/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "main.h" #ifndef MAX_QUEUES #define MAX_QUEUES 128 #endif /* the maximum number of external ports supported */ #define MAX_SUP_PORTS 1 #define MBUF_CACHE_SIZE 128 #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define BURST_RX_WAIT_US 15 /* Defines how long we wait between retries on RX */ #define BURST_RX_RETRIES 4 /* Number of retries on RX. */ #define JUMBO_FRAME_MAX_SIZE 0x2600 /* State of virtio device. */ #define DEVICE_MAC_LEARNING 0 #define DEVICE_RX 1 #define DEVICE_SAFE_REMOVE 2 /* Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 512 #define INVALID_PORT_ID 0xFF /* Maximum long option length for option parsing. */ #define MAX_LONG_OPT_SZ 64 /* mask of enabled ports */ static uint32_t enabled_port_mask = 0; /* Promiscuous mode */ static uint32_t promiscuous; /* number of devices/queues to support*/ static uint32_t num_queues = 0; static uint32_t num_devices; static struct rte_mempool *mbuf_pool; static int mergeable; /* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */ typedef enum { VM2VM_DISABLED = 0, VM2VM_SOFTWARE = 1, VM2VM_HARDWARE = 2, VM2VM_LAST } vm2vm_type; static vm2vm_type vm2vm_mode = VM2VM_SOFTWARE; /* Enable stats. */ static uint32_t enable_stats = 0; /* Enable retries on RX. */ static uint32_t enable_retry = 1; /* Disable TX checksum offload */ static uint32_t enable_tx_csum; /* Disable TSO offload */ static uint32_t enable_tso; static int client_mode; static int dequeue_zero_copy; static int builtin_net_driver; /* Specify timeout (in useconds) between retries on RX. */ static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US; /* Specify the number of retries on RX. */ static uint32_t burst_rx_retry_num = BURST_RX_RETRIES; /* Socket file paths. Can be set by user */ static char *socket_files; static int nb_sockets; /* empty vmdq configuration structure. Filled in programatically */ static struct rte_eth_conf vmdq_conf_default = { .rxmode = { .mq_mode = ETH_MQ_RX_VMDQ_ONLY, .split_hdr_size = 0, /* * VLAN strip is necessary for 1G NIC such as I350, * this fixes bug of ipv4 forwarding in guest can't * forward pakets from one virtio dev to another virtio dev. */ .offloads = DEV_RX_OFFLOAD_VLAN_STRIP, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_MULTI_SEGS | DEV_TX_OFFLOAD_TCP_TSO), }, .rx_adv_conf = { /* * should be overridden separately in code with * appropriate values */ .vmdq_rx_conf = { .nb_queue_pools = ETH_8_POOLS, .enable_default_pool = 0, .default_pool = 0, .nb_pool_maps = 0, .pool_map = {{0, 0},}, }, }, }; static unsigned lcore_ids[RTE_MAX_LCORE]; static uint16_t ports[RTE_MAX_ETHPORTS]; static unsigned num_ports = 0; /**< The number of ports specified in command line */ static uint16_t num_pf_queues, num_vmdq_queues; static uint16_t vmdq_pool_base, vmdq_queue_base; static uint16_t queues_per_pool; const uint16_t vlan_tags[] = { 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, }; /* ethernet addresses of ports */ static struct rte_ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS]; static struct vhost_dev_tailq_list vhost_dev_list = TAILQ_HEAD_INITIALIZER(vhost_dev_list); static struct lcore_info lcore_info[RTE_MAX_LCORE]; /* Used for queueing bursts of TX packets. */ struct mbuf_table { unsigned len; unsigned txq_id; struct rte_mbuf *m_table[MAX_PKT_BURST]; }; /* TX queue for each data core. */ struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE]; #define MBUF_TABLE_DRAIN_TSC ((rte_get_tsc_hz() + US_PER_S - 1) \ / US_PER_S * BURST_TX_DRAIN_US) #define VLAN_HLEN 4 /* * Builds up the correct configuration for VMDQ VLAN pool map * according to the pool & queue limits. */ static inline int get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices) { struct rte_eth_vmdq_rx_conf conf; struct rte_eth_vmdq_rx_conf *def_conf = &vmdq_conf_default.rx_adv_conf.vmdq_rx_conf; unsigned i; memset(&conf, 0, sizeof(conf)); conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices; conf.nb_pool_maps = num_devices; conf.enable_loop_back = def_conf->enable_loop_back; conf.rx_mode = def_conf->rx_mode; for (i = 0; i < conf.nb_pool_maps; i++) { conf.pool_map[i].vlan_id = vlan_tags[ i ]; conf.pool_map[i].pools = (1UL << i); } (void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf))); (void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &conf, sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf))); return 0; } /* * Initialises a given port using global settings and with the rx buffers * coming from the mbuf_pool passed as parameter */ static inline int port_init(uint16_t port) { struct rte_eth_dev_info dev_info; struct rte_eth_conf port_conf; struct rte_eth_rxconf *rxconf; struct rte_eth_txconf *txconf; int16_t rx_rings, tx_rings; uint16_t rx_ring_size, tx_ring_size; int retval; uint16_t q; /* The max pool number from dev_info will be used to validate the pool number specified in cmd line */ retval = rte_eth_dev_info_get(port, &dev_info); if (retval != 0) { RTE_LOG(ERR, VHOST_PORT, "Error during getting device (port %u) info: %s\n", port, strerror(-retval)); return retval; } if (dev_info.max_vmdq_pools == 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to get VMDq info.