/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2021 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #define THASH_NAME_LEN 64 #define TOEPLITZ_HASH_LEN 32 #define RETA_SZ_IN_RANGE(reta_sz) ((reta_sz >= RTE_THASH_RETA_SZ_MIN) &&\ (reta_sz <= RTE_THASH_RETA_SZ_MAX)) TAILQ_HEAD(rte_thash_list, rte_tailq_entry); static struct rte_tailq_elem rte_thash_tailq = { .name = "RTE_THASH", }; EAL_REGISTER_TAILQ(rte_thash_tailq) /** * Table of some irreducible polinomials over GF(2). * For lfsr they are represented in BE bit order, and * x^0 is masked out. * For example, poly x^5 + x^2 + 1 will be represented * as (101001b & 11111b) = 01001b = 0x9 */ static const uint32_t irreducible_poly_table[][4] = { {0, 0, 0, 0}, /** < degree 0 */ {1, 1, 1, 1}, /** < degree 1 */ {0x3, 0x3, 0x3, 0x3}, /** < degree 2 and so on... */ {0x5, 0x3, 0x5, 0x3}, {0x9, 0x3, 0x9, 0x3}, {0x9, 0x1b, 0xf, 0x5}, {0x21, 0x33, 0x1b, 0x2d}, {0x41, 0x11, 0x71, 0x9}, {0x71, 0xa9, 0xf5, 0x8d}, {0x21, 0xd1, 0x69, 0x1d9}, {0x81, 0x2c1, 0x3b1, 0x185}, {0x201, 0x541, 0x341, 0x461}, {0x941, 0x609, 0xe19, 0x45d}, {0x1601, 0x1f51, 0x1171, 0x359}, {0x2141, 0x2111, 0x2db1, 0x2109}, {0x4001, 0x801, 0x101, 0x7301}, {0x7781, 0xa011, 0x4211, 0x86d9}, }; struct thash_lfsr { uint32_t ref_cnt; uint32_t poly; /**< polynomial associated with the lfsr */ uint32_t rev_poly; /**< polynomial to generate the sequence in reverse direction */ uint32_t state; /**< current state of the lfsr */ uint32_t rev_state; /**< current state of the lfsr for reverse direction */ uint32_t deg; /**< polynomial degree*/ uint32_t bits_cnt; /**< number of bits generated by lfsr*/ }; struct rte_thash_subtuple_helper { char name[THASH_NAME_LEN]; /** < Name of subtuple configuration */ LIST_ENTRY(rte_thash_subtuple_helper) next; struct thash_lfsr *lfsr; uint32_t offset; /** < Offset of the m-sequence */ uint32_t len; /** < Length of the m-sequence */ uint32_t tuple_offset; /** < Offset in bits of the subtuple */ uint32_t tuple_len; /** < Length in bits of the subtuple */ uint32_t lsb_msk; /** < (1 << reta_sz_log) - 1 */ __extension__ uint32_t compl_table[0] __rte_cache_aligned; /** < Complementary table */ }; struct rte_thash_ctx { char name[THASH_NAME_LEN]; LIST_HEAD(, rte_thash_subtuple_helper) head; uint32_t key_len; /** < Length of the NIC RSS hash key */ uint32_t reta_sz_log; /** < size of the RSS ReTa in bits */ uint32_t subtuples_nb; /** < number of subtuples */ uint32_t flags; uint64_t *matrices; /**< matrices used with rte_thash_gfni implementation */ uint8_t hash_key[0]; }; int rte_thash_gfni_supported(void) { #ifdef RTE_THASH_GFNI_DEFINED if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_GFNI) && (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)) return 1; #endif return 0; }; void rte_thash_complete_matrix(uint64_t *matrixes, const uint8_t *rss_key, int size) { int i, j; uint8_t *m = (uint8_t *)matrixes; uint8_t left_part, right_part; for (i = 0; i < size; i++) { for (j = 0; j < 8; j++) { left_part = rss_key[i] << j; right_part = (uint16_t)(rss_key[(i + 1) % size]) >> (8 - j); m[i * 8 + j] = left_part|right_part; } } } static inline uint32_t get_bit_lfsr(struct thash_lfsr *lfsr) { uint32_t bit, ret; /* * masking the TAP bits defined by the polynomial and * calculating parity */ bit = __builtin_popcount(lfsr->state & lfsr->poly) & 0x1; ret = lfsr->state & 0x1; lfsr->state = ((lfsr->state >> 1) | (bit << (lfsr->deg - 1))) & ((1 << lfsr->deg) - 1); lfsr->bits_cnt++; return ret; } static inline uint32_t get_rev_bit_lfsr(struct thash_lfsr *lfsr) { uint32_t bit, ret; bit = __builtin_popcount(lfsr->rev_state & lfsr->rev_poly) & 0x1; ret = lfsr->rev_state & (1 << (lfsr->deg - 1)); lfsr->rev_state = ((lfsr->rev_state << 1) | bit) & ((1 << lfsr->deg) - 1); lfsr->bits_cnt++; return ret; } static inline uint32_t thash_get_rand_poly(uint32_t poly_degree) { return irreducible_poly_table[poly_degree][rte_rand() % RTE_DIM(irreducible_poly_table[poly_degree])]; } static struct thash_lfsr * alloc_lfsr(struct rte_thash_ctx *ctx) { struct thash_lfsr *lfsr; uint32_t i; if (ctx == NULL) return NULL; lfsr = rte_zmalloc(NULL, sizeof(struct thash_lfsr), 0); if (lfsr == NULL) return NULL; lfsr->deg = ctx->reta_sz_log; lfsr->poly = thash_get_rand_poly(lfsr->deg); do { lfsr->state = rte_rand() & ((1 << lfsr->deg) - 1); } while (lfsr->state == 0); /* init reverse order polynomial */ lfsr->rev_poly = (lfsr->poly >> 1) | (1 << (lfsr->deg - 1)); /* init proper rev_state*/ lfsr->rev_state = lfsr->state; for (i = 0; i <= lfsr->deg; i++) get_rev_bit_lfsr(lfsr); /* clear bits_cnt after rev_state was inited */ lfsr->bits_cnt = 0; lfsr->ref_cnt = 1; return lfsr; } static void attach_lfsr(struct rte_thash_subtuple_helper *h, struct thash_lfsr *lfsr) { lfsr->ref_cnt++; h->lfsr = lfsr; } static void free_lfsr(struct thash_lfsr *lfsr) { lfsr->ref_cnt--; if (lfsr->ref_cnt == 0) rte_free(lfsr); } struct rte_thash_ctx * rte_thash_init_ctx(const char *name, uint32_t key_len, uint32_t reta_sz, uint8_t *key, uint32_t flags) { struct rte_thash_ctx *ctx; struct rte_tailq_entry *te; struct rte_thash_list *thash_list; uint32_t i; if ((name == NULL) || (key_len == 0) || !RETA_SZ_IN_RANGE(reta_sz)) { rte_errno = EINVAL; return NULL; } thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list); rte_mcfg_tailq_write_lock(); /* guarantee there's no existing */ TAILQ_FOREACH(te, thash_list, next) { ctx = (struct rte_thash_ctx *)te->data; if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0) break; } ctx = NULL; if (te != NULL) { rte_errno = EEXIST; goto exit; } /* allocate tailq entry */ te = rte_zmalloc("THASH_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, HASH, "Can not allocate tailq entry for thash context %s\n", name); rte_errno = ENOMEM; goto exit; } ctx = rte_zmalloc(NULL, sizeof(struct rte_thash_ctx) + key_len, 0); if (ctx == NULL) { RTE_LOG(ERR, HASH, "thash ctx %s memory allocation failed\n", name); rte_errno = ENOMEM; goto free_te; } rte_strlcpy(ctx->name, name, sizeof(ctx->name)); ctx->key_len = key_len; ctx->reta_sz_log = reta_sz; LIST_INIT(&ctx->head); ctx->flags = flags; if (key) rte_memcpy(ctx->hash_key, key, key_len); else { for (i = 0; i < key_len; i++) ctx->hash_key[i] = rte_rand(); } if (rte_thash_gfni_supported()) { ctx->matrices = rte_zmalloc(NULL, key_len * sizeof(uint64_t), RTE_CACHE_LINE_SIZE); if (ctx->matrices == NULL) { RTE_LOG(ERR, HASH, "Cannot allocate matrices\n"); rte_errno = ENOMEM; goto free_ctx; } rte_thash_complete_matrix(ctx->matrices, ctx->hash_key, key_len); } te->data = (void *)ctx; TAILQ_INSERT_TAIL(thash_list, te, next); rte_mcfg_tailq_write_unlock(); return ctx; free_ctx: rte_free(ctx); free_te: rte_free(te); exit: rte_mcfg_tailq_write_unlock(); return NULL; } struct rte_thash_ctx * rte_thash_find_existing(const char *name) { struct rte_thash_ctx *ctx; struct rte_tailq_entry *te; struct rte_thash_list *thash_list; thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list); rte_mcfg_tailq_read_lock(); TAILQ_FOREACH(te, thash_list, next) { ctx = (struct rte_thash_ctx *)te->data; if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0) break; } rte_mcfg_tailq_read_unlock(); if (te == NULL) { rte_errno = ENOENT; return NULL; } return ctx; } void rte_thash_free_ctx(struct rte_thash_ctx *ctx) { struct rte_tailq_entry *te; struct rte_thash_list *thash_list; struct rte_thash_subtuple_helper *ent, *tmp; if (ctx == NULL) return; thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list); rte_mcfg_tailq_write_lock(); TAILQ_FOREACH(te, thash_list, next) { if (te->data == (void *)ctx) break; } if (te != NULL) TAILQ_REMOVE(thash_list, te, next); rte_mcfg_tailq_write_unlock(); ent = LIST_FIRST(&(ctx->head)); while (ent) { free_lfsr(ent->lfsr); tmp = ent; ent = LIST_NEXT(ent, next); LIST_REMOVE(tmp, next); rte_free(tmp); } rte_free(ctx); rte_free(te); } static inline void set_bit(uint8_t *ptr, uint32_t bit, uint32_t pos) { uint32_t byte_idx = pos / CHAR_BIT; /* index of the bit int byte, indexing starts from MSB */ uint32_t bit_idx = (CHAR_BIT - 1) - (pos & (CHAR_BIT - 1)); uint8_t tmp; tmp = ptr[byte_idx]; tmp &= ~(1 << bit_idx); tmp |= bit << bit_idx; ptr[byte_idx] = tmp; } /** * writes m-sequence to the hash_key for range [start, end] * (i.e. including start and end positions) */ static int generate_subkey(struct rte_thash_ctx *ctx, struct thash_lfsr *lfsr, uint32_t start, uint32_t end) { uint32_t i; uint32_t req_bits = (start < end) ? (end - start) : (start - end); req_bits++; /* due to including end */ /* check if lfsr overflow period of the m-sequence */ if (((lfsr->bits_cnt + req_bits) > (1ULL << lfsr->deg) - 1) && ((ctx->flags & RTE_THASH_IGNORE_PERIOD_OVERFLOW) != RTE_THASH_IGNORE_PERIOD_OVERFLOW)) { RTE_LOG(ERR, HASH, "Can't generate m-sequence due to period overflow\n"); return -ENOSPC; } if (start < end) { /* original direction (from left to right)*/ for (i = start; i <= end; i++) set_bit(ctx->hash_key, get_bit_lfsr(lfsr), i); } else { /* reverse direction (from right to left) */ for (i = end; i >= start; i--) set_bit(ctx->hash_key, get_rev_bit_lfsr(lfsr), i); } if (ctx->matrices != NULL) rte_thash_complete_matrix(ctx->matrices, ctx->hash_key, ctx->key_len); return 0; } static inline uint32_t get_subvalue(struct rte_thash_ctx *ctx, uint32_t offset) { uint32_t *tmp, val; tmp = (uint32_t *)(&ctx->hash_key[offset >> 3]); val = rte_be_to_cpu_32(*tmp); val >>= (TOEPLITZ_HASH_LEN - ((offset & (CHAR_BIT - 1)) + ctx->reta_sz_log)); return val & ((1 << ctx->reta_sz_log) - 1); } static inline void generate_complement_table(struct rte_thash_ctx *ctx, struct rte_thash_subtuple_helper *h) { int i, j, k; uint32_t val; uint32_t start; start = h->offset + h->len - (2 * ctx->reta_sz_log - 1); for (i = 1; i < (1 << ctx->reta_sz_log); i++) { val = 0; for (j = i; j; j &= (j - 1)) { k = rte_bsf32(j); val ^= get_subvalue(ctx, start - k + ctx->reta_sz_log - 1); } h->compl_table[val] = i; } } static inline int insert_before(struct rte_thash_ctx *ctx, struct rte_thash_subtuple_helper *ent, struct rte_thash_subtuple_helper *cur_ent, struct rte_thash_subtuple_helper *next_ent, uint32_t start, uint32_t end, uint32_t range_end) { int ret; if (end < cur_ent->offset) { ent->lfsr = alloc_lfsr(ctx); if (ent->lfsr == NULL) { rte_free(ent); return -ENOMEM; } /* generate nonoverlapping range [start, end) */ ret = generate_subkey(ctx, ent->lfsr, start, end - 1); if (ret != 0) { free_lfsr(ent->lfsr); rte_free(ent); return ret; } } else if ((next_ent != NULL) && (end > next_ent->offset)) { RTE_LOG(ERR, HASH, "Can't add helper %s due to conflict with existing" " helper %s\n", ent->name, next_ent->name); rte_free(ent); return -ENOSPC; } attach_lfsr(ent, cur_ent->lfsr); /** * generate partially overlapping range * [start, cur_ent->start) in reverse order */ ret = generate_subkey(ctx, ent->lfsr, cur_ent->offset - 1, start); if (ret != 0) { free_lfsr(ent->lfsr); rte_free(ent); return ret; } if (end > range_end) { /** * generate partially overlapping range * (range_end, end) */ ret = generate_subkey(ctx, ent->lfsr, range_end, end - 1); if (ret != 0) { free_lfsr(ent->lfsr); rte_free(ent); return ret; } } LIST_INSERT_BEFORE(cur_ent, ent, next); generate_complement_table(ctx, ent); ctx->subtuples_nb++; return 0; } static inline int insert_after(struct rte_thash_ctx *ctx, struct rte_thash_subtuple_helper *ent, struct rte_thash_subtuple_helper *cur_ent, struct rte_thash_subtuple_helper *next_ent, struct rte_thash_subtuple_helper *prev_ent, uint32_t end, uint32_t range_end) { int ret; if ((next_ent != NULL) && (end > next_ent->offset)) { RTE_LOG(ERR, HASH, "Can't add helper %s due to conflict with existing" " helper %s\n", ent->name, next_ent->name); rte_free(ent); return -EEXIST; } attach_lfsr(ent, cur_ent->lfsr); if (end > range_end) { /** * generate partially overlapping range * (range_end, end) */ ret = generate_subkey(ctx, ent->lfsr, range_end, end - 1); if (ret != 0) { free_lfsr(ent->lfsr); rte_free(ent); return ret; } } LIST_INSERT_AFTER(prev_ent, ent, next); generate_complement_table(ctx, ent); ctx->subtuples_nb++; return 0; } int rte_thash_add_helper(struct rte_thash_ctx *ctx, const char *name, uint32_t len, uint32_t offset) { struct rte_thash_subtuple_helper *ent, *cur_ent, *prev_ent, *next_ent; uint32_t start, end; int ret; if ((ctx == NULL) || (name == NULL) || (len < ctx->reta_sz_log) || ((offset + len + TOEPLITZ_HASH_LEN - 1) > ctx->key_len * CHAR_BIT)) return -EINVAL; /* Check for existing name*/ LIST_FOREACH(cur_ent, &ctx->head, next) { if (strncmp(name, cur_ent->name, sizeof(cur_ent->name)) == 0) return -EEXIST; } end = offset + len + TOEPLITZ_HASH_LEN - 1; start = ((ctx->flags & RTE_THASH_MINIMAL_SEQ) == RTE_THASH_MINIMAL_SEQ) ? (end - (2 * ctx->reta_sz_log - 1)) : offset; ent = rte_zmalloc(NULL, sizeof(struct rte_thash_subtuple_helper) + sizeof(uint32_t) * (1 << ctx->reta_sz_log), RTE_CACHE_LINE_SIZE); if (ent == NULL) return -ENOMEM; rte_strlcpy(ent->name, name, sizeof(ent->name)); ent->offset = start; ent->len = end - start; ent->tuple_offset = offset; ent->tuple_len = len; ent->lsb_msk = (1 << ctx->reta_sz_log) - 1; cur_ent = LIST_FIRST(&ctx->head); while (cur_ent) { uint32_t range_end = cur_ent->offset + cur_ent->len; next_ent = LIST_NEXT(cur_ent, next); prev_ent = cur_ent; /* Iterate through overlapping ranges */ while ((next_ent != NULL) && (next_ent->offset < range_end)) { range_end = RTE_MAX(next_ent->offset + next_ent->len, range_end); if (start > next_ent->offset) prev_ent = next_ent; next_ent = LIST_NEXT(next_ent, next); } if (start < cur_ent->offset) return insert_before(ctx, ent, cur_ent, next_ent, start, end, range_end); else if (start < range_end) return insert_after(ctx, ent, cur_ent, next_ent, prev_ent, end, range_end); cur_ent = next_ent; continue; } ent->lfsr = alloc_lfsr(ctx); if (ent->lfsr == NULL) { rte_free(ent); return -ENOMEM; } /* generate nonoverlapping range [start, end) */ ret = generate_subkey(ctx, ent->lfsr, start, end - 1); if (ret != 0) { free_lfsr(ent->lfsr); rte_free(ent); return ret; } if (LIST_EMPTY(&ctx->head)) { LIST_INSERT_HEAD(&ctx->head, ent, next); } else { LIST_FOREACH(next_ent, &ctx->head, next) prev_ent = next_ent; LIST_INSERT_AFTER(prev_ent, ent, next); } generate_complement_table(ctx, ent); ctx->subtuples_nb++; return 0; } struct rte_thash_subtuple_helper * rte_thash_get_helper(struct rte_thash_ctx *ctx, const char *name) { struct rte_thash_subtuple_helper *ent; if ((ctx == NULL) || (name == NULL)) return NULL; LIST_FOREACH(ent, &ctx->head, next) { if (strncmp(name, ent->name, sizeof(ent->name)) == 0) return ent; } return NULL; } uint32_t rte_thash_get_complement(struct rte_thash_subtuple_helper *h, uint32_t hash, uint32_t desired_hash) { return h->compl_table[(hash ^ desired_hash) & h->lsb_msk]; } const uint8_t * rte_thash_get_key(struct rte_thash_ctx *ctx) { return ctx->hash_key; } const uint64_t * rte_thash_get_gfni_matrices(struct rte_thash_ctx *ctx) { return ctx->matrices; } static inline uint8_t read_unaligned_byte(uint8_t *ptr, unsigned int offset) { uint8_t ret = 0; ret = ptr[offset / CHAR_BIT]; if (offset % CHAR_BIT) { ret <<= (offset % CHAR_BIT); ret |= ptr[(offset / CHAR_BIT) + 1] >> (CHAR_BIT - (offset % CHAR_BIT)); } return ret; } static inline uint32_t read_unaligned_bits(uint8_t *ptr, int len, int offset) { uint32_t ret = 0; int shift; len = RTE_MAX(len, 0); len = RTE_MIN(len, (int)(sizeof(uint32_t) * CHAR_BIT)); while (len > 0) { ret <<= CHAR_BIT; ret |= read_unaligned_byte(ptr, offset); offset += CHAR_BIT; len -= CHAR_BIT; } shift = (len == 0) ? 