/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2019 Intel Corporation */ #ifndef _RTE_COMMON_H_ #define _RTE_COMMON_H_ /** * @file * * Generic, commonly-used macro and inline function definitions * for DPDK. */ #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include /* OS specific include */ #include #ifndef typeof #define typeof __typeof__ #endif #ifndef __cplusplus #ifndef asm #define asm __asm__ #endif #endif /** C extension macro for environments lacking C11 features. */ #if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 201112L #define RTE_STD_C11 __extension__ #else #define RTE_STD_C11 #endif /* * RTE_TOOLCHAIN_GCC is defined if the target is built with GCC, * while a host application (like pmdinfogen) may have another compiler. * RTE_CC_IS_GNU is true if the file is compiled with GCC, * no matter it is a target or host application. */ #define RTE_CC_IS_GNU 0 #if defined __clang__ #define RTE_CC_CLANG #elif defined __INTEL_COMPILER #define RTE_CC_ICC #elif defined __GNUC__ #define RTE_CC_GCC #undef RTE_CC_IS_GNU #define RTE_CC_IS_GNU 1 #endif #if RTE_CC_IS_GNU #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + \ __GNUC_PATCHLEVEL__) #endif /** * Force alignment */ #define __rte_aligned(a) __attribute__((__aligned__(a))) #ifdef RTE_ARCH_STRICT_ALIGN typedef uint64_t unaligned_uint64_t __rte_aligned(1); typedef uint32_t unaligned_uint32_t __rte_aligned(1); typedef uint16_t unaligned_uint16_t __rte_aligned(1); #else typedef uint64_t unaligned_uint64_t; typedef uint32_t unaligned_uint32_t; typedef uint16_t unaligned_uint16_t; #endif /** * Force a structure to be packed */ #define __rte_packed __attribute__((__packed__)) /** * Macro to mark a type that is not subject to type-based aliasing rules */ #define __rte_may_alias __attribute__((__may_alias__)) /******* Macro to mark functions and fields scheduled for removal *****/ #define __rte_deprecated __attribute__((__deprecated__)) #define __rte_deprecated_msg(msg) __attribute__((__deprecated__(msg))) /** * Macro to mark macros and defines scheduled for removal */ #if defined(RTE_CC_GCC) || defined(RTE_CC_CLANG) #define RTE_PRAGMA(x) _Pragma(#x) #define RTE_PRAGMA_WARNING(w) RTE_PRAGMA(GCC warning #w) #define RTE_DEPRECATED(x) RTE_PRAGMA_WARNING(#x is deprecated) #else #define RTE_DEPRECATED(x) #endif /** * Mark a function or variable to a weak reference. */ #define __rte_weak __attribute__((__weak__)) /** * Force symbol to be generated even if it appears to be unused. */ #define __rte_used __attribute__((used)) /*********** Macros to eliminate unused variable warnings ********/ /** * short definition to mark a function parameter unused */ #define __rte_unused __attribute__((__unused__)) /** * Mark pointer as restricted with regard to pointer aliasing. */ #if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901L #define __rte_restrict __restrict #else #define __rte_restrict restrict #endif /** * definition to mark a variable or function parameter as used so * as to avoid a compiler warning */ #define RTE_SET_USED(x) (void)(x) /** * Check format string and its arguments at compile-time. * * GCC on Windows assumes MS-specific format string by default, * even if the underlying stdio implementation is ANSI-compliant, * so this must be overridden. */ #if RTE_CC_IS_GNU #define __rte_format_printf(format_index, first_arg) \ __attribute__((format(gnu_printf, format_index, first_arg))) #else #define __rte_format_printf(format_index, first_arg) \ __attribute__((format(printf, format_index, first_arg))) #endif /** * Tells compiler that the function returns a value that points to * memory, where the size is given by the one or two arguments. * Used by compiler to validate object size. */ #if defined(RTE_CC_GCC) || defined(RTE_CC_CLANG) #define __rte_alloc_size(...) \ __attribute__((alloc_size(__VA_ARGS__))) #else #define __rte_alloc_size(...) #endif #define RTE_PRIORITY_LOG 101 #define RTE_PRIORITY_BUS 110 #define RTE_PRIORITY_CLASS 120 #define RTE_PRIORITY_LAST 65535 #define RTE_PRIO(prio) \ RTE_PRIORITY_ ## prio /** * Run function before main() with high priority. * * @param func * Constructor function. * @param prio * Priority number must be above 100. * Lowest number is the first to run. */ #ifndef RTE_INIT_PRIO /* Allow to override from EAL */ #define