\n"); return -1; } rxconf = &dev_info.default_rxconf; txconf = &dev_info.default_txconf; rxconf->rx_drop_en = 1; /*configure the number of supported virtio devices based on VMDQ limits */ num_devices = dev_info.max_vmdq_pools; rx_ring_size = RTE_TEST_RX_DESC_DEFAULT; tx_ring_size = RTE_TEST_TX_DESC_DEFAULT; /* * When dequeue zero copy is enabled, guest Tx used vring will be * updated only when corresponding mbuf is freed. Thus, the nb_tx_desc * (tx_ring_size here) must be small enough so that the driver will * hit the free threshold easily and free mbufs timely. Otherwise, * guest Tx vring would be starved. */ if (dequeue_zero_copy) tx_ring_size = 64; tx_rings = (uint16_t)rte_lcore_count(); /* Get port configuration. */ retval = get_eth_conf(&port_conf, num_devices); if (retval < 0) return retval; /* NIC queues are divided into pf queues and vmdq queues. */ num_pf_queues = dev_info.max_rx_queues - dev_info.vmdq_queue_num; queues_per_pool = dev_info.vmdq_queue_num / dev_info.max_vmdq_pools; num_vmdq_queues = num_devices * queues_per_pool; num_queues = num_pf_queues + num_vmdq_queues; vmdq_queue_base = dev_info.vmdq_queue_base; vmdq_pool_base = dev_info.vmdq_pool_base; printf("pf queue num: %u, configured vmdq pool num: %u, each vmdq pool has %u queues\n", num_pf_queues, num_devices, queues_per_pool); if (!rte_eth_dev_is_valid_port(port)) return -1; rx_rings = (uint16_t)dev_info.max_rx_queues; if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; /* Configure ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); if (retval != 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to configure port %u: %s.\n", port, strerror(-retval)); return retval; } retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &rx_ring_size, &tx_ring_size); if (retval != 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to adjust number of descriptors " "for port %u: %s.\n", port, strerror(-retval)); return retval; } if (rx_ring_size > RTE_TEST_RX_DESC_DEFAULT) { RTE_LOG(ERR, VHOST_PORT, "Mbuf pool has an insufficient size " "for Rx queues on port %u.\n", port); return -1; } /* Setup the queues. */ rxconf->offloads = port_conf.rxmode.offloads; for (q = 0; q < rx_rings; q ++) { retval = rte_eth_rx_queue_setup(port, q, rx_ring_size, rte_eth_dev_socket_id(port), rxconf, mbuf_pool); if (retval < 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to setup rx queue %u of port %u: %s.\n", q, port, strerror(-retval)); return retval; } } txconf->offloads = port_conf.txmode.offloads; for (q = 0; q < tx_rings; q ++) { retval = rte_eth_tx_queue_setup(port, q, tx_ring_size, rte_eth_dev_socket_id(port), txconf); if (retval < 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to setup tx queue %u of port %u: %s.\n", q, port, strerror(-retval)); return retval; } } /* Start the device. */ retval = rte_eth_dev_start(port); if (retval < 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to start port %u: %s\n", port, strerror(-retval)); return retval; } if (promiscuous) { retval = rte_eth_promiscuous_enable(port); if (retval != 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to enable promiscuous mode on port %u: %s\n", port, rte_strerror(-retval)); return retval; } } retval = rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]); if (retval < 0) { RTE_LOG(ERR, VHOST_PORT, "Failed to get MAC address on port %u: %s\n", port, rte_strerror(-retval)); return retval; } RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices); RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8 " %02"PRIx8" %02"PRIx8" %02"PRIx8"\n", port, vmdq_ports_eth_addr[port].addr_bytes[0], vmdq_ports_eth_addr[port].addr_bytes[1], vmdq_ports_eth_addr[port].addr_bytes[2], vmdq_ports_eth_addr[port].addr_bytes[3], vmdq_ports_eth_addr[port].addr_bytes[4], vmdq_ports_eth_addr[port].addr_bytes[5]); return 0; } /* * Set socket file path. */ static int us_vhost_parse_socket_path(const char *q_arg) { char *old; /* parse number string */ if (strnlen(q_arg, PATH_MAX) == PATH_MAX) return -1; old = socket_files; socket_files = realloc(socket_files, PATH_MAX * (nb_sockets + 1)); if (socket_files == NULL) { free(old); return -1; } strlcpy(socket_files + nb_sockets * PATH_MAX, q_arg, PATH_MAX); nb_sockets++; return 0; } /* * Parse the portmask provided at run time. */ static int parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; errno = 0; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) return -1; if (pm == 0) return -1; return pm; } /* * Parse num options at run time. */ static int parse_num_opt(const char *q_arg, uint32_t max_valid_value) { char *end = NULL; unsigned long num; errno = 0; /* parse unsigned int string */ num = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0)) return -1; if (num > max_valid_value) return -1; return num; } /* * Display usage */ static void us_vhost_usage(const char *prgname) { RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK\n" " --vm2vm [0|1|2]\n" " --rx_retry [0|1] --mergeable [0|1] --stats [0-N]\n" " --socket-file \n" " --nb-devices ND\n" " -p PORTMASK: Set mask for ports to be used by application\n" " --vm2vm [0|1|2]: disable/software(default)/hardware vm2vm comms\n" " --rx-retry [0|1]: disable/enable(default) retries on rx. Enable retry if destintation queue is full\n" " --rx-retry-delay [0-N]: timeout(in usecond) between retries on RX. This makes effect only if retries on rx enabled\n" " --rx-retry-num [0-N]: the number of retries on rx. This makes effect only if retries on rx enabled\n" " --mergeable [0|1]: disable(default)/enable RX mergeable buffers\n" " --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n" " --socket-file: The path of the socket file.\n" " --tx-csum [0|1] disable/enable TX checksum offload.\n" " --tso [0|1] disable/enable TCP segment offload.\n" " --client register a vhost-user socket as client mode.\n" " --dequeue-zero-copy enables dequeue zero copy\n", prgname); } /* * Parse the arguments given in the command line of the application. */ static int us_vhost_parse_args(int argc, char **argv) { int opt, ret; int option_index; unsigned i; const char *prgname = argv[0]; static struct option long_option[] = { {"vm2vm", required_argument, NULL, 0}, {"rx-retry", required_argument, NULL, 0}, {"rx-retry-delay", required_argument, NULL, 0}, {"rx-retry-num", required_argument, NULL, 0}, {"mergeable", required_argument, NULL, 0}, {"stats", required_argument, NULL, 0}, {"socket-file", required_argument, NULL, 0}, {"tx-csum", required_argument, NULL, 0}, {"tso", required_argument, NULL, 0}, {"client", no_argument, &client_mode, 1}, {"dequeue-zero-copy", no_argument, &dequeue_zero_copy, 1}, {"builtin-net-driver", no_argument, &builtin_net_driver, 1}, {NULL, 0, 0, 0}, }; /* Parse command line */ while ((opt = getopt_long(argc, argv, "p:P", long_option, &option_index)) != EOF) { switch (opt) { /* Portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n"); us_vhost_usage(prgname); return -1; } break; case 'P': promiscuous = 1; vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.rx_mode = ETH_VMDQ_ACCEPT_BROADCAST | ETH_VMDQ_ACCEPT_MULTICAST; break; case 0: /* Enable/disable vm2vm comms. */ if (!strncmp(long_option[option_index].name, "vm2vm", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, (VM2VM_LAST - 1)); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for " "vm2vm [0|1|2]\n"); us_vhost_usage(prgname); return -1; } else { vm2vm_mode = (vm2vm_type)ret; } } /* Enable/disable retries on RX. */ if (!strncmp(long_option[option_index].name, "rx-retry", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry [0|1]\n"); us_vhost_usage(prgname); return -1; } else { enable_retry = ret; } } /* Enable/disable TX checksum offload. */ if (!strncmp(long_option[option_index].name, "tx-csum", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tx-csum [0|1]\n"); us_vhost_usage(prgname); return -1; } else enable_tx_csum = ret; } /* Enable/disable TSO offload. */ if (!strncmp(long_option[option_index].name, "tso", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tso [0|1]\n"); us_vhost_usage(prgname); return -1; } else enable_tso = ret; } /* Specify the retries delay time (in useconds) on RX. */ if (!strncmp(long_option[option_index].name, "rx-retry-delay", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, INT32_MAX); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-delay [0-N]\n"); us_vhost_usage(prgname); return -1; } else { burst_rx_delay_time = ret; } } /* Specify the retries number on RX. */ if (!strncmp(long_option[option_index].name, "rx-retry-num", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, INT32_MAX); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-num [0-N]\n"); us_vhost_usage(prgname); return -1; } else { burst_rx_retry_num = ret; } } /* Enable/disable RX mergeable buffers. */ if (!strncmp(long_option[option_index].name, "mergeable", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, 1); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for mergeable [0|1]\n"); us_vhost_usage(prgname); return -1; } else { mergeable = !!ret; if (ret) { vmdq_conf_default.