/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include "cperf_ops.h" #include "cperf_test_pmd_cyclecount.h" #include "cperf_test_common.h" #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n" #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n" #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n" #define CSV_LINE_FMT "%10u,%10u,%u,%u,%u,%u,%u,%.3f,%.3f,%.3f\n" struct cperf_pmd_cyclecount_ctx { uint8_t dev_id; uint16_t qp_id; uint8_t lcore_id; struct rte_mempool *pool; struct rte_crypto_op **ops; struct rte_crypto_op **ops_processed; struct rte_cryptodev_sym_session *sess; cperf_populate_ops_t populate_ops; uint32_t src_buf_offset; uint32_t dst_buf_offset; const struct cperf_options *options; const struct cperf_test_vector *test_vector; }; struct pmd_cyclecount_state { struct cperf_pmd_cyclecount_ctx *ctx; const struct cperf_options *opts; uint32_t lcore; uint64_t delay; int linearize; uint32_t ops_enqd; uint32_t ops_deqd; uint32_t ops_enq_retries; uint32_t ops_deq_retries; double cycles_per_build; double cycles_per_enq; double cycles_per_deq; }; static const uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); static void cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx) { if (!ctx) return; if (ctx->sess) { #ifdef RTE_LIB_SECURITY if (ctx->options->op_type == CPERF_PDCP || ctx->options->op_type == CPERF_DOCSIS) { struct rte_security_ctx *sec_ctx = (struct rte_security_ctx *) rte_cryptodev_get_sec_ctx(ctx->dev_id); rte_security_session_destroy(sec_ctx, (struct rte_security_session *)ctx->sess); } else #endif { rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); rte_cryptodev_sym_session_free(ctx->sess); } } if (ctx->pool) rte_mempool_free(ctx->pool); if (ctx->ops) rte_free(ctx->ops); if (ctx->ops_processed) rte_free(ctx->ops_processed); rte_free(ctx); } void * cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp, struct rte_mempool *sess_priv_mp, uint8_t dev_id, uint16_t qp_id, const struct cperf_options *options, const struct cperf_test_vector *test_vector, const struct cperf_op_fns *op_fns) { struct cperf_pmd_cyclecount_ctx *ctx = NULL; /* preallocate buffers for crypto ops as they can get quite big */ size_t alloc_sz = sizeof(struct rte_crypto_op *) * options->nb_descriptors; ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0); if (ctx == NULL) goto err; ctx->dev_id = dev_id; ctx->qp_id = qp_id; ctx->populate_ops = op_fns->populate_ops; ctx->options = options; ctx->test_vector = test_vector; /* IV goes at the end of the crypto operation */ uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options, test_vector, iv_offset); if (ctx->sess == NULL) goto err; if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0, &ctx->src_buf_offset, &ctx->dst_buf_offset, &ctx->pool) < 0) goto err; ctx->ops = rte_malloc("ops", alloc_sz, 0); if (!ctx->ops) goto err; ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0); if (!ctx->ops_processed) goto err; return ctx; err: cperf_pmd_cyclecount_test_free(ctx); return NULL; } /* benchmark alloc-build-free of ops */ static inline int pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op, uint16_t test_burst_size) { uint32_t iter_ops_left = state->opts->total_ops - cur_op; uint32_t iter_ops_needed = RTE_MIN(state->opts->nb_descriptors, iter_ops_left); uint32_t cur_iter_op; uint32_t imix_idx = 0; for (cur_iter_op = 0; cur_iter_op < iter_ops_needed; cur_iter_op += test_burst_size) { uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op, test_burst_size); struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op]; /* Allocate objects containing crypto operations and mbufs */ if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops, burst_size) != 0) { RTE_LOG(ERR, USER1, "Failed to allocate more crypto operations " "from the crypto operation pool.