RTE_INIT_PRIO(func, prio) \ static void __attribute__((constructor(RTE_PRIO(prio)), used)) func(void) #endif /** * Run function before main() with low priority. * * The constructor will be run after prioritized constructors. * * @param func * Constructor function. */ #define RTE_INIT(func) \ RTE_INIT_PRIO(func, LAST) /** * Run after main() with low priority. * * @param func * Destructor function name. * @param prio * Priority number must be above 100. * Lowest number is the last to run. */ #ifndef RTE_FINI_PRIO /* Allow to override from EAL */ #define RTE_FINI_PRIO(func, prio) \ static void __attribute__((destructor(RTE_PRIO(prio)), used)) func(void) #endif /** * Run after main() with high priority. * * The destructor will be run *before* prioritized destructors. * * @param func * Destructor function name. */ #define RTE_FINI(func) \ RTE_FINI_PRIO(func, LAST) /** * Hint never returning function */ #define __rte_noreturn __attribute__((noreturn)) /** * Force a function to be inlined */ #define __rte_always_inline inline __attribute__((always_inline)) /** * Force a function to be noinlined */ #define __rte_noinline __attribute__((noinline)) /** * Hint function in the hot path */ #define __rte_hot __attribute__((hot)) /** * Hint function in the cold path */ #define __rte_cold __attribute__((cold)) /** * Disable AddressSanitizer on some code */ #ifdef RTE_MALLOC_ASAN #ifdef RTE_CC_CLANG #define __rte_no_asan __attribute__((no_sanitize("address", "hwaddress"))) #else #define __rte_no_asan __attribute__((no_sanitize_address)) #endif #else /* ! RTE_MALLOC_ASAN */ #define __rte_no_asan #endif /*********** Macros for pointer arithmetic ********/ /** * add a byte-value offset to a pointer */ #define RTE_PTR_ADD(ptr, x) ((void*)((uintptr_t)(ptr) + (x))) /** * subtract a byte-value offset from a pointer */ #define RTE_PTR_SUB(ptr, x) ((void *)((uintptr_t)(ptr) - (x))) /** * get the difference between two pointer values, i.e. how far apart * in bytes are the locations they point two. It is assumed that * ptr1 is greater than ptr2. */ #define RTE_PTR_DIFF(ptr1, ptr2) ((uintptr_t)(ptr1) - (uintptr_t)(ptr2)) /** * Workaround to cast a const field of a structure to non-const type. */ #define RTE_CAST_FIELD(var, field, type) \ (*(type *)((uintptr_t)(var) + offsetof(typeof(*(var)), field))) /*********** Macros/static functions for doing alignment ********/ /** * Macro to align a pointer to a given power-of-two. The resultant * pointer will be a pointer of the same type as the first parameter, and * point to an address no higher than the first parameter. Second parameter * must be a power-of-two value. */ #define RTE_PTR_ALIGN_FLOOR(ptr, align) \ ((typeof(ptr))RTE_ALIGN_FLOOR((uintptr_t)(ptr), align)) /** * Macro to align a value to a given power-of-two. The resultant value * will be of the same type as the first parameter, and will be no * bigger than the first parameter. Second parameter must be a * power-of-two value. */ #define RTE_ALIGN_FLOOR(val, align) \ (typeof(val))((val) & (~((typeof(val))((align) - 1)))) /** * Macro to align a pointer to a given power-of-two. The resultant * pointer will be a pointer of the same type as the first parameter, and * point to an address no lower than the first parameter. Second parameter * must be a power-of-two value. */ #define RTE_PTR_ALIGN_CEIL(ptr, align) \ RTE_PTR_ALIGN_FLOOR((typeof(ptr))RTE_PTR_ADD(ptr, (align) - 1), align) /** * Macro to align a value to a given power-of-two. The resultant value * will be of the same type as the first parameter, and will be no lower * than the first parameter. Second parameter must be a power-of-two * value. */ #define RTE_ALIGN_CEIL(val, align) \ RTE_ALIGN_FLOOR(((val) + ((typeof(val)) (align) - 1)), align) /** * Macro to align a pointer to a given power-of-two. The resultant * pointer will be a pointer of the same type as the first parameter, and * point to an address no lower than the first parameter. Second parameter * must be a power-of-two value. * This function is the same as RTE_PTR_ALIGN_CEIL */ #define RTE_PTR_ALIGN(ptr, align) RTE_PTR_ALIGN_CEIL(ptr, align) /** * Macro to align a value to a given power-of-two. The resultant * value will be of the same type as the first parameter, and * will be no lower than the first parameter. Second parameter * must be a power-of-two