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; vmdq_conf_default.rxmode.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE; } } } /* Enable/disable stats. */ if (!strncmp(long_option[option_index].name, "stats", MAX_LONG_OPT_SZ)) { ret = parse_num_opt(optarg, INT32_MAX); if (ret == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for stats [0..N]\n"); us_vhost_usage(prgname); return -1; } else { enable_stats = ret; } } /* Set socket file path. */ if (!strncmp(long_option[option_index].name, "socket-file", MAX_LONG_OPT_SZ)) { if (us_vhost_parse_socket_path(optarg) == -1) { RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for socket name (Max %d characters)\n", PATH_MAX); us_vhost_usage(prgname); return -1; } } break; /* Invalid option - print options. */ default: us_vhost_usage(prgname); return -1; } } for (i = 0; i < RTE_MAX_ETHPORTS; i++) { if (enabled_port_mask & (1 << i)) ports[num_ports++] = i; } if ((num_ports == 0) || (num_ports > MAX_SUP_PORTS)) { RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u," "but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS); return -1; } return 0; } /* * Update the global var NUM_PORTS and array PORTS according to system ports number * and return valid ports number */ static unsigned check_ports_num(unsigned nb_ports) { unsigned valid_num_ports = num_ports; unsigned portid; if (num_ports > nb_ports) { RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n", num_ports, nb_ports); num_ports = nb_ports; } for (portid = 0; portid < num_ports; portid ++) { if (!rte_eth_dev_is_valid_port(ports[portid])) { RTE_LOG(INFO, VHOST_PORT, "\nSpecified port ID(%u) is not valid\n", ports[portid]); ports[portid] = INVALID_PORT_ID; valid_num_ports--; } } return valid_num_ports; } static __rte_always_inline struct vhost_dev * find_vhost_dev(struct rte_ether_addr *mac) { struct vhost_dev *vdev; TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) { if (vdev->ready == DEVICE_RX && rte_is_same_ether_addr(mac, &vdev->mac_address)) return vdev; } return NULL; } /* * This function learns the MAC address of the device and registers this along with a * vlan tag to a VMDQ. */ static int link_vmdq(struct vhost_dev *vdev, struct rte_mbuf *m) { struct rte_ether_hdr *pkt_hdr; int i, ret; /* Learn MAC address of guest device from packet */ pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); if (find_vhost_dev(&pkt_hdr->s_addr)) { RTE_LOG(ERR, VHOST_DATA, "(%d) device is using a registered MAC!\n", vdev->vid); return -1; } for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) vdev->mac_address.addr_bytes[i] = pkt_hdr->s_addr.addr_bytes[i]; /* vlan_tag currently uses the device_id. */ vdev->vlan_tag = vlan_tags[vdev->vid]; /* Print out VMDQ registration info. */ RTE_LOG(INFO, VHOST_DATA, "(%d) mac %02x:%02x:%02x:%02x:%02x:%02x and vlan %d registered\n", vdev->vid, vdev->mac_address.addr_bytes[0], vdev->mac_address.addr_bytes[1], vdev->mac_address.addr_bytes[2], vdev->mac_address.addr_bytes[3], vdev->mac_address.addr_bytes[4], vdev->mac_address.addr_bytes[5], vdev->vlan_tag); /* Register the MAC address. */ ret = rte_eth_dev_mac_addr_add(ports[0], &vdev->mac_address, (uint32_t)vdev->vid + vmdq_pool_base); if (ret) RTE_LOG(ERR, VHOST_DATA, "(%d) failed to add device MAC address to VMDQ\n", vdev->vid); rte_eth_dev_set_vlan_strip_on_queue(ports[0], vdev->vmdq_rx_q, 1); /* Set device as ready for RX. */ vdev->ready = DEVICE_RX; return 0; } /* * Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX * queue before disabling RX on the device. */ static inline void unlink_vmdq(struct vhost_dev *vdev) { unsigned i = 0; unsigned rx_count; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; if (vdev->ready == DEVICE_RX) { /*clear MAC and VLAN settings*/ rte_eth_dev_mac_addr_remove(ports[0], &vdev->mac_address); for (i = 0; i < 6; i++) vdev->mac_address.addr_bytes[i] = 0; vdev->vlan_tag = 0; /*Clear out the receive buffers*/ rx_count = rte_eth_rx_burst(ports[0], (uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); while (rx_count) { for (i = 0; i < rx_count; i++) rte_pktmbuf_free(pkts_burst[i]); rx_count = rte_eth_rx_burst(ports[0], (uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST); } vdev->ready = DEVICE_MAC_LEARNING; } } static __rte_always_inline void virtio_xmit(struct vhost_dev *dst_vdev, struct vhost_dev *src_vdev, struct rte_mbuf *m) { uint16_t ret; if (builtin_net_driver) { ret = vs_enqueue_pkts(dst_vdev, VIRTIO_RXQ, &m, 1); } else { ret = rte_vhost_enqueue_burst(dst_vdev->vid, VIRTIO_RXQ, &m, 1); } if (enable_stats) { rte_atomic64_inc(&dst_vdev->stats.rx_total_atomic); rte_atomic64_add(&dst_vdev->stats.rx_atomic, ret); src_vdev->stats.tx_total++; src_vdev->stats.tx += ret; } } /* * Check if the packet destination MAC address is for a local device. If so then put * the packet on that devices RX queue. If not then return. */ static __rte_always_inline int virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m) { struct rte_ether_hdr *pkt_hdr; struct vhost_dev *dst_vdev; pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); dst_vdev = find_vhost_dev(&pkt_hdr->d_addr); if (!dst_vdev) return -1; if (vdev->vid == dst_vdev->vid) { RTE_LOG_DP(DEBUG, VHOST_DATA, "(%d) TX: src and dst MAC is same. Dropping packet.\n", vdev->vid); return 0; } RTE_LOG_DP(DEBUG, VHOST_DATA, "(%d) TX: MAC address is local\n", dst_vdev->vid); if (unlikely(dst_vdev->remove)) { RTE_LOG_DP(DEBUG, VHOST_DATA, "(%d) device is marked for removal\n", dst_vdev->vid); return 0; } virtio_xmit(dst_vdev, vdev, m); return 0; } /* * Check if the destination MAC of a packet is one local VM, * and get its vlan tag, and offset if it is. */ static __rte_always_inline int find_local_dest(struct vhost_dev *vdev, struct rte_mbuf *m, uint32_t *offset, uint16_t *vlan_tag) { struct vhost_dev *dst_vdev; struct rte_ether_hdr *pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); dst_vdev = find_vhost_dev(&pkt_hdr->d_addr); if (!dst_vdev) return 0; if (vdev->vid == dst_vdev->vid) { RTE_LOG_DP(DEBUG, VHOST_DATA, "(%d) TX: src and dst MAC is same. Dropping packet.\n", vdev->vid); return -1; } /* * HW vlan strip will reduce the packet length * by minus length of vlan tag, so need restore * the packet length by plus it. */ *offset = VLAN_HLEN; *vlan_tag = vlan_tags[vdev->vid]; RTE_LOG_DP(DEBUG, VHOST_DATA, "(%d) TX: pkt to local VM device id: (%d), vlan tag: %u.\n", vdev->vid, dst_vdev->vid, *vlan_tag); return 0; } static uint16_t get_psd_sum(void *l3_hdr, uint64_t ol_flags) { if (ol_flags & PKT_TX_IPV4) return rte_ipv4_phdr_cksum(l3_hdr, ol_flags); else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ return rte_ipv6_phdr_cksum(l3_hdr, ol_flags); } static void virtio_tx_offload(struct rte_mbuf *m) { void *l3_hdr; struct rte_ipv4_hdr *ipv4_hdr = NULL; struct rte_tcp_hdr *tcp_hdr = NULL; struct rte_ether_hdr *eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); l3_hdr = (char *)eth_hdr + m->l2_len; if (m->ol_flags & PKT_TX_IPV4) { ipv4_hdr = l3_hdr; ipv4_hdr->hdr_checksum = 0; m->ol_flags |= PKT_TX_IP_CKSUM; } tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + m->l3_len); tcp_hdr->cksum = get_psd_sum(l3_hdr, m->ol_flags); } static inline void free_pkts(struct rte_mbuf **pkts, uint16_t n) { while (n--) rte_pktmbuf_free(pkts[n]); } static __rte_always_inline void do_drain_mbuf_table(struct mbuf_table *tx_q) { uint16_t count; count = rte_eth_tx_burst(ports[0], tx_q->txq_id, tx_q->m_table, tx_q->len); if (unlikely(count < tx_q->len)) free_pkts(&tx_q->m_table[count], tx_q->len - count); tx_q->len = 0; } /* * This function routes the TX packet to the correct interface. This * may be a local device or the physical port. */ static __rte_always_inline void virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag) { struct mbuf_table *tx_q; unsigned offset = 0; const uint16_t lcore_id = rte_lcore_id(); struct rte_ether_hdr *nh; nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); if (unlikely(rte_is_broadcast_ether_addr(&nh->d_addr))) { struct vhost_dev *vdev2; TAILQ_FOREACH(vdev2, &vhost_dev_list, global_vdev_entry) { if (vdev2 != vdev) virtio_xmit(vdev2, vdev, m); } goto queue2nic; } /*check if destination is local VM*/ if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0)) { rte_pktmbuf_free(m); return; } if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) { if (unlikely(find_local_dest(vdev, m, &offset, &vlan_tag) != 0)) { rte_pktmbuf_free(m); return; } } RTE_LOG_DP(DEBUG, VHOST_DATA, "(%d) TX: MAC address is external\n", vdev->vid); queue2nic: /*Add packet to the port tx queue*/ tx_q = &lcore_tx_queue[lcore_id]; nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); if (unlikely(nh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))) { /* Guest has inserted the vlan tag. */ struct rte_vlan_hdr *vh = (struct rte_vlan_hdr *) (nh + 1); uint16_t vlan_tag_be = rte_cpu_to_be_16(vlan_tag); if ((vm2vm_mode == VM2VM_HARDWARE) && (vh->vlan_tci != vlan_tag_be)) vh->vlan_tci = vlan_tag_be; } else { m->ol_flags |= PKT_TX_VLAN_PKT; /* * Find the right seg to adjust the data len when