/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "l3fwd.h" #include "l3fwd_event.h" #if defined(RTE_ARCH_X86) || defined(__ARM_FEATURE_CRC32) #define EM_HASH_CRC 1 #endif #ifdef EM_HASH_CRC #include #define DEFAULT_HASH_FUNC rte_hash_crc #else #include #define DEFAULT_HASH_FUNC rte_jhash #endif #define IPV6_ADDR_LEN 16 struct ipv4_5tuple { uint32_t ip_dst; uint32_t ip_src; uint16_t port_dst; uint16_t port_src; uint8_t proto; } __rte_packed; union ipv4_5tuple_host { struct { uint8_t pad0; uint8_t proto; uint16_t pad1; uint32_t ip_src; uint32_t ip_dst; uint16_t port_src; uint16_t port_dst; }; xmm_t xmm; }; #define XMM_NUM_IN_IPV6_5TUPLE 3 struct ipv6_5tuple { uint8_t ip_dst[IPV6_ADDR_LEN]; uint8_t ip_src[IPV6_ADDR_LEN]; uint16_t port_dst; uint16_t port_src; uint8_t proto; } __rte_packed; union ipv6_5tuple_host { struct { uint16_t pad0; uint8_t proto; uint8_t pad1; uint8_t ip_src[IPV6_ADDR_LEN]; uint8_t ip_dst[IPV6_ADDR_LEN]; uint16_t port_src; uint16_t port_dst; uint64_t reserve; }; xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE]; }; struct ipv4_l3fwd_em_route { struct ipv4_5tuple key; uint8_t if_out; }; struct ipv6_l3fwd_em_route { struct ipv6_5tuple key; uint8_t if_out; }; /* 198.18.0.0/16 are set aside for RFC2544 benchmarking (RFC5735). * Use RFC863 Discard Protocol. */ static const struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = { {{RTE_IPV4(198, 18, 0, 0), RTE_IPV4(198, 18, 0, 1), 9, 9, IPPROTO_UDP}, 0}, {{RTE_IPV4(198, 18, 1, 0), RTE_IPV4(198, 18, 1, 1), 9, 9, IPPROTO_UDP}, 1}, {{RTE_IPV4(198, 18, 2, 0), RTE_IPV4(198, 18, 2, 1), 9, 9, IPPROTO_UDP}, 2}, {{RTE_IPV4(198, 18, 3, 0), RTE_IPV4(198, 18, 3, 1), 9, 9, IPPROTO_UDP}, 3}, {{RTE_IPV4(198, 18, 4, 0), RTE_IPV4(198, 18, 4, 1), 9, 9, IPPROTO_UDP}, 4}, {{RTE_IPV4(198, 18, 5, 0), RTE_IPV4(198, 18, 5, 1), 9, 9, IPPROTO_UDP}, 5}, {{RTE_IPV4(198, 18, 6, 0), RTE_IPV4(198, 18, 6, 1), 9, 9, IPPROTO_UDP}, 6}, {{RTE_IPV4(198, 18, 7, 0), RTE_IPV4(198, 18, 7, 1), 9, 9, IPPROTO_UDP}, 7}, {{RTE_IPV4(198, 18, 8, 0), RTE_IPV4(198, 18, 8, 1), 9, 9, IPPROTO_UDP}, 8}, {{RTE_IPV4(198, 18, 9, 0), RTE_IPV4(198, 18, 9, 1), 9, 9, IPPROTO_UDP}, 9}, {{RTE_IPV4(198, 18, 10, 0), RTE_IPV4(198, 18, 10, 1), 9, 9, IPPROTO_UDP}, 10}, {{RTE_IPV4(198, 18, 11, 0), RTE_IPV4(198, 18, 11, 1), 9, 9, IPPROTO_UDP}, 11}, {{RTE_IPV4(198, 18, 12, 0), RTE_IPV4(198, 18, 12, 1), 9, 9, IPPROTO_UDP}, 12}, {{RTE_IPV4(198, 18, 13, 0), RTE_IPV4(198, 18, 13, 1), 9, 9, IPPROTO_UDP}, 13}, {{RTE_IPV4(198, 18, 14, 0), RTE_IPV4(198, 18, 14, 1), 9, 9, IPPROTO_UDP}, 14}, {{RTE_IPV4(198, 18, 15, 0), RTE_IPV4(198, 18, 15, 1), 9, 9, IPPROTO_UDP}, 15}, }; /* 2001:0200::/48 is IANA reserved range for IPv6 benchmarking (RFC5180). * Use RFC863 Discard Protocol. */ static const struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = { {{{32, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 0}, {{{32, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 1}, {{{32, 1, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 2}, {{{32, 1, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 3}, {{{32, 1, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 4}, {{{32, 1, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 5}, {{{32, 1, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 6}, {{{32, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 7}, {{{32, 1, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 8}, {{{32, 1, 2, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 9}, {{{32, 1, 2, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 10}, {{{32, 1, 2, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 