/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #define RX_RING_SIZE 1024 #define TX_RING_SIZE 1024 #define NUM_MBUFS 8191 #define MBUF_CACHE_SIZE 250 #define BURST_SIZE 32 #define MAX_NUM_CLASSIFY 30 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 #define FLOW_CLASSIFY_MAX_PRIORITY 8 #define FLOW_CLASSIFIER_NAME_SIZE 64 #define COMMENT_LEAD_CHAR ('#') #define OPTION_RULE_IPV4 "rule_ipv4" #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 #define flow_classify_log(format, ...) \ RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) #define uint32_t_to_char(ip, a, b, c, d) do {\ *a = (unsigned char)(ip >> 24 & 0xff);\ *b = (unsigned char)(ip >> 16 & 0xff);\ *c = (unsigned char)(ip >> 8 & 0xff);\ *d = (unsigned char)(ip & 0xff);\ } while (0) enum { CB_FLD_SRC_ADDR, CB_FLD_DST_ADDR, CB_FLD_SRC_PORT, CB_FLD_SRC_PORT_DLM, CB_FLD_SRC_PORT_MASK, CB_FLD_DST_PORT, CB_FLD_DST_PORT_DLM, CB_FLD_DST_PORT_MASK, CB_FLD_PROTO, CB_FLD_PRIORITY, CB_FLD_NUM, }; static struct{ const char *rule_ipv4_name; } parm_config; const char cb_port_delim[] = ":"; /* Creation of flow classifier object. 8< */ struct flow_classifier { struct rte_flow_classifier *cls; }; struct flow_classifier_acl { struct flow_classifier cls; } __rte_cache_aligned; /* >8 End of creation of flow classifier object. */ /* Creation of ACL table during initialization of application. 8< */ /* ACL field definitions for IPv4 5 tuple rule */ enum { PROTO_FIELD_IPV4, SRC_FIELD_IPV4, DST_FIELD_IPV4, SRCP_FIELD_IPV4, DSTP_FIELD_IPV4, NUM_FIELDS_IPV4 }; enum { PROTO_INPUT_IPV4, SRC_INPUT_IPV4, DST_INPUT_IPV4, SRCP_DESTP_INPUT_IPV4 }; static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { /* first input field - always one byte long. */ { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint8_t), .field_index = PROTO_FIELD_IPV4, .input_index = PROTO_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, next_proto_id), }, /* next input field (IPv4 source address) - 4 consecutive bytes. */ { /* rte_flow uses a bit mask for IPv4 addresses */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint32_t), .field_index = SRC_FIELD_IPV4, .input_index = SRC_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, src_addr), }, /* next input field (IPv4 destination address) - 4 consecutive bytes. */ { /* rte_flow uses a bit mask for IPv4 addresses */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint32_t), .field_index = DST_FIELD_IPV4, .input_index = DST_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, dst_addr), }, /* * Next 2 fields (src & dst ports) form 4 consecutive bytes. * They share the same input index. */ { /* rte_flow uses a bit mask for protocol ports */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint16_t), .field_index = SRCP_FIELD_IPV4, .input_index = SRCP_DESTP_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + offsetof(struct rte_tcp_hdr, src_port), }, { /* rte_flow uses a bit mask for protocol ports */ .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint16_t), .field_index = DSTP_FIELD_IPV4, .input_index = SRCP_DESTP_INPUT_IPV4, .offset = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + offsetof(struct rte_tcp_hdr, dst_port), }, }; /* >8 End of creation of ACL table. */ /* Flow classify data. 8< */ static int num_classify_rules; static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; static struct rte_flow_classify_stats classify_stats = { .stats = (void **)&ntuple_stats }; /* >8 End of flow classify data. */ /* parameters for rte_flow_classify_validate and * rte_flow_classify_table_entry_add functions */ static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 0, 0, 0 }; static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 0, 0, 0 }; /* sample actions: * "actions count / end" */ struct rte_flow_query_count count = { .reset = 1, .hits_set = 1, .bytes_set = 1, .hits = 0, .bytes = 0, }; static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, &count}; static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; static struct rte_flow_action actions[2]; /* sample attributes */ static struct rte_flow_attr attr; /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ /* * Initializes a given port using global settings and with the RX buffers * coming from the mbuf_pool passed as a parameter. */ /* Initializing port using global settings. 