offset is * bigger than tail room size. */ if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) { if (likely(offset <= rte_pktmbuf_tailroom(m))) m->data_len += offset; else { struct rte_mbuf *seg = m; while ((seg->next != NULL) && (offset > rte_pktmbuf_tailroom(seg))) seg = seg->next; seg->data_len += offset; } m->pkt_len += offset; } m->vlan_tci = vlan_tag; } if (m->ol_flags & PKT_TX_TCP_SEG) virtio_tx_offload(m); tx_q->m_table[tx_q->len++] = m; if (enable_stats) { vdev->stats.tx_total++; vdev->stats.tx++; } if (unlikely(tx_q->len == MAX_PKT_BURST)) do_drain_mbuf_table(tx_q); } static __rte_always_inline void drain_mbuf_table(struct mbuf_table *tx_q) { static uint64_t prev_tsc; uint64_t cur_tsc; if (tx_q->len == 0) return; cur_tsc = rte_rdtsc(); if (unlikely(cur_tsc - prev_tsc > MBUF_TABLE_DRAIN_TSC)) { prev_tsc = cur_tsc; RTE_LOG_DP(DEBUG, VHOST_DATA, "TX queue drained after timeout with burst size %u\n", tx_q->len); do_drain_mbuf_table(tx_q); } } static __rte_always_inline void drain_eth_rx(struct vhost_dev *vdev) { uint16_t rx_count, enqueue_count; struct rte_mbuf *pkts[MAX_PKT_BURST]; rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q, pkts, MAX_PKT_BURST); if (!rx_count) return; if (builtin_net_driver) { enqueue_count = vs_enqueue_pkts(vdev, VIRTIO_RXQ, pkts, rx_count); } else { enqueue_count = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ, pkts, rx_count); } /* Retry if necessary */ if (enable_retry && unlikely(enqueue_count < rx_count)) { uint32_t retry = 0; while (enqueue_count < rx_count && retry++ < burst_rx_retry_num) { rte_delay_us(burst_rx_delay_time); if (builtin_net_driver) { enqueue_count += vs_enqueue_pkts(vdev, VIRTIO_RXQ, &pkts[enqueue_count], rx_count - enqueue_count); } else { enqueue_count += rte_vhost_enqueue_burst( vdev->vid, VIRTIO_RXQ, &pkts[enqueue_count], rx_count - enqueue_count); } } } if (enable_stats) { rte_atomic64_add(&vdev->stats.rx_total_atomic, rx_count); rte_atomic64_add(&vdev->stats.rx_atomic, enqueue_count); } free_pkts(pkts, rx_count); } static __rte_always_inline void drain_virtio_tx(struct vhost_dev *vdev) { struct rte_mbuf *pkts[MAX_PKT_BURST]; uint16_t count; uint16_t i; if (builtin_net_driver) { count = vs_dequeue_pkts(vdev, VIRTIO_TXQ, mbuf_pool, pkts, MAX_PKT_BURST); } else { count = rte_vhost_dequeue_burst(vdev->vid, VIRTIO_TXQ, mbuf_pool, pkts, MAX_PKT_BURST); } /* setup VMDq for the first packet */ if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && count) { if (vdev->remove || link_vmdq(vdev, pkts[0]) == -1) free_pkts(pkts, count); } for (i = 0; i < count; ++i) virtio_tx_route(vdev, pkts[i], vlan_tags[vdev->vid]); } /* * Main function of vhost-switch. It basically does: * * for each vhost device { * - drain_eth_rx() * * Which drains the host eth Rx queue linked to the vhost device, * and deliver all of them to guest virito Rx ring associated with * this vhost device. * * - drain_virtio_tx() * * Which drains the guest virtio Tx queue and deliver all of them * to the target, which could be another vhost device, or the * physical eth dev. The route is done in function "virtio_tx_route". * } */ static int switch_worker(void *arg __rte_unused) { unsigned i; unsigned lcore_id = rte_lcore_id(); struct vhost_dev *vdev; struct mbuf_table *tx_q; RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id); tx_q = &lcore_tx_queue[lcore_id]; for (i = 0; i < rte_lcore_count(); i++) { if (lcore_ids[i] == lcore_id) { tx_q->txq_id = i; break; } } while(1) { drain_mbuf_table(tx_q); /* * Inform the configuration core that we have exited the * linked list and that no devices are in use if requested. */ if (lcore_info[lcore_id].dev_removal_flag == REQUEST_DEV_REMOVAL) lcore_info[lcore_id].dev_removal_flag = ACK_DEV_REMOVAL; /* * Process vhost devices */ TAILQ_FOREACH(vdev, &lcore_info[lcore_id].vdev_list, lcore_vdev_entry) { if (unlikely(vdev->remove)) { unlink_vmdq(vdev); vdev->ready = DEVICE_SAFE_REMOVE; continue; } if (likely(vdev->ready == DEVICE_RX)) drain_eth_rx(vdev); if (likely(!vdev->remove)) drain_virtio_tx(vdev); } } return 0; } /* * Remove a device from the specific data core linked list and from the * main linked list. Synchonization occurs through the use of the * lcore dev_removal_flag. Device is made volatile here to avoid re-ordering * of dev->remove=1 which can cause an infinite loop in the rte_pause loop. */ static void destroy_device(int vid) { struct vhost_dev *vdev = NULL; int lcore; TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) { if (vdev->vid == vid) break; } if (!vdev) return; /*set the remove flag. */ vdev->remove = 1; while(vdev->ready != DEVICE_SAFE_REMOVE) { rte_pause(); } if (builtin_net_driver) vs_vhost_net_remove(vdev); TAILQ_REMOVE(&lcore_info[vdev->coreid].vdev_list, vdev, lcore_vdev_entry); TAILQ_REMOVE(&vhost_dev_list, vdev, global_vdev_entry); /* Set the dev_removal_flag on each lcore. */ RTE_LCORE_FOREACH_SLAVE(lcore) lcore_info[lcore].dev_removal_flag = REQUEST_DEV_REMOVAL; /* * Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL * we can be sure that they can no longer access the device removed * from the linked lists and that the devices are no longer in use. */ RTE_LCORE_FOREACH_SLAVE(lcore) { while (lcore_info[lcore].dev_removal_flag != ACK_DEV_REMOVAL) rte_pause(); } lcore_info[vdev->coreid].device_num--; RTE_LOG(INFO, VHOST_DATA, "(%d) device has been removed from data core\n", vdev->vid); rte_free(vdev); } /* * A new device is added to a data core. First the device is added to the main linked list * and then allocated to a specific data core. */ static int new_device(int vid) { int lcore, core_add = 0; uint32_t device_num_min = num_devices; struct vhost_dev *vdev; vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE); if (vdev == NULL) { RTE_LOG(INFO, VHOST_DATA, "(%d) couldn't allocate memory for vhost dev\n", vid); return -1; } vdev->vid = vid; if (builtin_net_driver) vs_vhost_net_setup(vdev); TAILQ_INSERT_TAIL(&vhost_dev_list, vdev, global_vdev_entry); vdev->vmdq_rx_q = vid * queues_per_pool + vmdq_queue_base; /*reset ready flag*/ vdev->ready = DEVICE_MAC_LEARNING; vdev->remove = 0; /* Find a suitable lcore to add the device. */ RTE_LCORE_FOREACH_SLAVE(lcore) { if (lcore_info[lcore].device_num < device_num_min) { device_num_min = lcore_info[lcore].device_num; core_add = lcore; } } vdev->coreid = core_add; TAILQ_INSERT_TAIL(&lcore_info[vdev->coreid].vdev_list, vdev, lcore_vdev_entry); lcore_info[vdev->coreid].device_num++; /* Disable notifications. */ rte_vhost_enable_guest_notification(vid, VIRTIO_RXQ, 0); rte_vhost_enable_guest_notification(vid, VIRTIO_TXQ, 0); RTE_LOG(INFO, VHOST_DATA, "(%d) device has been added to data core %d\n", vid, vdev->coreid); return 0; } /* * These callback allow devices to be added to the data core when configuration * has been fully complete. */ static const struct vhost_device_ops virtio_net_device_ops = { .new_device = new_device, .destroy_device = destroy_device, }; /* * This is a thread will wake up after a period to print stats if the user has * enabled them. */ static void * print_stats(__rte_unused void *arg) { struct vhost_dev *vdev; uint64_t tx_dropped, rx_dropped; uint64_t tx, tx_total, rx, rx_total; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' }; while(1) { sleep(enable_stats); /* Clear screen and move to top left */ printf("%s%s\n", clr, top_left); printf("Device statistics =================================\n"); TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) { tx_total = vdev->stats.tx_total; tx = vdev->stats.tx; tx_dropped = tx_total - tx; rx_total = rte_atomic64_read(&vdev->stats.rx_total_atomic); rx = rte_atomic64_read(&vdev->stats.rx_atomic); rx_dropped = rx_total - rx; printf("Statistics for device %d\n" "-----------------------\n" "TX total: %" PRIu64 "\n" "TX dropped: %" PRIu64 "\n" "TX successful: %" PRIu64 "\n" "RX total: %" PRIu64 "\n" "RX dropped: %" PRIu64 "\n" "RX successful: %" PRIu64 "\n", vdev->vid, tx_total, tx_dropped, tx, rx_total, rx_dropped, rx); } printf("===================================================\n"); fflush(stdout); } return NULL; } static void unregister_drivers(int socket_num) { int i, ret; for (i = 0; i < socket_num; i++) { ret = rte_vhost_driver_unregister(socket_files + i * PATH_MAX); if (ret != 0) RTE_LOG(ERR, VHOST_CONFIG, "Fail to unregister vhost driver for %s.\n", socket_files + i * PATH_MAX); } } /* When we receive a INT signal, unregister vhost driver */ static void sigint_handler(__rte_unused int signum) { /* Unregister vhost driver. */ unregister_drivers(nb_sockets); exit(0); } /* * While creating an mbuf pool, one key thing is to figure out how * many mbuf entries is enough for our use. FYI, here are some * guidelines: * * - Each rx queue would reserve @nr_rx_desc mbufs at queue setup stage * * - For each switch core (A CPU core does the packet switch), we need * also make some reservation for receiving the packets from virtio * Tx queue. How many is enough depends on the usage. It's normally * a simple calculation like following: * * MAX_PKT_BURST * max packet size / mbuf size * * So, we definitely need allocate more mbufs when TSO is enabled. * * - Similarly, for each switching core, we should serve @nr_rx_desc * mbufs for receiving the packets from physical NIC device. * * - We also need make sure, for each switch core, we have allocated * enough mbufs to fill up the mbuf cache. */ static void create_mbuf_pool(uint16_t nr_port, uint32_t nr_switch_core, uint32_t mbuf_size, uint32_t nr_queues, uint32_t nr_rx_desc, uint32_t nr_mbuf_cache) { uint32_t nr_mbufs; uint32_t nr_mbufs_per_core; uint32_t mtu = 1500; if (mergeable) mtu = 9000; if (enable_tso) mtu = 64 * 1024; nr_mbufs_per_core = (mtu + mbuf_size) * MAX_PKT_BURST / (mbuf_size - RTE_PKTMBUF_HEADROOM); nr_mbufs_per_core += nr_rx_desc; nr_mbufs_per_core = RTE_MAX(nr_mbufs_per_core, nr_mbuf_cache); nr_mbufs = nr_queues * nr_rx_desc; nr_mbufs += nr_mbufs_per_core * nr_switch_core; nr_mbufs *= nr_port; mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", nr_mbufs, nr_mbuf_cache, 0, mbuf_size, rte_socket_id()); if (mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); } /* * Main function, does initialisation and calls the per-lcore functions. */ int main(int argc, char *argv[]) { unsigned lcore_id, core_id = 0; unsigned nb_ports, valid_num_ports; int ret, i; uint16_t portid; static pthread_t tid; uint64_t flags = 0; signal(SIGINT, sigint_handler); /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); argc -= ret; argv += ret; /* parse app arguments */ ret = us_vhost_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid argument\n"); for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { TAILQ_INIT(&lcore_info[lcore_id].vdev_list); if (rte_lcore_is_enabled(lcore_id)) lcore_ids[core_id++] = lcore_id; } if (rte_lcore_count() > RTE_MAX_LCORE) rte_exit(EXIT_FAILURE,"Not enough cores\n"); /* Get the number of physical ports. */ nb_ports = rte_eth_dev_count_avail(); /* * Update the global var NUM_PORTS and global array PORTS * and get value of var VALID_NUM_PORTS according to system ports number */ valid_num_ports = check_ports_num(nb_ports); if ((valid_num_ports == 0) || (valid_num_ports > MAX_SUP_PORTS)) { RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u," "but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS); return -1; } /* * FIXME: here we are trying to allocate mbufs big enough for * @MAX_QUEUES, but the truth is we're never going to use that * many queues here. We probably should only do allocation for * those queues we are going to use. */ create_mbuf_pool(valid_num_ports, rte_lcore_count() - 1, MBUF_DATA_SIZE, MAX_QUEUES, RTE_TEST_RX_DESC_DEFAULT, MBUF_CACHE_SIZE); if (vm2vm_mode == VM2VM_HARDWARE) { /* Enable VT loop back to let L2 switch to do it. */ vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1; RTE_LOG(DEBUG, VHOST_CONFIG, "Enable loop back for L2 switch in vmdq.\n"); } /* initialize all ports */ RTE_ETH_FOREACH_DEV(portid) { /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { RTE_LOG(INFO, VHOST_PORT, "Skipping disabled port %d\n", portid); continue; } if (port_init(portid) != 0) rte_exit(EXIT_FAILURE, "Cannot initialize network ports\n"); } /* Enable stats if the user option is set. */ if (enable_stats) { ret = rte_ctrl_thread_create(&tid, "print-stats", NULL, print_stats, NULL); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot create print-stats thread\n"); } /* Launch all data cores. */ RTE_LCORE_FOREACH_SLAVE(lcore_id) rte_eal_remote_launch(switch_worker, NULL, lcore_id); if (client_mode) flags |= RTE_VHOST_USER_CLIENT; if (dequeue_zero_copy) flags |= RTE_VHOST_USER_DEQUEUE_ZERO_COPY; /* Register vhost user driver to handle vhost messages. */ for (i = 0; i < nb_sockets; i++) { char *file = socket_files + i * PATH_MAX; ret = rte_vhost_driver_register(file, flags); if (ret != 0) { unregister_drivers(i); rte_exit(EXIT_FAILURE, "vhost driver register failure.\n"); } if (builtin_net_driver) rte_vhost_driver_set_features(file, VIRTIO_NET_FEATURES); if (mergeable == 0) { rte_vhost_driver_disable_features(file, 1ULL << VIRTIO_NET_F_MRG_RXBUF); } if (enable_tx_csum == 0) { rte_vhost_driver_disable_features(file, 1ULL << VIRTIO_NET_F_CSUM); } if (enable_tso == 0) { rte_vhost_driver_disable_features(file, 1ULL << VIRTIO_NET_F_HOST_TSO4); rte_vhost_driver_disable_features(file, 1ULL << VIRTIO_NET_F_HOST_TSO6); rte_vhost_driver_disable_features(file, 1ULL << VIRTIO_NET_F_GUEST_TSO4); rte_vhost_driver_disable_features(file, 1ULL << VIRTIO_NET_F_GUEST_TSO6); } if (promiscuous) { rte_vhost_driver_enable_features(file, 1ULL << VIRTIO_NET_F_CTRL_RX); } ret = rte_vhost_driver_callback_register(file, &virtio_net_device_ops); if (ret != 0) { rte_exit(EXIT_FAILURE, "failed to register vhost driver callbacks.\n"); } if (rte_vhost_driver_start(file) < 0) { rte_exit(EXIT_FAILURE, "failed to start vhost driver.\n"); } } RTE_LCORE_FOREACH_SLAVE(lcore_id) rte_eal_wait_lcore(lcore_id); /* clean up the EAL */ rte_eal_cleanup(); return 0; }