0 : (CHAR_BIT - ((len + CHAR_BIT) % CHAR_BIT)); return ret >> shift; } /* returns mask for len bits with given offset inside byte */ static inline uint8_t get_bits_mask(unsigned int len, unsigned int offset) { unsigned int last_bit; offset %= CHAR_BIT; /* last bit within byte */ last_bit = RTE_MIN((unsigned int)CHAR_BIT, offset + len); return ((1 << (CHAR_BIT - offset)) - 1) ^ ((1 << (CHAR_BIT - last_bit)) - 1); } static inline void write_unaligned_byte(uint8_t *ptr, unsigned int len, unsigned int offset, uint8_t val) { uint8_t tmp; tmp = ptr[offset / CHAR_BIT]; tmp &= ~get_bits_mask(len, offset); tmp |= ((val << (CHAR_BIT - len)) >> (offset % CHAR_BIT)); ptr[offset / CHAR_BIT] = tmp; if (((offset + len) / CHAR_BIT) != (offset / CHAR_BIT)) { int rest_len = (offset + len) % CHAR_BIT; tmp = ptr[(offset + len) / CHAR_BIT]; tmp &= ~get_bits_mask(rest_len, 0); tmp |= val << (CHAR_BIT - rest_len); ptr[(offset + len) / CHAR_BIT] = tmp; } } static inline void write_unaligned_bits(uint8_t *ptr, int len, int offset, uint32_t val) { uint8_t tmp; unsigned int part_len; len = RTE_MAX(len, 0); len = RTE_MIN(len, (int)(sizeof(uint32_t) * CHAR_BIT)); while (len > 0) { part_len = RTE_MIN(CHAR_BIT, len); tmp = (uint8_t)val & ((1 << part_len) - 1); write_unaligned_byte(ptr, part_len, offset + len - part_len, tmp); len -= CHAR_BIT; val >>= CHAR_BIT; } } int rte_thash_adjust_tuple(struct rte_thash_ctx *ctx, struct rte_thash_subtuple_helper *h, uint8_t *tuple, unsigned int tuple_len, uint32_t desired_value, unsigned int attempts, rte_thash_check_tuple_t fn, void *userdata) { uint32_t tmp_tuple[tuple_len / sizeof(uint32_t)]; unsigned int i, j, ret = 0; uint32_t hash, adj_bits; const uint8_t *hash_key; uint32_t tmp; int offset; int tmp_len; if ((ctx == NULL) || (h == NULL) || (tuple == NULL) || (tuple_len % sizeof(uint32_t) != 0) || (attempts <= 0)) return -EINVAL; hash_key = rte_thash_get_key(ctx); attempts = RTE_MIN(attempts, 1U << (h->tuple_len - ctx->reta_sz_log)); for (i = 0; i < attempts; i++) { if (ctx->matrices != NULL) hash = rte_thash_gfni(ctx->matrices, tuple, tuple_len); else { for (j = 0; j < (tuple_len / 4); j++) tmp_tuple[j] = rte_be_to_cpu_32( *(uint32_t *)&tuple[j * 4]); hash = rte_softrss(tmp_tuple, tuple_len / 4, hash_key); } adj_bits = rte_thash_get_complement(h, hash, desired_value); /* * Hint: LSB of adj_bits corresponds to * offset + len bit of the subtuple */ offset = h->tuple_offset + h->tuple_len - ctx->reta_sz_log; tmp = read_unaligned_bits(tuple, ctx->reta_sz_log, offset); tmp ^= adj_bits; write_unaligned_bits(tuple, ctx->reta_sz_log, offset, tmp); if (fn != NULL) { ret = (fn(userdata, tuple)) ? 0 : -EEXIST; if (ret == 0) return 0; else if (i < (attempts - 1)) { /* increment subtuple part by 1 */ tmp_len = RTE_MIN(sizeof(uint32_t) * CHAR_BIT, h->tuple_len - ctx->reta_sz_log); offset -= tmp_len; tmp = read_unaligned_bits(tuple, tmp_len, offset); tmp++; tmp &= (1 << tmp_len) - 1; write_unaligned_bits(tuple, tmp_len, offset, tmp); } } else return 0; } return ret; }