11}, {{{32, 1, 2, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 12}, {{{32, 1, 2, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 13}, {{{32, 1, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 14}, {{{32, 1, 2, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0}, {32, 1, 2, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 15}, }; struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS]; struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS]; static inline uint32_t ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val) { const union ipv4_5tuple_host *k; uint32_t t; const uint32_t *p; k = data; t = k->proto; p = (const uint32_t *)&k->port_src; #ifdef EM_HASH_CRC init_val = rte_hash_crc_4byte(t, init_val); init_val = rte_hash_crc_4byte(k->ip_src, init_val); init_val = rte_hash_crc_4byte(k->ip_dst, init_val); init_val = rte_hash_crc_4byte(*p, init_val); #else init_val = rte_jhash_1word(t, init_val); init_val = rte_jhash_1word(k->ip_src, init_val); init_val = rte_jhash_1word(k->ip_dst, init_val); init_val = rte_jhash_1word(*p, init_val); #endif return init_val; } static inline uint32_t ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val) { const union ipv6_5tuple_host *k; uint32_t t; const uint32_t *p; #ifdef EM_HASH_CRC const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3; const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3; #endif k = data; t = k->proto; p = (const uint32_t *)&k->port_src; #ifdef EM_HASH_CRC ip_src0 = (const uint32_t *) k->ip_src; ip_src1 = (const uint32_t *)(k->ip_src+4); ip_src2 = (const uint32_t *)(k->ip_src+8); ip_src3 = (const uint32_t *)(k->ip_src+12); ip_dst0 = (const uint32_t *) k->ip_dst; ip_dst1 = (const uint32_t *)(k->ip_dst+4); ip_dst2 = (const uint32_t *)(k->ip_dst+8); ip_dst3 = (const uint32_t *)(k->ip_dst+12); init_val = rte_hash_crc_4byte(t, init_val); init_val = rte_hash_crc_4byte(*ip_src0, init_val); init_val = rte_hash_crc_4byte(*ip_src1, init_val); init_val = rte_hash_crc_4byte(*ip_src2, init_val); init_val = rte_hash_crc_4byte(*ip_src3, init_val); init_val = rte_hash_crc_4byte(*ip_dst0, init_val); init_val = rte_hash_crc_4byte(*ip_dst1, init_val); init_val = rte_hash_crc_4byte(*ip_dst2, init_val); init_val = rte_hash_crc_4byte(*ip_dst3, init_val); init_val = rte_hash_crc_4byte(*p, init_val); #else init_val = rte_jhash_1word(t, init_val); init_val = rte_jhash(k->ip_src, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val); init_val = rte_jhash(k->ip_dst, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val); init_val = rte_jhash_1word(*p, init_val); #endif return init_val; } #define IPV4_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv4_l3fwd_em_route_array) #define IPV6_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv6_l3fwd_em_route_array) static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; static rte_xmm_t mask0; static rte_xmm_t mask1; static rte_xmm_t mask2; #if defined(__SSE2__) static inline xmm_t em_mask_key(void *key, xmm_t mask) { __m128i data = _mm_loadu_si128((__m128i *)(key)); return _mm_and_si128(data, mask); } #elif defined(__ARM_NEON) static inline xmm_t em_mask_key(void *key, xmm_t mask) { int32x4_t data = vld1q_s32((int32_t *)key); return vandq_s32(data, mask); } #elif defined(__ALTIVEC__) static inline xmm_t em_mask_key(void *key, xmm_t mask) { xmm_t data = vec_ld(0, (xmm_t *)(key)); return vec_and(data, mask); } #else #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain #endif /* Performing hash-based lookups. 