/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2022 Intel Corporation * Implements SFF-8472 optics diagnostics. */ #include #include "sff_common.h" /* Offsets in decimal, for direct comparison with the SFF specs */ /* A0-based EEPROM offsets for DOM support checks */ #define SFF_A0_DOM 92 #define SFF_A0_OPTIONS 93 #define SFF_A0_COMP 94 /* EEPROM bit values for various registers */ #define SFF_A0_DOM_EXTCAL RTE_BIT32(4) #define SFF_A0_DOM_INTCAL RTE_BIT32(5) #define SFF_A0_DOM_IMPL RTE_BIT32(6) #define SFF_A0_DOM_PWRT RTE_BIT32(3) #define SFF_A0_OPTIONS_AW RTE_BIT32(7) /* * This is the offset at which the A2 page is in the EEPROM * blob returned by the kernel. */ #define SFF_A2_BASE 0x100 /* A2-based offsets for DOM */ #define SFF_A2_TEMP 96 #define SFF_A2_TEMP_HALRM 0 #define SFF_A2_TEMP_LALRM 2 #define SFF_A2_TEMP_HWARN 4 #define SFF_A2_TEMP_LWARN 6 #define SFF_A2_VCC 98 #define SFF_A2_VCC_HALRM 8 #define SFF_A2_VCC_LALRM 10 #define SFF_A2_VCC_HWARN 12 #define SFF_A2_VCC_LWARN 14 #define SFF_A2_BIAS 100 #define SFF_A2_BIAS_HALRM 16 #define SFF_A2_BIAS_LALRM 18 #define SFF_A2_BIAS_HWARN 20 #define SFF_A2_BIAS_LWARN 22 #define SFF_A2_TX_PWR 102 #define SFF_A2_TX_PWR_HALRM 24 #define SFF_A2_TX_PWR_LALRM 26 #define SFF_A2_TX_PWR_HWARN 28 #define SFF_A2_TX_PWR_LWARN 30 #define SFF_A2_RX_PWR 104 #define SFF_A2_RX_PWR_HALRM 32 #define SFF_A2_RX_PWR_LALRM 34 #define SFF_A2_RX_PWR_HWARN 36 #define SFF_A2_RX_PWR_LWARN 38 #define SFF_A2_ALRM_FLG 112 #define SFF_A2_WARN_FLG 116 /* 32-bit little-endian calibration constants */ #define SFF_A2_CAL_RXPWR4 56 #define SFF_A2_CAL_RXPWR3 60 #define SFF_A2_CAL_RXPWR2 64 #define SFF_A2_CAL_RXPWR1 68 #define SFF_A2_CAL_RXPWR0 72 /* 16-bit little endian calibration constants */ #define SFF_A2_CAL_TXI_SLP 76 #define SFF_A2_CAL_TXI_OFF 78 #define SFF_A2_CAL_TXPWR_SLP 80 #define SFF_A2_CAL_TXPWR_OFF 82 #define SFF_A2_CAL_T_SLP 84 #define SFF_A2_CAL_T_OFF 86 #define SFF_A2_CAL_V_SLP 88 #define SFF_A2_CAL_V_OFF 90 static struct sff_8472_aw_flags { const char *str; /* Human-readable string, null at the end */ int offset; /* A2-relative address offset */ uint8_t value; /* Alarm is on if (offset & value) != 0. */ } sff_8472_aw_flags[] = { { "Laser bias current high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(3) }, { "Laser bias current low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(2) }, { "Laser bias current high warning", SFF_A2_WARN_FLG, RTE_BIT32(3) }, { "Laser bias current low warning", SFF_A2_WARN_FLG, RTE_BIT32(2) }, { "Laser output power high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(1) }, { "Laser output power low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(0) }, { "Laser output power high warning", SFF_A2_WARN_FLG, RTE_BIT32(1) }, { "Laser output power low warning", SFF_A2_WARN_FLG, RTE_BIT32(0) }, { "Module temperature high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(7) }, { "Module temperature low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(6) }, { "Module temperature high warning", SFF_A2_WARN_FLG, RTE_BIT32(7) }, { "Module temperature low warning", SFF_A2_WARN_FLG, RTE_BIT32(6) }, { "Module voltage high alarm", SFF_A2_ALRM_FLG, RTE_BIT32(5) }, { "Module voltage low alarm", SFF_A2_ALRM_FLG, RTE_BIT32(4) }, { "Module voltage high warning", SFF_A2_WARN_FLG, RTE_BIT32(5) }, { "Module voltage low warning", SFF_A2_WARN_FLG, RTE_BIT32(4) }, { "Laser rx power high alarm", SFF_A2_ALRM_FLG + 1, RTE_BIT32(7) }, { "Laser rx power low alarm", SFF_A2_ALRM_FLG + 1, RTE_BIT32(6) }, { "Laser rx power high warning", SFF_A2_WARN_FLG + 1, RTE_BIT32(7) }, { "Laser rx power low warning", SFF_A2_WARN_FLG + 1, RTE_BIT32(6) }, { NULL, 0, 0 }, }; /* Most common case: 16-bit unsigned integer in a certain unit */ #define A2_OFFSET_TO_U16(offset) \ (data[SFF_A2_BASE + (offset)] << 8 | data[SFF_A2_BASE + (offset) + 1]) /* Calibration slope is a number between 0.0 included and 256.0 excluded. */ #define A2_OFFSET_TO_SLP(offset) \ (data[SFF_A2_BASE + (offset)] + data[SFF_A2_BASE + (offset) + 1] / 256.) /* Calibration offset is an integer from -32768 to 32767 */ #define A2_OFFSET_TO_OFF(offset) \ ((int16_t)A2_OFFSET_TO_U16(offset)) /* RXPWR(x) are IEEE-754 floating point numbers in big-endian format */ #define A2_OFFSET_TO_RXPWRx(offset) \ (befloattoh((const uint32_t *)(data + SFF_A2_BASE + (offset)))) /* * 2-byte internal temperature conversions: * First byte is a signed 8-bit integer, which is the temp decimal part * Second byte are 1/256th of degree, which are added to the dec part. */ #define A2_OFFSET_TO_TEMP(offset) ((int16_t)A2_OFFSET_TO_U16(offset)) static void sff_8472_dom_parse(const uint8_t *data, struct sff_diags *sd) { sd->bias_cur[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_BIAS); sd->bias_cur[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HALRM); sd->bias_cur[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LALRM); sd->bias_cur[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HWARN); sd->bias_cur[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LWARN); sd->sfp_voltage[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_VCC); sd->sfp_voltage[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_HALRM); sd->sfp_voltage[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_LALRM); sd->sfp_voltage[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_HWARN); sd->sfp_voltage[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_LWARN); sd->tx_power[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR); sd->tx_power[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HALRM); sd->tx_power[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LALRM); sd->tx_power[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HWARN); sd->tx_power[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LWARN); sd->rx_power[SFF_MCURR] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR); sd->rx_power[SFF_HALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HALRM); sd->rx_power[SFF_LALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LALRM); sd->rx_power[SFF_HWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HWARN); sd->rx_power[SFF_LWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LWARN); sd->sfp_temp[SFF_MCURR] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP); sd->sfp_temp[SFF_HALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HALRM); sd->sfp_temp[SFF_LALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LALRM); sd->sfp_temp[SFF_HWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HWARN); sd->sfp_temp[SFF_LWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LWARN); } /* Converts to a float from a big-endian 4-byte source buffer. */ static float befloattoh(const uint32_t *source) { union { uint32_t src; float dst; } converter; converter.src = ntohl(*source); return converter.dst; } static void sff_8472_calibration(const uint8_t *data, struct sff_diags *sd) { unsigned long i; uint16_t rx_reading; /* Calibration should occur for all values (threshold and current) */ for (i = 0; i < RTE_DIM(sd->bias_cur); ++i) { /* * Apply calibration formula 1 (Temp., Voltage, Bias, Tx Power) */ sd->bias_cur[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXI_SLP); sd->tx_power[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXPWR_SLP); sd->sfp_voltage[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_V_SLP); sd->sfp_temp[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_T_SLP); sd->bias_cur[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXI_OFF); sd->tx_power[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXPWR_OFF); sd->sfp_voltage[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_V_OFF); sd->sfp_temp[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_T_OFF); /* * Apply calibration formula 2 (Rx Power only) */ rx_reading = sd->rx_power[i]; sd->rx_power[i] = A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR0); sd->rx_power[i] += rx_reading * A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR1); sd->rx_power[i] += rx_reading * A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR2); sd->rx_power[i] += rx_reading * A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR3); } } static void sff_8472_parse_eeprom(const uint8_t *data, struct sff_diags *sd) { sd->supports_dom = data[SFF_A0_DOM] & SFF_A0_DOM_IMPL; sd->supports_alarms = data[SFF_A0_OPTIONS] & SFF_A0_OPTIONS_AW; sd->calibrated_ext = data[SFF_A0_DOM] & SFF_A0_DOM_EXTCAL; sd->rx_power_type = data[SFF_A0_DOM] & SFF_A0_DOM_PWRT; sff_8472_dom_parse(data, sd); /* * If the SFP is externally calibrated, we need to read calibration data * and compensate the already stored readings. */ if (sd->calibrated_ext) sff_8472_calibration(data, sd); } void sff_8472_show_all(const uint8_t *data, struct rte_tel_data *d) { struct sff_diags sd = {0}; const char *rx_power_string = NULL; char val_string[SFF_ITEM_VAL_COMPOSE_SIZE]; int i; sff_8472_parse_eeprom(data, &sd); if (!sd.supports_dom) { ssf_add_dict_string(d, "Optical diagnostics support", "No"); return; } ssf_add_dict_string(d, "Optical diagnostics support", "Yes"); SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_MCURR]); ssf_add_dict_string(d, "Laser bias current", val_string); SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_MCURR]); ssf_add_dict_string(d, "Laser output power", val_string); if (!sd.rx_power_type) rx_power_string = "Receiver signal OMA"; else rx_power_string = "Receiver signal average optical power"; SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_MCURR]); ssf_add_dict_string(d, rx_power_string, val_string); SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_MCURR]); ssf_add_dict_string(d, "Module temperature", val_string); SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_MCURR]); ssf_add_dict_string(d, "Module voltage", val_string); ssf_add_dict_string(d, "Alarm/warning flags implemented", (sd.supports_alarms ? "Yes" : "No")); if (sd.supports_alarms) { for (i = 0; sff_8472_aw_flags[i].str; ++i) { ssf_add_dict_string(d, sff_8472_aw_flags[i].str, data[SFF_A2_BASE + sff_8472_aw_flags[i].offset] & sff_8472_aw_flags[i].value ? "On" : "Off"); } sff_show_thresholds(sd, d); } }