value. * This function is the same as RTE_ALIGN_CEIL */ #define RTE_ALIGN(val, align) RTE_ALIGN_CEIL(val, align) /** * Macro to align a value to the multiple of given value. The resultant * value will be of the same type as the first parameter and will be no lower * than the first parameter. */ #define RTE_ALIGN_MUL_CEIL(v, mul) \ ((((v) + (typeof(v))(mul) - 1) / ((typeof(v))(mul))) * (typeof(v))(mul)) /** * Macro to align a value to the multiple of given value. The resultant * value will be of the same type as the first parameter and will be no higher * than the first parameter. */ #define RTE_ALIGN_MUL_FLOOR(v, mul) \ (((v) / ((typeof(v))(mul))) * (typeof(v))(mul)) /** * Macro to align value to the nearest multiple of the given value. * The resultant value might be greater than or less than the first parameter * whichever difference is the lowest. */ #define RTE_ALIGN_MUL_NEAR(v, mul) \ ({ \ typeof(v) ceil = RTE_ALIGN_MUL_CEIL(v, mul); \ typeof(v) floor = RTE_ALIGN_MUL_FLOOR(v, mul); \ (ceil - (v)) > ((v) - floor) ? floor : ceil; \ }) /** * Checks if a pointer is aligned to a given power-of-two value * * @param ptr * The pointer whose alignment is to be checked * @param align * The power-of-two value to which the ptr should be aligned * * @return * True(1) where the pointer is correctly aligned, false(0) otherwise */ static inline int rte_is_aligned(void *ptr, unsigned align) { return RTE_PTR_ALIGN(ptr, align) == ptr; } /*********** Macros for compile type checks ********/ /** * Triggers an error at compilation time if the condition is true. */ #define RTE_BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)])) /*********** Cache line related macros ********/ /** Cache line mask. */ #define RTE_CACHE_LINE_MASK (RTE_CACHE_LINE_SIZE-1) /** Return the first cache-aligned value greater or equal to size. */ #define RTE_CACHE_LINE_ROUNDUP(size) \ (RTE_CACHE_LINE_SIZE * ((size + RTE_CACHE_LINE_SIZE - 1) / \ RTE_CACHE_LINE_SIZE)) /** Cache line size in terms of log2 */ #if RTE_CACHE_LINE_SIZE == 64 #define RTE_CACHE_LINE_SIZE_LOG2 6 #elif RTE_CACHE_LINE_SIZE == 128 #define RTE_CACHE_LINE_SIZE_LOG2 7 #else #error "Unsupported cache line size" #endif /** Minimum Cache line size. */ #define RTE_CACHE_LINE_MIN_SIZE 64 /** Force alignment to cache line. */ #define __rte_cache_aligned __rte_aligned(RTE_CACHE_LINE_SIZE) /** Force minimum cache line alignment. */ #define __rte_cache_min_aligned __rte_aligned(RTE_CACHE_LINE_MIN_SIZE) /*********** PA/IOVA type definitions ********/ /** Physical address */ typedef uint64_t phys_addr_t; #define RTE_BAD_PHYS_ADDR ((phys_addr_t)-1) /** * IO virtual address type. * When the physical addressing mode (IOVA as PA) is in use, * the translation from an IO virtual address (IOVA) to a physical address * is a direct mapping, i.e. the same value. * Otherwise, in virtual mode (IOVA as VA), an IOMMU may do the translation. */ typedef uint64_t rte_iova_t; #define RTE_BAD_IOVA ((rte_iova_t)-1) /*********** Structure alignment markers ********/ /** Generic marker for any place in a structure. */ __extension__ typedef void *RTE_MARKER[0]; /** Marker for 1B alignment in a structure. */ __extension__ typedef uint8_t RTE_MARKER8[0]; /** Marker for 2B alignment in a structure. */ __extension__ typedef uint16_t RTE_MARKER16[0]; /** Marker for 4B alignment in a structure. */ __extension__ typedef uint32_t RTE_MARKER32[0]; /** Marker for 8B alignment in a structure. */ __extension__ typedef uint64_t RTE_MARKER64[0]; /** * Combines 32b inputs most significant set bits into the least * significant bits to construct a value with the same MSBs as x * but all 1's under it. * * @param x * The integer whose MSBs need to be combined with its LSBs * @return * The combined value. */ static inline uint32_t rte_combine32ms1b(uint32_t x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x; } /** * Combines 64b inputs most significant set bits into the least * significant bits to construct a value with the same MSBs as x * but all 1's under it. * * @param v * The integer whose MSBs need to be combined with its LSBs * @return * The combined value. */ static inline uint64_t rte_combine64ms1b(uint64_t v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; return v; } /*********** Macros to work with powers of 2 ********/ /** * Macro to return 1 if n is a power of 2, 0 otherwise */ #define RTE_IS_POWER_OF_2(n) ((n) && !