8< */ static inline uint16_t em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct) { int ret = 0; union ipv4_5tuple_host key; struct rte_hash *ipv4_l3fwd_lookup_struct = (struct rte_hash *)lookup_struct; ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct rte_ipv4_hdr, time_to_live); /* * Get 5 tuple: dst port, src port, dst IP address, * src IP address and protocol. */ key.xmm = em_mask_key(ipv4_hdr, mask0.x); /* Find destination port */ ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret]; } /* >8 End of performing hash-based lookups. */ static inline uint16_t em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct) { int ret = 0; union ipv6_5tuple_host key; struct rte_hash *ipv6_l3fwd_lookup_struct = (struct rte_hash *)lookup_struct; ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct rte_ipv6_hdr, payload_len); void *data0 = ipv6_hdr; void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t); void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t); /* Get part of 5 tuple: src IP address lower 96 bits and protocol */ key.xmm[0] = em_mask_key(data0, mask1.x); /* * Get part of 5 tuple: dst IP address lower 96 bits * and src IP address higher 32 bits. */ #if defined RTE_ARCH_X86 key.xmm[1] = _mm_loadu_si128(data1); #else key.xmm[1] = *(xmm_t *)data1; #endif /* * Get part of 5 tuple: dst port and src port * and dst IP address higher 32 bits. */ key.xmm[2] = em_mask_key(data2, mask2.x); /* Find destination port */ ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret]; } #if defined RTE_ARCH_X86 || defined __ARM_NEON #if defined(NO_HASH_MULTI_LOOKUP) #include "l3fwd_em_sequential.h" #else #include "l3fwd_em_hlm.h" #endif #else #include "l3fwd_em.h" #endif static void convert_ipv4_5tuple(struct ipv4_5tuple *key1, union ipv4_5tuple_host *key2) { key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst); key2->ip_src = rte_cpu_to_be_32(key1->ip_src); key2->port_dst = rte_cpu_to_be_16(key1->port_dst); key2->port_src = rte_cpu_to_be_16(key1->port_src); key2->proto = key1->proto; key2->pad0 = 0; key2->pad1 = 0; } static void convert_ipv6_5tuple(struct ipv6_5tuple *key1, union ipv6_5tuple_host *key2) { uint32_t i; for (i = 0; i < 16; i++) { key2->ip_dst[i] = key1->ip_dst[i]; key2->ip_src[i] = key1->ip_src[i]; } key2->port_dst = rte_cpu_to_be_16(key1->port_dst); key2->port_src = rte_cpu_to_be_16(key1->port_src); key2->proto = key1->proto; key2->pad0 = 0; key2->pad1 = 0; key2->reserve = 0; } #define BYTE_VALUE_MAX 256 #define ALL_32_BITS 0xffffffff #define BIT_8_TO_15 0x0000ff00 static inline void populate_ipv4_few_flow_into_table(const struct rte_hash *h) { uint32_t i; int32_t ret; mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS, ALL_32_BITS, ALL_32_BITS} }; for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) { struct ipv4_l3fwd_em_route entry; union ipv4_5tuple_host newkey; entry = ipv4_l3fwd_em_route_array[i]; convert_ipv4_5tuple(&entry.key, &newkey); ret = rte_hash_add_key(h, (void *) &newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 " to the l3fwd hash.\n", i); } ipv4_l3fwd_out_if[ret] = entry.if_out; } printf("Hash: Adding 0x%" PRIx64 " keys\n", (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES); } #define BIT_16_TO_23 0x00ff0000 static inline void populate_ipv6_few_flow_into_table(const struct rte_hash *h) { uint32_t i; int32_t ret; mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS, ALL_32_BITS, ALL_32_BITS} }; mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} }; for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) { struct ipv6_l3fwd_em_route entry; union ipv6_5tuple_host newkey; entry = ipv6_l3fwd_em_route_array[i]; convert_ipv6_5tuple(&entry.key, &newkey); ret = rte_hash_add_key(h, (void *) &newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 " to the l3fwd hash.