/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include "ip_frag_common.h" /* Fragment Offset */ #define RTE_IPV4_HDR_DF_SHIFT 14 #define RTE_IPV4_HDR_MF_SHIFT 13 #define RTE_IPV4_HDR_FO_SHIFT 3 #define IPV4_HDR_DF_MASK (1 << RTE_IPV4_HDR_DF_SHIFT) #define IPV4_HDR_MF_MASK (1 << RTE_IPV4_HDR_MF_SHIFT) #define IPV4_HDR_FO_ALIGN (1 << RTE_IPV4_HDR_FO_SHIFT) #define IPV4_HDR_MAX_LEN 60 static inline void __fill_ipv4hdr_frag(struct rte_ipv4_hdr *dst, const struct rte_ipv4_hdr *src, uint16_t header_len, uint16_t len, uint16_t fofs, uint16_t dofs, uint32_t mf) { memcpy(dst, src, header_len); fofs = (uint16_t)(fofs + (dofs >> RTE_IPV4_HDR_FO_SHIFT)); fofs = (uint16_t)(fofs | mf << RTE_IPV4_HDR_MF_SHIFT); dst->fragment_offset = rte_cpu_to_be_16(fofs); dst->total_length = rte_cpu_to_be_16(len); dst->hdr_checksum = 0; } static inline void __free_fragments(struct rte_mbuf *mb[], uint32_t num) { uint32_t i; for (i = 0; i != num; i++) rte_pktmbuf_free(mb[i]); } static inline uint16_t __create_ipopt_frag_hdr(uint8_t *iph, uint16_t ipopt_len, uint8_t *ipopt_frag_hdr) { uint16_t len = ipopt_len; struct rte_ipv4_hdr *iph_opt = (struct rte_ipv4_hdr *)ipopt_frag_hdr; ipopt_len = 0; memcpy(ipopt_frag_hdr, iph, sizeof(struct rte_ipv4_hdr)); ipopt_frag_hdr += sizeof(struct rte_ipv4_hdr); uint8_t *p_opt = iph + sizeof(struct rte_ipv4_hdr); while (len > 0) { if (unlikely(*p_opt == RTE_IPV4_HDR_OPT_NOP)) { len--; p_opt++; continue; } else if (unlikely(*p_opt == RTE_IPV4_HDR_OPT_EOL)) break; if (unlikely(p_opt[1] < 2 || p_opt[1] > len)) break; if (RTE_IPV4_HDR_OPT_COPIED(*p_opt)) { memcpy(ipopt_frag_hdr + ipopt_len, p_opt, p_opt[1]); ipopt_len += p_opt[1]; } len -= p_opt[1]; p_opt += p_opt[1]; } len = RTE_ALIGN_CEIL(ipopt_len, RTE_IPV4_IHL_MULTIPLIER); memset(ipopt_frag_hdr + ipopt_len, RTE_IPV4_HDR_OPT_EOL, len - ipopt_len); ipopt_len = len; iph_opt->ihl = (sizeof(struct rte_ipv4_hdr) + ipopt_len) / RTE_IPV4_IHL_MULTIPLIER; return ipopt_len; } /** * IPv4 fragmentation. * * This function implements the fragmentation of IPv4 packets. * * @param pkt_in * The input packet. * @param pkts_out * Array storing the output fragments. * @param mtu_size * Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv4 * datagrams. This value includes the size of the IPv4 header. * @param pool_direct * MBUF pool used for allocating direct buffers for the output fragments. * @param pool_indirect * MBUF pool used for allocating indirect buffers for the output fragments. * @return * Upon successful completion - number of output fragments placed * in the pkts_out array. * Otherwise - (-1) * . */ int32_t rte_ipv4_fragment_packet(struct rte_mbuf *pkt_in, struct rte_mbuf **pkts_out, uint16_t nb_pkts_out, uint16_t mtu_size, struct rte_mempool *pool_direct, struct rte_mempool *pool_indirect) { struct rte_mbuf *in_seg = NULL; struct rte_ipv4_hdr *in_hdr; uint32_t out_pkt_pos, in_seg_data_pos; uint32_t more_in_segs; uint16_t fragment_offset, flag_offset, frag_size, header_len; uint16_t frag_bytes_remaining; uint8_t ipopt_frag_hdr[IPV4_HDR_MAX_LEN]; uint16_t ipopt_len; /* * Formal parameter checking. */ if (unlikely(pkt_in == NULL) || unlikely(pkts_out == NULL) || unlikely(nb_pkts_out == 0) || unlikely(pool_direct == NULL) || unlikely(pool_indirect == NULL) || unlikely(mtu_size < RTE_ETHER_MIN_MTU)) return -EINVAL; in_hdr = rte_pktmbuf_mtod(pkt_in, struct rte_ipv4_hdr *); header_len = (in_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) * RTE_IPV4_IHL_MULTIPLIER; /* Check IP header length */ if (unlikely(pkt_in->data_len < header_len) || unlikely(mtu_size < header_len)) return -EINVAL; /* * Ensure the IP payload length of all fragments is aligned to a * multiple of 8 bytes as per RFC791 section 2.3. */ frag_size = RTE_ALIGN_FLOOR((mtu_size - header_len), IPV4_HDR_FO_ALIGN); flag_offset = rte_cpu_to_be_16(in_hdr->fragment_offset); /* If