/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include "main.h" /* * QoS parameters are encoded as follows: * Outer VLAN ID defines subport * Inner VLAN ID defines pipe * Destination IP host (0.0.0.XXX) defines queue * Values below define offset to each field from start of frame */ #define SUBPORT_OFFSET 7 #define PIPE_OFFSET 9 #define QUEUE_OFFSET 20 #define COLOR_OFFSET 19 static inline int get_pkt_sched(struct rte_mbuf *m, uint32_t *subport, uint32_t *pipe, uint32_t *traffic_class, uint32_t *queue, uint32_t *color) { uint16_t *pdata = rte_pktmbuf_mtod(m, uint16_t *); uint16_t pipe_queue; /* Outer VLAN ID*/ *subport = (rte_be_to_cpu_16(pdata[SUBPORT_OFFSET]) & 0x0FFF) & (port_params.n_subports_per_port - 1); /* Inner VLAN ID */ *pipe = (rte_be_to_cpu_16(pdata[PIPE_OFFSET]) & 0x0FFF) & (subport_params[*subport].n_pipes_per_subport_enabled - 1); pipe_queue = active_queues[(pdata[QUEUE_OFFSET] >> 8) % n_active_queues]; /* Traffic class (Destination IP) */ *traffic_class = pipe_queue > RTE_SCHED_TRAFFIC_CLASS_BE ? RTE_SCHED_TRAFFIC_CLASS_BE : pipe_queue; /* Traffic class queue (Destination IP) */ *queue = pipe_queue - *traffic_class; /* Color (Destination IP) */ *color = pdata[COLOR_OFFSET] & 0x03; return 0; } void app_rx_thread(struct thread_conf **confs) { uint32_t i, nb_rx; struct rte_mbuf *rx_mbufs[burst_conf.rx_burst] __rte_cache_aligned; struct thread_conf *conf; int conf_idx = 0; uint32_t subport; uint32_t pipe; uint32_t traffic_class; uint32_t queue; uint32_t color; while ((conf = confs[conf_idx])) { nb_rx = rte_eth_rx_burst(conf->rx_port, conf->rx_queue, rx_mbufs, burst_conf.rx_burst); if (likely(nb_rx != 0)) { APP_STATS_ADD(conf->stat.nb_rx, nb_rx); for(i = 0; i < nb_rx; i++) { get_pkt_sched(rx_mbufs[i], &subport, &pipe, &traffic_class, &queue, &color); rte_sched_port_pkt_write(conf->sched_port, rx_mbufs[i], subport, pipe, traffic_class, queue, (enum rte_color) color); } if (unlikely(rte_ring_sp_enqueue_bulk(conf->rx_ring, (void **)rx_mbufs, nb_rx, NULL) == 0)) { for(i = 0; i < nb_rx; i++) { rte_pktmbuf_free(rx_mbufs[i]); APP_STATS_ADD(conf->stat.nb_drop, 1); } } } conf_idx++; if (confs[conf_idx] == NULL) conf_idx = 0; } } /* Send the packet to an output interface * For performance reason function returns number of packets dropped, not sent, * so 0 means that all packets were sent successfully */ static inline void app_send_burst(struct thread_conf *qconf) { struct rte_mbuf **mbufs; uint32_t n, ret; mbufs = (struct rte_mbuf **)qconf->m_table; n = qconf->n_mbufs; do { ret = rte_eth_tx_burst(qconf->tx_port, qconf->tx_queue, mbufs, (uint16_t)n); /* we cannot drop the packets, so re-send */ /* update number of packets to be sent */ n -= ret; mbufs = (struct rte_mbuf **)&mbufs[ret]; } while (n); } /* Send the packet to an output interface */ static void app_send_packets(struct thread_conf *qconf, struct rte_mbuf **mbufs, uint32_t nb_pkt) { uint32_t i, len; len = qconf->n_mbufs; for(i = 0; i < nb_pkt; i++) { qconf->m_table[len] = mbufs[i]; len++; /* enough pkts to be sent */ if (unlikely(len == burst_conf.tx_burst)) { qconf->n_mbufs = len; app_send_burst(qconf); len = 0; } } qconf->n_mbufs = len; } void app_tx_thread(struct thread_conf **confs) { struct rte_mbuf *mbufs[burst_conf.qos_dequeue]; struct thread_conf *conf; int conf_idx = 0; int retval; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; while ((conf = confs[conf_idx])) { retval = rte_ring_sc_dequeue_bulk(conf->tx_ring, (void **)mbufs, burst_conf.qos_dequeue, NULL); if (likely(retval != 0)) { app_send_packets(conf, mbufs, burst_conf.qos_dequeue); conf->counter = 0; /* reset empty read loop counter */ } conf->counter++; /* drain ring and TX queues */ if (unlikely(conf->counter > drain_tsc)) { /* now check is there any packets left to be transmitted */ if (conf->n_mbufs != 0) { app_send_burst(conf); conf->n_mbufs = 0; } conf->counter = 0; } conf_idx++; if (confs[conf_idx] == NULL) conf_idx = 0; } } void app_worker_thread(struct thread_conf **confs) { struct rte_mbuf *mbufs[burst_conf.ring_burst]; struct thread_conf *conf; int conf_idx = 0; while ((conf = confs[conf_idx])) { uint32_t nb_pkt; /* Read packet from the ring */ nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs, burst_conf.ring_burst, NULL); if (likely(nb_pkt)) { int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs, nb_pkt); APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent); APP_STATS_ADD(conf->stat.nb_rx, nb_pkt); } nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs, burst_conf.qos_dequeue); if (likely(nb_pkt > 0)) while (rte_ring_sp_enqueue_bulk(conf->tx_ring, (void **)mbufs, nb_pkt, NULL) == 0) ; /* empty body */ conf_idx++; if (confs[conf_idx] == NULL) conf_idx = 0; } } void app_mixed_thread(struct thread_conf **confs) { struct rte_mbuf *mbufs[burst_conf.ring_burst]; struct thread_conf *conf; int conf_idx = 0; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; while ((conf = confs[conf_idx])) { uint32_t nb_pkt; /* Read packet from the ring */ nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs, burst_conf.ring_burst, NULL); if (likely(nb_pkt)) { int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs, nb_pkt); APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent); APP_STATS_ADD(conf->stat.nb_rx, nb_pkt); } nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs, burst_conf.qos_dequeue); if (likely(nb_pkt > 0)) { app_send_packets(conf, mbufs, nb_pkt); conf->counter = 0; /* reset empty read loop counter */ } conf->counter++; /* drain ring and TX queues */ if (unlikely(conf->counter > drain_tsc)) { /* now check is there any packets left to be transmitted */ if (conf->n_mbufs != 0) { app_send_burst(conf); conf->n_mbufs = 0; } conf->counter = 0; } conf_idx++; if (confs[conf_idx] == NULL) conf_idx = 0; } }