\n", i); } ipv6_l3fwd_out_if[ret] = entry.if_out; } printf("Hash: Adding 0x%" PRIx64 "keys\n", (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES); } #define NUMBER_PORT_USED 16 static inline void populate_ipv4_many_flow_into_table(const struct rte_hash *h, unsigned int nr_flow) { unsigned i; mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS, ALL_32_BITS, ALL_32_BITS} }; for (i = 0; i < nr_flow; i++) { uint8_t port = i % NUMBER_PORT_USED; struct ipv4_l3fwd_em_route entry; union ipv4_5tuple_host newkey; uint8_t a = (uint8_t)((port + 1) % BYTE_VALUE_MAX); /* Create the ipv4 exact match flow */ memset(&entry, 0, sizeof(entry)); entry = ipv4_l3fwd_em_route_array[port]; entry.key.ip_dst = RTE_IPV4(198, 18, port, a); convert_ipv4_5tuple(&entry.key, &newkey); int32_t ret = rte_hash_add_key(h, (void *) &newkey); if (ret < 0) rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out; } printf("Hash: Adding 0x%x keys\n", nr_flow); } static inline void populate_ipv6_many_flow_into_table(const struct rte_hash *h, unsigned int nr_flow) { unsigned i; mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS, ALL_32_BITS, ALL_32_BITS} }; mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} }; for (i = 0; i < nr_flow; i++) { uint8_t port = i % NUMBER_PORT_USED; struct ipv6_l3fwd_em_route entry; union ipv6_5tuple_host newkey; /* Create the ipv6 exact match flow */ memset(&entry, 0, sizeof(entry)); entry = ipv6_l3fwd_em_route_array[port]; entry.key.ip_dst[15] = (port + 1) % BYTE_VALUE_MAX; convert_ipv6_5tuple(&entry.key, &newkey); int32_t ret = rte_hash_add_key(h, (void *) &newkey); if (ret < 0) rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out; } printf("Hash: Adding 0x%x keys\n", nr_flow); } /* Requirements: * 1. IP packets without extension; * 2. L4 payload should be either TCP or UDP. */ int em_check_ptype(int portid) { int i, ret; int ptype_l3_ipv4_ext = 0; int ptype_l3_ipv6_ext = 0; int ptype_l4_tcp = 0; int ptype_l4_udp = 0; uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK; ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); if (ret <= 0) return 0; uint32_t ptypes[ret]; ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); for (i = 0; i < ret; ++i) { switch (ptypes[i]) { case RTE_PTYPE_L3_IPV4_EXT: ptype_l3_ipv4_ext = 1; break; case RTE_PTYPE_L3_IPV6_EXT: ptype_l3_ipv6_ext = 1; break; case RTE_PTYPE_L4_TCP: ptype_l4_tcp = 1; break; case RTE_PTYPE_L4_UDP: ptype_l4_udp = 1; break; } } if (ptype_l3_ipv4_ext == 0) printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid); if (ptype_l3_ipv6_ext == 0) printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid); if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext) return 0; if (ptype_l4_tcp == 0) printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid); if (ptype_l4_udp == 0) printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid); if (ptype_l4_tcp && ptype_l4_udp) return 1; return 0; } static inline void em_parse_ptype(struct rte_mbuf *m) { struct rte_ether_hdr *eth_hdr; uint32_t packet_type = RTE_PTYPE_UNKNOWN; uint16_t ether_type; void *l3; int hdr_len; struct rte_ipv4_hdr *ipv4_hdr; struct rte_ipv6_hdr *ipv6_hdr; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); ether_type = eth_hdr->ether_type; l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr); if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) { ipv4_hdr = (struct rte_ipv4_hdr *)l3; hdr_len = rte_ipv4_hdr_len(ipv4_hdr); if (hdr_len == sizeof(struct rte_ipv4_hdr)) { packet_type |= RTE_PTYPE_L3_IPV4; if (ipv4_hdr->next_proto_id == IPPROTO_TCP) packet_type |= RTE_PTYPE_L4_TCP; else if (ipv4_hdr->next_proto_id == IPPROTO_UDP) packet_type |= RTE_PTYPE_L4_UDP; } else packet_type |= RTE_PTYPE_L3_IPV4_EXT; } else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) { ipv6_hdr = (struct rte_ipv6_hdr *)l3; if (ipv6_hdr->proto == IPPROTO_TCP) packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP; else if (ipv6_hdr->proto == IPPROTO_UDP) packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP; else packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; } m->packet_type = packet_type; } uint16_t em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t max_pkts __rte_unused, void *user_param __rte_unused) { unsigned i; for (i = 0; i < nb_pkts; ++i) em_parse_ptype(pkts[i]); return nb_pkts; } /* main processing loop */ int em_main_loop(__rte_unused void *dummy) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; unsigned lcore_id; uint64_t prev_tsc, diff_tsc, cur_tsc; int i, nb_rx; uint8_t queueid; uint16_t portid; struct lcore_conf *qconf; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; const uint16_t n_rx_q = qconf->n_rx_queue; const uint16_t n_tx_p = qconf->n_tx_port; if (n_rx_q == 0) { RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < n_rx_q; i++) { portid = qconf->rx_queue_list[i].port_id; queueid = qconf->rx_queue_list[i].queue_id; RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", lcore_id, portid, queueid); } cur_tsc = rte_rdtsc(); prev_tsc = cur_tsc; while (!force_quit) { /* * TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { for (i = 0; i < n_tx_p; ++i) { portid = qconf->tx_port_id[i]; if (qconf->tx_mbufs[portid].len == 0) continue; send_burst(qconf, qconf->tx_mbufs[portid].len, portid); qconf->tx_mbufs[portid].len = 0; } prev_tsc = cur_tsc; } /* * Read packet from RX queues */ for (i = 0; i < n_rx_q; ++i) { portid = qconf->rx_queue_list[i].port_id; queueid = qconf->rx_queue_list[i].queue_id; nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST); if (nb_rx == 0) continue; #if defined RTE_ARCH_X86 || defined __ARM_NEON l3fwd_em_send_packets(nb_rx, pkts_burst, portid, qconf); #else l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst, portid, qconf); #endif } cur_tsc = rte_rdtsc(); } return 0; } static __rte_always_inline void em_event_loop_single(struct l3fwd_event_resources *evt_rsrc, const uint8_t flags) { const int event_p_id = l3fwd_get_free_event_port(evt_rsrc); const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[ evt_rsrc->evq.nb_queues - 1]; const uint8_t event_d_id = evt_rsrc->event_d_id; struct lcore_conf *lconf; unsigned int lcore_id; struct rte_event ev; if (event_p_id < 0) return; lcore_id = rte_lcore_id(); lconf = &lcore_conf[lcore_id]; RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id); while (!force_quit) { if (!rte_event_dequeue_burst(event_d_id, event_p_id, &ev, 1, 0)) continue; struct rte_mbuf *mbuf = ev.mbuf; #if defined RTE_ARCH_X86 || defined __ARM_NEON mbuf->port = em_get_dst_port(lconf, mbuf, mbuf->port); process_packet(mbuf, &mbuf->port); #else l3fwd_em_simple_process(mbuf, lconf); #endif if (mbuf->port == BAD_PORT) { rte_pktmbuf_free(mbuf); continue; } if (flags & L3FWD_EVENT_TX_ENQ) { ev.queue_id = tx_q_id; ev.op = RTE_EVENT_OP_FORWARD; while (rte_event_enqueue_burst(event_d_id, event_p_id, &ev, 1) && !force_quit) ; } if (flags & L3FWD_EVENT_TX_DIRECT) { rte_event_eth_tx_adapter_txq_set(mbuf, 0); while (!rte_event_eth_tx_adapter_enqueue(event_d_id, event_p_id, &ev, 1, 0) && !force_quit) ; } } } static __rte_always_inline void em_event_loop_burst(struct l3fwd_event_resources *evt_rsrc, const uint8_t flags) { const int event_p_id = l3fwd_get_free_event_port(evt_rsrc); const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[ evt_rsrc->evq.nb_queues - 1]; const uint8_t event_d_id = evt_rsrc->event_d_id; const uint16_t deq_len = evt_rsrc->deq_depth; struct rte_event events[MAX_PKT_BURST]; struct lcore_conf *lconf; unsigned int lcore_id; int i, nb_enq, nb_deq; if (event_p_id < 0) return; lcore_id = rte_lcore_id(); lconf = &lcore_conf[lcore_id]; RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id); while (!force_quit) { /* Read events from RX queues */ nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id, events, deq_len, 0); if (nb_deq == 0) { rte_pause(); continue; } #if defined RTE_ARCH_X86 || defined __ARM_NEON l3fwd_em_process_events(nb_deq, (struct rte_event **)&events, lconf); #else l3fwd_em_no_opt_process_events(nb_deq, (struct rte_event **)&events, lconf); #endif for (i = 0; i < nb_deq; i++) { if (flags & L3FWD_EVENT_TX_ENQ) { events[i].queue_id = tx_q_id; events[i].op = RTE_EVENT_OP_FORWARD; } if (flags & L3FWD_EVENT_TX_DIRECT) rte_event_eth_tx_adapter_txq_set(events[i].mbuf, 0); } if (flags & L3FWD_EVENT_TX_ENQ) { nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id, events, nb_deq); while (nb_enq < nb_deq && !force_quit) nb_enq += rte_event_enqueue_burst(event_d_id, event_p_id, events + nb_enq, nb_deq - nb_enq); } if (flags & L3FWD_EVENT_TX_DIRECT) { nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id, event_p_id, events, nb_deq, 0); while (nb_enq < nb_deq && !force_quit) nb_enq += rte_event_eth_tx_adapter_enqueue( event_d_id, event_p_id, events + nb_enq, nb_deq - nb_enq, 0); } } } static __rte_always_inline void em_event_loop(struct l3fwd_event_resources *evt_rsrc, const uint8_t flags) { if (flags & L3FWD_EVENT_SINGLE) em_event_loop_single(evt_rsrc, flags); if (flags & L3FWD_EVENT_BURST) em_event_loop_burst(evt_rsrc, flags); } int __rte_noinline em_event_main_loop_tx_d(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_SINGLE); return 0; } int __rte_noinline em_event_main_loop_tx_d_burst(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_BURST); return 0; } int __rte_noinline em_event_main_loop_tx_q(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_SINGLE); return 0; } int __rte_noinline em_event_main_loop_tx_q_burst(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_BURST); return 0; } /* Same eventdev loop for single and burst of vector */ static __rte_always_inline void em_event_loop_vector(struct l3fwd_event_resources *evt_rsrc, const uint8_t flags) { const int event_p_id = l3fwd_get_free_event_port(evt_rsrc); const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[evt_rsrc->evq.nb_queues - 1]; const uint8_t event_d_id = evt_rsrc->event_d_id; const uint16_t deq_len = evt_rsrc->deq_depth; struct rte_event events[MAX_PKT_BURST]; struct lcore_conf *lconf; unsigned int lcore_id; int i, nb_enq, nb_deq; if (event_p_id < 0) return; lcore_id = rte_lcore_id(); lconf = &lcore_conf[lcore_id]; RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id); while (!force_quit) { /* Read events from RX queues */ nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id, events, deq_len, 0); if (nb_deq == 0) { rte_pause(); continue; } for (i = 0; i < nb_deq; i++) { if (flags & L3FWD_EVENT_TX_ENQ) { events[i].queue_id = tx_q_id; events[i].op = RTE_EVENT_OP_FORWARD; } #if defined RTE_ARCH_X86 || defined __ARM_NEON