Don't Fragment flag is set */ if (unlikely ((flag_offset & IPV4_HDR_DF_MASK) != 0)) return -ENOTSUP; /* Check that pkts_out is big enough to hold all fragments */ if (unlikely(frag_size * nb_pkts_out < (uint16_t)(pkt_in->pkt_len - header_len))) return -EINVAL; in_seg = pkt_in; in_seg_data_pos = header_len; out_pkt_pos = 0; fragment_offset = 0; ipopt_len = header_len - sizeof(struct rte_ipv4_hdr); if (unlikely(ipopt_len > RTE_IPV4_HDR_OPT_MAX_LEN)) return -EINVAL; more_in_segs = 1; while (likely(more_in_segs)) { struct rte_mbuf *out_pkt = NULL, *out_seg_prev = NULL; uint32_t more_out_segs; struct rte_ipv4_hdr *out_hdr; /* Allocate direct buffer */ out_pkt = rte_pktmbuf_alloc(pool_direct); if (unlikely(out_pkt == NULL)) { __free_fragments(pkts_out, out_pkt_pos); return -ENOMEM; } /* Reserve space for the IP header that will be built later */ out_pkt->data_len = header_len; out_pkt->pkt_len = header_len; frag_bytes_remaining = frag_size; out_seg_prev = out_pkt; more_out_segs = 1; while (likely(more_out_segs && more_in_segs)) { struct rte_mbuf *out_seg = NULL; uint32_t len; /* Allocate indirect buffer */ out_seg = rte_pktmbuf_alloc(pool_indirect); if (unlikely(out_seg == NULL)) { rte_pktmbuf_free(out_pkt); __free_fragments(pkts_out, out_pkt_pos); return -ENOMEM; } out_seg_prev->next = out_seg; out_seg_prev = out_seg; /* Prepare indirect buffer */ rte_pktmbuf_attach(out_seg, in_seg); len = frag_bytes_remaining; if (len > (in_seg->data_len - in_seg_data_pos)) { len = in_seg->data_len - in_seg_data_pos; } out_seg->data_off = in_seg->data_off + in_seg_data_pos; out_seg->data_len = (uint16_t)len; out_pkt->pkt_len = (uint16_t)(len + out_pkt->pkt_len); out_pkt->nb_segs += 1; in_seg_data_pos += len; frag_bytes_remaining -= len; /* Current output packet (i.e. fragment) done ? */ if (unlikely(frag_bytes_remaining == 0)) more_out_segs = 0; /* Current input segment done ? */ if (unlikely(in_seg_data_pos == in_seg->data_len)) { in_seg = in_seg->next; in_seg_data_pos = 0; if (unlikely(in_seg == NULL)) more_in_segs = 0; } } /* Build the IP header */ out_hdr = rte_pktmbuf_mtod(out_pkt, struct rte_ipv4_hdr *); __fill_ipv4hdr_frag(out_hdr, in_hdr, header_len, (uint16_t)out_pkt->pkt_len, flag_offset, fragment_offset, more_in_segs); if (unlikely((fragment_offset == 0) && (ipopt_len) && ((flag_offset & RTE_IPV4_HDR_OFFSET_MASK) == 0))) { ipopt_len = __create_ipopt_frag_hdr((uint8_t *)in_hdr, ipopt_len, ipopt_frag_hdr); fragment_offset = (uint16_t)(fragment_offset + out_pkt->pkt_len - header_len); out_pkt->l3_len = header_len; header_len = sizeof(struct rte_ipv4_hdr) + ipopt_len; in_hdr = (struct rte_ipv4_hdr *)ipopt_frag_hdr; } else { fragment_offset = (uint16_t)(fragment_offset + out_pkt->pkt_len - header_len); out_pkt->l3_len = header_len; } /* Write the fragment to the output list */ pkts_out[out_pkt_pos] = out_pkt; out_pkt_pos ++; } return out_pkt_pos; } /** * IPv4 fragmentation by copy. * * This function implements the fragmentation of IPv4 packets by copy * non-segmented mbuf. * This function is mainly used to adapt Tx MBUF_FAST_FREE offload. * MBUF_FAST_FREE: Device supports optimization for fast release of mbufs. * When set, application must guarantee that per-queue all mbufs comes from * the same mempool, has refcnt = 1, direct and non-segmented. * * @param pkt_in * The input packet. * @param pkts_out * Array storing the output fragments. * @param nb_pkts_out * Number of fragments. * @param mtu_size * Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv4 * datagrams. This value includes the size of the IPv4 header. * @param pool_direct * MBUF pool used for allocating direct buffers for the output fragments. * @return * Upon successful completion - number of output fragments placed * in the pkts_out array. * Otherwise - (-1) * errno. */ int32_t