id); m = instr_meter_idx_nbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_hbo(t, ip); color_in = instr_meter_color_in_hbo(t, ip); color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_hmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (hmi)\n", p->thread_id); m = instr_meter_idx_nbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_hbo(t, ip); color_in = (enum rte_color)ip->meter.color_in_val; color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_mhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (mhm)\n", p->thread_id); m = instr_meter_idx_hbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_nbo(t, ip); color_in = instr_meter_color_in_hbo(t, ip); color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_mhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (mhi)\n", p->thread_id); m = instr_meter_idx_hbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_nbo(t, ip); color_in = (enum rte_color)ip->meter.color_in_val; color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_mmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (mmm)\n", p->thread_id); m = instr_meter_idx_hbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_hbo(t, ip); color_in = instr_meter_color_in_hbo(t, ip); color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_mmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (mmi)\n", p->thread_id); m = instr_meter_idx_hbo(p, t, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_hbo(t, ip); color_in = (enum rte_color)ip->meter.color_in_val; color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_ihm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (ihm)\n", p->thread_id); m = instr_meter_idx_imm(p, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_nbo(t, ip); color_in = instr_meter_color_in_hbo(t, ip); color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_ihi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (ihi)\n", p->thread_id); m = instr_meter_idx_imm(p, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_nbo(t, ip); color_in = (enum rte_color)ip->meter.color_in_val; color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_imm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (imm)\n", p->thread_id); m = instr_meter_idx_imm(p, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_hbo(t, ip); color_in = instr_meter_color_in_hbo(t, ip); color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } static inline void __instr_meter_imi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip) { struct meter *m; uint64_t time, n_pkts, n_bytes; uint32_t length; enum rte_color color_in, color_out; TRACE("[Thread %2u] meter (imi)\n", p->thread_id); m = instr_meter_idx_imm(p, ip); rte_prefetch0(m->n_pkts); time = rte_get_tsc_cycles(); length = instr_meter_length_hbo(t, ip); color_in = (enum rte_color)ip->meter.color_in_val; color_out = rte_meter_trtcm_color_aware_check(&m->m, &m->profile->profile, time, length, color_in); color_out &= m->color_mask; n_pkts = m->n_pkts[color_out]; n_bytes = m->n_bytes[color_out]; instr_meter_color_out_hbo_set(t, ip, color_out); m->n_pkts[color_out] = n_pkts + 1; m->n_bytes[color_out] = n_bytes + length; } #endif