8< */ static inline int port_init(uint8_t port, struct rte_mempool *mbuf_pool) { struct rte_eth_conf port_conf; struct rte_ether_addr addr; const uint16_t rx_rings = 1, tx_rings = 1; int retval; uint16_t q; struct rte_eth_dev_info dev_info; struct rte_eth_txconf txconf; if (!rte_eth_dev_is_valid_port(port)) return -1; memset(&port_conf, 0, sizeof(struct rte_eth_conf)); retval = rte_eth_dev_info_get(port, &dev_info); if (retval != 0) { printf("Error during getting device (port %u) info: %s\n", port, strerror(-retval)); return retval; } if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; /* Configure the Ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); if (retval != 0) return retval; /* Allocate and set up 1 RX queue per Ethernet port. */ for (q = 0; q < rx_rings; q++) { retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, rte_eth_dev_socket_id(port), NULL, mbuf_pool); if (retval < 0) return retval; } txconf = dev_info.default_txconf; txconf.offloads = port_conf.txmode.offloads; /* Allocate and set up 1 TX queue per Ethernet port. */ for (q = 0; q < tx_rings; q++) { retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, rte_eth_dev_socket_id(port), &txconf); if (retval < 0) return retval; } /* Start the Ethernet port. 8< */ retval = rte_eth_dev_start(port); /* >8 End of starting the Ethernet port. */ if (retval < 0) return retval; /* Display the port MAC address. */ retval = rte_eth_macaddr_get(port, &addr); if (retval != 0) return retval; printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", port, RTE_ETHER_ADDR_BYTES(&addr)); /* Enable RX in promiscuous mode for the Ethernet device. */ retval = rte_eth_promiscuous_enable(port); if (retval != 0) return retval; return 0; } /* >8 End of initializing a given port. */ /* * The lcore main. This is the main thread that does the work, reading from * an input port classifying the packets and writing to an output port. */ /* Classifying the packets. 8< */ static __rte_noreturn void lcore_main(struct flow_classifier *cls_app) { uint16_t port; int ret; int i = 0; ret = rte_flow_classify_table_entry_delete(cls_app->cls, rules[7]); if (ret) printf("table_entry_delete failed [7] %d\n\n", ret); else printf("table_entry_delete succeeded [7]\n\n"); /* * Check that the port is on the same NUMA node as the polling thread * for best performance. */ RTE_ETH_FOREACH_DEV(port) if (rte_eth_dev_socket_id(port) >= 0 && rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { printf("\n\n"); printf("WARNING: port %u is on remote NUMA node\n", port); printf("to polling thread.\n"); printf("Performance will not be optimal.\n"); } printf("\nCore %u forwarding packets. ", rte_lcore_id()); printf("[Ctrl+C to quit]\n"); /* Run until the application is quit or killed. 8< */ for (;;) { /* * Receive packets on a port, classify them and forward them * on the paired port. * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. */ RTE_ETH_FOREACH_DEV(port) { /* Get burst of RX packets, from first port of pair. */ struct rte_mbuf *bufs[BURST_SIZE]; const uint16_t nb_rx = rte_eth_rx_burst(port, 0, bufs, BURST_SIZE); if (unlikely(nb_rx == 0)) continue; for (i = 0; i < MAX_NUM_CLASSIFY; i++) { if (rules[i]) { ret = rte_flow_classifier_query( cls_app->cls, bufs, nb_rx, rules[i], &classify_stats); if (ret) printf( "rule [%d] query failed ret [%d]\n\n", i, ret); else { printf( "rule[%d] count=%"PRIu64"\n", i, ntuple_stats.counter1); printf("proto = %d\n", ntuple_stats.ipv4_5tuple.proto); } } } /* Send burst of TX packets, to second port of pair. */ const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, bufs, nb_rx); /* Free