(((n) - 1) & (n))) /** * Returns true if n is a power of 2 * @param n * Number to check * @return 1 if true, 0 otherwise */ static inline int rte_is_power_of_2(uint32_t n) { return n && !(n & (n - 1)); } /** * Aligns input parameter to the next power of 2 * * @param x * The integer value to align * * @return * Input parameter aligned to the next power of 2 */ static inline uint32_t rte_align32pow2(uint32_t x) { x--; x = rte_combine32ms1b(x); return x + 1; } /** * Aligns input parameter to the previous power of 2 * * @param x * The integer value to align * * @return * Input parameter aligned to the previous power of 2 */ static inline uint32_t rte_align32prevpow2(uint32_t x) { x = rte_combine32ms1b(x); return x - (x >> 1); } /** * Aligns 64b input parameter to the next power of 2 * * @param v * The 64b value to align * * @return * Input parameter aligned to the next power of 2 */ static inline uint64_t rte_align64pow2(uint64_t v) { v--; v = rte_combine64ms1b(v); return v + 1; } /** * Aligns 64b input parameter to the previous power of 2 * * @param v * The 64b value to align * * @return * Input parameter aligned to the previous power of 2 */ static inline uint64_t rte_align64prevpow2(uint64_t v) { v = rte_combine64ms1b(v); return v - (v >> 1); } /*********** Macros for calculating min and max **********/ /** * Macro to return the minimum of two numbers */ #define RTE_MIN(a, b) \ __extension__ ({ \ typeof (a) _a = (a); \ typeof (b) _b = (b); \ _a < _b ? _a : _b; \ }) /** * Macro to return the maximum of two numbers */ #define RTE_MAX(a, b) \ __extension__ ({ \ typeof (a) _a = (a); \ typeof (b) _b = (b); \ _a > _b ? _a : _b; \ }) /*********** Other general functions / macros ********/ /** * Searches the input parameter for the least significant set bit * (starting from zero). * If a least significant 1 bit is found, its bit index is returned. * If the content of the input parameter is zero, then the content of the return * value is undefined. * @param v * input parameter, should not be zero. * @return * least significant set bit in the input parameter. */ static inline uint32_t rte_bsf32(uint32_t v) { return (uint32_t)__builtin_ctz(v); } /** * Searches the input parameter for the least significant set bit * (starting from zero). Safe version (checks for input parameter being zero). * * @warning ``pos`` must be a valid pointer. It is not checked! * * @param v * The input parameter. * @param pos * If ``v`` was not 0, this value will contain position of least significant * bit within the input parameter. * @return * Returns 0 if ``v`` was 0, otherwise returns 1. */ static inline int rte_bsf32_safe(uint32_t v, uint32_t *pos) { if (v == 0) return 0; *pos = rte_bsf32(v); return 1; } /** * Return the rounded-up log2 of a integer. * * @note Contrary to the logarithm mathematical operation, * rte_log2_u32(0) == 0 and not -inf. * * @param v * The input parameter. * @return * The rounded-up log2 of the input, or 0 if the input is 0. */ static inline uint32_t rte_log2_u32(uint32_t v) { if (v == 0) return 0; v = rte_align32pow2(v); return rte_bsf32(v); } /** * Return the last (most-significant) bit set. * * @note The last (most significant) bit is at position 32. * @note rte_fls_u32(0) = 0, rte_fls_u32(1) = 1, rte_fls_u32(0x80000000) = 32 * * @param x * The input parameter. * @return * The last (most-significant) bit set, or 0 if the input is 0. */ static inline int rte_fls_u32(uint32_t x) { return (x == 0) ? 0 : 32 - __builtin_clz(x); } /** * Searches the input parameter for the least significant set bit * (starting from zero). * If a least significant 1 bit is found, its bit index is returned. * If the content of the input parameter is zero, then the content of the return * value is undefined. * @param v * input parameter, should not be zero. * @return * least significant set bit in the input parameter. */ static inline int rte_bsf64(uint64_t v) { return (uint32_t)__builtin_ctzll(v); } /** * Searches the input parameter for the least significant set bit * (starting from zero). Safe version (checks for input parameter being zero). * * @warning ``pos`` must be a valid pointer. It is not checked! * * @param v * The input parameter. * @param pos * If ``v`` was not 0, this value will contain position of least significant * bit within the input parameter. * @return * Returns 0 if ``v`` was 0, otherwise returns 1. */ static inline int rte_bsf64_safe(uint64_t v, uint32_t *pos) { if (v == 0) return 0; *pos = rte_bsf64(v); return 1; } /** * Return the last (most-significant) bit set. * * @note The last (most significant) bit is at position 64. * @note rte_fls_u64(0) = 0, rte_fls_u64(1) = 1, * rte_fls_u64(0x8000000000000000) = 64 * * @param x * The input parameter. * @return * The last (most-significant) bit set, or 0 if the input is 0. */ static inline int rte_fls_u64(uint64_t x) { return (x == 0) ? 