\n" "Consider increasing the pool size " "with --pool-sz\n"); return -1; } /* Setup crypto op, attach mbuf etc */ (state->ctx->populate_ops)(ops, state->ctx->src_buf_offset, state->ctx->dst_buf_offset, burst_size, state->ctx->sess, state->opts, state->ctx->test_vector, iv_offset, &imix_idx, NULL); #ifdef CPERF_LINEARIZATION_ENABLE /* Check if source mbufs require coalescing */ if (state->linearize) { uint8_t i; for (i = 0; i < burst_size; i++) { struct rte_mbuf *src = ops[i]->sym->m_src; rte_pktmbuf_linearize(src); } } #endif /* CPERF_LINEARIZATION_ENABLE */ rte_mempool_put_bulk(state->ctx->pool, (void **)ops, burst_size); } return 0; } /* allocate and build ops (no free) */ static int pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state, uint32_t iter_ops_needed, uint16_t test_burst_size) { uint32_t cur_iter_op; uint32_t imix_idx = 0; for (cur_iter_op = 0; cur_iter_op < iter_ops_needed; cur_iter_op += test_burst_size) { uint32_t burst_size = RTE_MIN( iter_ops_needed - cur_iter_op, test_burst_size); struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op]; /* Allocate objects containing crypto operations and mbufs */ if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops, burst_size) != 0) { RTE_LOG(ERR, USER1, "Failed to allocate more crypto operations " "from the crypto operation pool.\n" "Consider increasing the pool size " "with --pool-sz\n"); return -1; } /* Setup crypto op, attach mbuf etc */ (state->ctx->populate_ops)(ops, state->ctx->src_buf_offset, state->ctx->dst_buf_offset, burst_size, state->ctx->sess, state->opts, state->ctx->test_vector, iv_offset, &imix_idx, NULL); } return 0; } /* benchmark enqueue, returns number of ops enqueued */ static uint32_t pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state, uint32_t iter_ops_needed, uint16_t test_burst_size) { /* Enqueue full descriptor ring of ops on crypto device */ uint32_t cur_iter_op = 0; while (cur_iter_op < iter_ops_needed) { uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op, test_burst_size); struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op]; uint32_t burst_enqd; burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id, state->ctx->qp_id, ops, burst_size); /* if we couldn't enqueue anything, the queue is full */ if (!burst_enqd) { /* don't try to dequeue anything we didn't enqueue */ return cur_iter_op; } if (burst_enqd < burst_size) state->ops_enq_retries++; state->ops_enqd += burst_enqd; cur_iter_op += burst_enqd; } return iter_ops_needed; } /* benchmark dequeue */ static void pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state, uint32_t iter_ops_needed, uint16_t test_burst_size) { /* Dequeue full descriptor ring of ops on crypto device */ uint32_t cur_iter_op = 0; while (cur_iter_op < iter_ops_needed) { uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op, test_burst_size); struct rte_crypto_op **ops_processed = &state->ctx->ops[cur_iter_op]; uint32_t burst_deqd; burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id, state->ctx->qp_id, ops_processed, burst_size); if (burst_deqd < burst_size) state->ops_deq_retries++; state->ops_deqd += burst_deqd; cur_iter_op += burst_deqd; } } /* run benchmark per burst size */ static inline int pmd_cyclecount_bench_burst_sz( struct pmd_cyclecount_state *state, uint16_t test_burst_size) { uint64_t tsc_start; uint64_t tsc_end; uint64_t tsc_op; uint64_t tsc_enq; uint64_t tsc_deq; uint32_t cur_op; /* reset all counters */ tsc_enq = 0; tsc_deq = 0; state->ops_enqd = 0; state->ops_enq_retries = 0; state->ops_deqd = 0; state->ops_deq_retries = 0; /* * Benchmark crypto op alloc-build-free separately. */ tsc_start = rte_rdtsc_precise(); for (cur_op = 0; cur_op < state->opts->total_ops; cur_op += state->opts->nb_descriptors) { if (unlikely(pmd_cyclecount_bench_ops( state, cur_op, test_burst_size))) return -1; } tsc_end = rte_rdtsc_precise(); tsc_op = tsc_end - tsc_start; /* * Hardware acceleration cyclecount benchmarking loop. * * We're benchmarking raw enq/deq performance by filling up the device * queue, so we never get any failed enqs unless the driver won't accept * the exact number of descriptors we requested, or the driver won't * wrap around the end of the TX ring. However, since we're only * dequeuing once we've filled up the queue, we have to benchmark it * piecemeal and then average out the results. */ cur_op = 0; while (cur_op < state->opts->total_ops) { uint32_t iter_ops_left = state->opts->total_ops - cur_op; uint32_t iter_ops_needed = RTE_MIN( state->opts->nb_descriptors, iter_ops_left); uint32_t iter_ops_allocd = iter_ops_needed; /* allocate and build ops */ if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed, test_burst_size))) return -1; tsc_start = rte_rdtsc_precise(); /* fill up TX ring */ iter_ops_needed = pmd_cyclecount_bench_enq(state, iter_ops_needed, test_burst_size); tsc_end = rte_rdtsc_precise(); tsc_enq += tsc_end - tsc_start; /* allow for HW to catch up */ if (state->delay) rte_delay_us_block(state->delay); tsc_start = rte_rdtsc_precise(); /* drain RX ring */ pmd_cyclecount_bench_deq(state, iter_ops_needed, test_burst_size); tsc_end = rte_rdtsc_precise(); tsc_deq += tsc_end - tsc_start; cur_op += iter_ops_needed; /* * we may not have processed all ops that we allocated, so * free everything we've allocated. */ rte_mempool_put_bulk(state->ctx->pool, (void **)state->ctx->ops, iter_ops_allocd); } state->cycles_per_build = (double)tsc_op / state->opts->total_ops; state->cycles_per_enq = (double)tsc_enq / state->ops_enqd; state->cycles_per_deq = (double)tsc_deq / state->ops_deqd; return 0; } int cperf_pmd_cyclecount_test_runner(void *test_ctx) { struct pmd_cyclecount_state state = {0}; const struct cperf_options *opts; uint16_t test_burst_size; uint8_t burst_size_idx = 0; state.ctx = test_ctx; opts = state.ctx->options; state.opts = opts; state.lcore = rte_lcore_id(); state.linearize = 0; static uint16_t display_once; static bool warmup = true; /* * We need a small delay to allow for hardware to process all the crypto * operations. We can't automatically figure out what the delay should * be, so we leave it up to the user (by default it's 0). */ state.delay = 1000 * opts->pmdcc_delay; #ifdef CPERF_LINEARIZATION_ENABLE struct rte_cryptodev_info dev_info; /* Check if source mbufs require coalescing */ if (opts->segments_sz < ctx->options->max_buffer_size) { rte_cryptodev_info_get(state.ctx->dev_id, &dev_info); if ((dev_info.feature_flags & RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) { state.linearize = 1; } } #endif /* CPERF_LINEARIZATION_ENABLE */ state.ctx->lcore_id = state.lcore; /* Get first size from range or list */ if (opts->inc_burst_size != 0) test_burst_size = opts->min_burst_size; else test_burst_size = opts->burst_size_list[0]; while (test_burst_size <= opts->max_burst_size) { /* do a benchmark run */ if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size)) return -1; /* * First run is always a warm up run. */ if (warmup) { warmup = false; continue; } uint16_t exp = 0; if (!opts->csv) { if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0, __ATOMIC_RELAXED, __ATOMIC_RELAXED)) printf(PRETTY_HDR_FMT, "lcore id", "Buf Size", "Burst Size", "Enqueued", "Dequeued", "Enq Retries", "Deq Retries", "Cycles/Op", "Cycles/Enq", "Cycles/Deq"); printf(PRETTY_LINE_FMT, state.ctx->lcore_id, opts->test_buffer_size, test_burst_size, state.ops_enqd, state.ops_deqd, state.ops_enq_retries, state.ops_deq_retries, state.cycles_per_build, state.cycles_per_enq, state.cycles_per_deq); } else { if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0, __ATOMIC_RELAXED, __ATOMIC_RELAXED)) printf(CSV_HDR_FMT, "# lcore id", "Buf Size", "Burst Size", "Enqueued", "Dequeued", "Enq Retries", "Deq Retries", "Cycles/Op", "Cycles/Enq", "Cycles/Deq"); printf(CSV_LINE_FMT, state.ctx->lcore_id, opts->test_buffer_size, test_burst_size, state.ops_enqd, state.ops_deqd, state.ops_enq_retries, state.ops_deq_retries, state.cycles_per_build, state.cycles_per_enq, state.cycles_per_deq); } /* Get next size from range or list */ if (opts->inc_burst_size != 0) test_burst_size += opts->inc_burst_size; else { if (++burst_size_idx == opts->burst_size_count) break; test_burst_size = opts->burst_size_list[burst_size_idx]; } } return 0; } void cperf_pmd_cyclecount_test_destructor(void *arg) { struct cperf_pmd_cyclecount_ctx *ctx = arg; if (ctx == NULL) return; cperf_pmd_cyclecount_test_free(ctx); }