rte_ipv4_fragment_copy_nonseg_packet(struct rte_mbuf *pkt_in, struct rte_mbuf **pkts_out, uint16_t nb_pkts_out, uint16_t mtu_size, struct rte_mempool *pool_direct) { struct rte_mbuf *in_seg = NULL; struct rte_ipv4_hdr *in_hdr; uint32_t out_pkt_pos, in_seg_data_pos; uint32_t more_in_segs; uint16_t fragment_offset, flag_offset, frag_size, header_len; uint16_t frag_bytes_remaining; uint8_t ipopt_frag_hdr[IPV4_HDR_MAX_LEN]; uint16_t ipopt_len; /* * Formal parameter checking. */ if (unlikely(pkt_in == NULL) || unlikely(pkts_out == NULL) || unlikely(nb_pkts_out == 0) || unlikely(pool_direct == NULL) || unlikely(mtu_size < RTE_ETHER_MIN_MTU)) return -EINVAL; in_hdr = rte_pktmbuf_mtod(pkt_in, struct rte_ipv4_hdr *); header_len = (in_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) * RTE_IPV4_IHL_MULTIPLIER; /* Check IP header length */ if (unlikely(pkt_in->data_len < header_len) || unlikely(mtu_size < header_len)) return -EINVAL; /* * Ensure the IP payload length of all fragments is aligned to a * multiple of 8 bytes as per RFC791 section 2.3. */ frag_size = RTE_ALIGN_FLOOR((mtu_size - header_len), IPV4_HDR_FO_ALIGN); flag_offset = rte_cpu_to_be_16(in_hdr->fragment_offset); /* If Don't Fragment flag is set */ if (unlikely((flag_offset & IPV4_HDR_DF_MASK) != 0)) return -ENOTSUP; /* Check that pkts_out is big enough to hold all fragments */ if (unlikely(frag_size * nb_pkts_out < (uint16_t)(pkt_in->pkt_len - header_len))) return -EINVAL; in_seg = pkt_in; in_seg_data_pos = header_len; out_pkt_pos = 0; fragment_offset = 0; ipopt_len = header_len - sizeof(struct rte_ipv4_hdr); if (unlikely(ipopt_len > RTE_IPV4_HDR_OPT_MAX_LEN)) return -EINVAL; more_in_segs = 1; while (likely(more_in_segs)) { struct rte_mbuf *out_pkt = NULL; uint32_t more_out_segs; struct rte_ipv4_hdr *out_hdr; /* Allocate direct buffer */ out_pkt = rte_pktmbuf_alloc(pool_direct); if (unlikely(out_pkt == NULL)) { __free_fragments(pkts_out, out_pkt_pos); return -ENOMEM; } if (unlikely(rte_pktmbuf_tailroom(out_pkt) < frag_size)) { rte_pktmbuf_free(out_pkt); __free_fragments(pkts_out, out_pkt_pos); return -EINVAL; } /* Reserve space for the IP header that will be built later */ out_pkt->data_len = header_len; out_pkt->pkt_len = header_len; frag_bytes_remaining = frag_size; more_out_segs = 1; while (likely(more_out_segs && more_in_segs)) { uint32_t len; len = frag_bytes_remaining; if (len > (in_seg->data_len - in_seg_data_pos)) len = in_seg->data_len - in_seg_data_pos; memcpy(rte_pktmbuf_mtod_offset(out_pkt, char *, out_pkt->data_len), rte_pktmbuf_mtod_offset(in_seg, char *, in_seg_data_pos), len); in_seg_data_pos += len; frag_bytes_remaining -= len; out_pkt->data_len += len; /* Current output packet (i.e. fragment) done ? */ if (unlikely(frag_bytes_remaining == 0)) more_out_segs = 0; /* Current input segment done ? */ if (unlikely(in_seg_data_pos == in_seg->data_len)) { in_seg = in_seg->next; in_seg_data_pos = 0; if (unlikely(in_seg == NULL)) more_in_segs = 0; } } /* Build the IP header */ out_pkt->pkt_len = out_pkt->data_len; out_hdr = rte_pktmbuf_mtod(out_pkt, struct rte_ipv4_hdr *); __fill_ipv4hdr_frag(out_hdr, in_hdr, header_len, (uint16_t)out_pkt->pkt_len, flag_offset, fragment_offset, more_in_segs); if (unlikely((fragment_offset == 0) && (ipopt_len) && ((flag_offset & RTE_IPV4_HDR_OFFSET_MASK) == 0))) { ipopt_len = __create_ipopt_frag_hdr((uint8_t *)in_hdr, ipopt_len, ipopt_frag_hdr); fragment_offset = (uint16_t)(fragment_offset + out_pkt->pkt_len - header_len); out_pkt->l3_len = header_len; header_len = sizeof(struct rte_ipv4_hdr) + ipopt_len; in_hdr = (struct rte_ipv4_hdr *)ipopt_frag_hdr; } else { fragment_offset = (uint16_t)(fragment_offset + out_pkt->pkt_len - header_len); out_pkt->l3_len = header_len; } /* Write the fragment to the output list */ pkts_out[out_pkt_pos] = out_pkt; out_pkt_pos++; } return out_pkt_pos; }