0 : 64 - __builtin_clzll(x); } /** * Return the rounded-up log2 of a 64-bit integer. * * @note Contrary to the logarithm mathematical operation, * rte_log2_u64(0) == 0 and not -inf. * * @param v * The input parameter. * @return * The rounded-up log2 of the input, or 0 if the input is 0. */ static inline uint32_t rte_log2_u64(uint64_t v) { if (v == 0) return 0; v = rte_align64pow2(v); /* we checked for v being 0 already, so no undefined behavior */ return rte_bsf64(v); } #ifndef offsetof /** Return the offset of a field in a structure. */ #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER) #endif /** * Return pointer to the wrapping struct instance. * * Example: * * struct wrapper { * ... * struct child c; * ... * }; * * struct child *x = obtain(...); * struct wrapper *w = container_of(x, struct wrapper, c); */ #ifndef container_of #define container_of(ptr, type, member) __extension__ ({ \ const typeof(((type *)0)->member) *_ptr = (ptr); \ __rte_unused type *_target_ptr = \ (type *)(ptr); \ (type *)(((uintptr_t)_ptr) - offsetof(type, member)); \ }) #endif /** Swap two variables. */ #define RTE_SWAP(a, b) \ __extension__ ({ \ typeof (a) _a = a; \ a = b; \ b = _a; \ }) /** * Get the size of a field in a structure. * * @param type * The type of the structure. * @param field * The field in the structure. * @return * The size of the field in the structure, in bytes. */ #define RTE_SIZEOF_FIELD(type, field) (sizeof(((type *)0)->field)) #define _RTE_STR(x) #x /** Take a macro value and get a string version of it */ #define RTE_STR(x) _RTE_STR(x) /** * ISO C helpers to modify format strings using variadic macros. * This is a replacement for the ", ## __VA_ARGS__" GNU extension. * An empty %s argument is appended to avoid a dangling comma. */ #define RTE_FMT(fmt, ...) fmt "%.0s", __VA_ARGS__ "" #define RTE_FMT_HEAD(fmt, ...) fmt #define RTE_FMT_TAIL(fmt, ...) __VA_ARGS__ /** Mask value of type "tp" for the first "ln" bit set. */ #define RTE_LEN2MASK(ln, tp) \ ((tp)((uint64_t)-1 >> (sizeof(uint64_t) * CHAR_BIT - (ln)))) /** Number of elements in the array. */ #define RTE_DIM(a) (sizeof (a) / sizeof ((a)[0])) /** * Converts a numeric string to the equivalent uint64_t value. * As well as straight number conversion, also recognises the suffixes * k, m and g for kilobytes, megabytes and gigabytes respectively. * * If a negative number is passed in i.e. a string with the first non-black * character being "-", zero is returned. Zero is also returned in the case of * an error with the strtoull call in the function. * * @param str * String containing number to convert. * @return * Number. */ static inline uint64_t rte_str_to_size(const char *str) { char *endptr; unsigned long long size; while (isspace((int)*str)) str++; if (*str == '-') return 0; errno = 0; size = strtoull(str, &endptr, 0); if (errno) return 0; if (*endptr == ' ') endptr++; /* allow 1 space gap */ switch (*endptr){ case 'G': case 'g': size *= 1024; /* fall-through */ case 'M': case 'm': size *= 1024; /* fall-through */ case 'K': case 'k': size *= 1024; /* fall-through */ default: break; } return size; } /** * Function to terminate the application immediately, printing an error * message and returning the exit_code back to the shell. * * This function never returns * * @param exit_code * The exit code to be returned by the application * @param format * The format string to be used for printing the message. This can include * printf format characters which will be expanded using any further parameters * to the function. */ __rte_noreturn void rte_exit(int exit_code, const char *format, ...) __rte_format_printf(2, 3); #ifdef __cplusplus } #endif #endif