l3fwd_em_process_event_vector(events[i].vec, lconf); #else l3fwd_em_no_opt_process_event_vector(events[i].vec, lconf); #endif if (flags & L3FWD_EVENT_TX_DIRECT) event_vector_txq_set(events[i].vec, 0); } if (flags & L3FWD_EVENT_TX_ENQ) { nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id, events, nb_deq); while (nb_enq < nb_deq && !force_quit) nb_enq += rte_event_enqueue_burst( event_d_id, event_p_id, events + nb_enq, nb_deq - nb_enq); } if (flags & L3FWD_EVENT_TX_DIRECT) { nb_enq = rte_event_eth_tx_adapter_enqueue( event_d_id, event_p_id, events, nb_deq, 0); while (nb_enq < nb_deq && !force_quit) nb_enq += rte_event_eth_tx_adapter_enqueue( event_d_id, event_p_id, events + nb_enq, nb_deq - nb_enq, 0); } } } int __rte_noinline em_event_main_loop_tx_d_vector(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT); return 0; } int __rte_noinline em_event_main_loop_tx_d_burst_vector(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT); return 0; } int __rte_noinline em_event_main_loop_tx_q_vector(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ); return 0; } int __rte_noinline em_event_main_loop_tx_q_burst_vector(__rte_unused void *dummy) { struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc(); em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ); return 0; } /* Initialize exact match (hash) parameters. 8< */ void setup_hash(const int socketid) { struct rte_hash_parameters ipv4_l3fwd_hash_params = { .name = NULL, .entries = L3FWD_HASH_ENTRIES, .key_len = sizeof(union ipv4_5tuple_host), .hash_func = ipv4_hash_crc, .hash_func_init_val = 0, }; struct rte_hash_parameters ipv6_l3fwd_hash_params = { .name = NULL, .entries = L3FWD_HASH_ENTRIES, .key_len = sizeof(union ipv6_5tuple_host), .hash_func = ipv6_hash_crc, .hash_func_init_val = 0, }; char s[64]; /* create ipv4 hash */ snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); ipv4_l3fwd_hash_params.name = s; ipv4_l3fwd_hash_params.socket_id = socketid; ipv4_l3fwd_em_lookup_struct[socketid] = rte_hash_create(&ipv4_l3fwd_hash_params); if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on socket %d\n", socketid); /* create ipv6 hash */ snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); ipv6_l3fwd_hash_params.name = s; ipv6_l3fwd_hash_params.socket_id = socketid; ipv6_l3fwd_em_lookup_struct[socketid] = rte_hash_create(&ipv6_l3fwd_hash_params); if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on socket %d\n", socketid); if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) { /* For testing hash matching with a large number of flows we * generate millions of IP 5-tuples with an incremented dst * address to initialize the hash table. */ if (ipv6 == 0) { /* populate the ipv4 hash */ populate_ipv4_many_flow_into_table( ipv4_l3fwd_em_lookup_struct[socketid], hash_entry_number); } else { /* populate the ipv6 hash */ populate_ipv6_many_flow_into_table( ipv6_l3fwd_em_lookup_struct[socketid], hash_entry_number); } } else { /* * Use data in ipv4/ipv6 l3fwd lookup table * directly to initialize the hash table. */ if (ipv6 == 0) { /* populate the ipv4 hash */ populate_ipv4_few_flow_into_table( ipv4_l3fwd_em_lookup_struct[socketid]); } else { /* populate the ipv6 hash */ populate_ipv6_few_flow_into_table( ipv6_l3fwd_em_lookup_struct[socketid]); } } } /* >8 End of initialization of hash parameters. */ /* Return ipv4/ipv6 em fwd lookup struct. */ void * em_get_ipv4_l3fwd_lookup_struct(const int socketid) { return ipv4_l3fwd_em_lookup_struct[socketid]; } void * em_get_ipv6_l3fwd_lookup_struct(const int socketid) { return ipv6_l3fwd_em_lookup_struct[socketid]; }