any unsent packets. */ if (unlikely(nb_tx < nb_rx)) { uint16_t buf; for (buf = nb_tx; buf < nb_rx; buf++) rte_pktmbuf_free(bufs[buf]); } } } /* >8 End of main loop. */ } /* >8 End of lcore main. */ /* * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. * Expected format: * '/' \ * '/' \ * ":" \ * ":" \ * '/' \ * */ static int get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, char dlm) { unsigned long val; char *end; errno = 0; val = strtoul(*in, &end, base); if (errno != 0 || end[0] != dlm || val > lim) return -EINVAL; *fd = (uint32_t)val; *in = end + 1; return 0; } static int parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) { uint32_t a, b, c, d, m; if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) return -EINVAL; if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) return -EINVAL; if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) return -EINVAL; if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) return -EINVAL; if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) return -EINVAL; addr[0] = RTE_IPV4(a, b, c, d); mask_len[0] = m; return 0; } static int parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) { int i, ret; char *s, *sp, *in[CB_FLD_NUM]; static const char *dlm = " \t\n"; int dim = CB_FLD_NUM; uint32_t temp; s = str; for (i = 0; i != dim; i++, s = NULL) { in[i] = strtok_r(s, dlm, &sp); if (in[i] == NULL) return -EINVAL; } ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], &ntuple_filter->src_ip, &ntuple_filter->src_ip_mask); if (ret != 0) { flow_classify_log("failed to read source address/mask: %s\n", in[CB_FLD_SRC_ADDR]); return ret; } ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], &ntuple_filter->dst_ip, &ntuple_filter->dst_ip_mask); if (ret != 0) { flow_classify_log("failed to read destination address/mask: %s\n", in[CB_FLD_DST_ADDR]); return ret; } if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) return -EINVAL; ntuple_filter->src_port = (uint16_t)temp; if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0) return -EINVAL; if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) return -EINVAL; ntuple_filter->src_port_mask = (uint16_t)temp; if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) return -EINVAL; ntuple_filter->dst_port = (uint16_t)temp; if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0) return -EINVAL; if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) return -EINVAL; ntuple_filter->dst_port_mask = (uint16_t)temp; if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) return -EINVAL; ntuple_filter->proto = (uint8_t)temp; if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) return -EINVAL; ntuple_filter->proto_mask = (uint8_t)temp; if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) return -EINVAL; ntuple_filter->priority = (uint16_t)temp; if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) ret = -EINVAL; return ret; } /* Bypass comment and empty lines */ static inline int is_bypass_line(char *buff) { int i = 0; /* comment line */ if (buff[0] == COMMENT_LEAD_CHAR) return 1; /* empty line */ while (buff[i] != '\0') { if (!isspace(buff[i])) return 0; i++; } return 1; } static uint32_t convert_depth_to_bitmask(uint32_t depth_val) { uint32_t bitmask = 0; int i, j; for (i = depth_val, j = 0; i > 0; i--, j++) bitmask |= (1 << (31 - j)); return bitmask; } static int add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, struct flow_classifier *cls_app) { int ret = -1; int key_found; struct rte_flow_error error; struct rte_flow_item_ipv4 ipv4_spec; struct rte_flow_item_ipv4 ipv4_mask; struct rte_flow_item ipv4_udp_item; struct rte_flow_item ipv4_tcp_item; struct rte_flow_item ipv4_sctp_item; struct rte_flow_item_udp udp_spec; struct rte_flow_item_udp udp_mask; struct rte_flow_item udp_item; struct rte_flow_item_tcp tcp_spec; struct rte_flow_item_tcp tcp_mask; struct rte_flow_item tcp_item; struct rte_flow_item_sctp sctp_spec; struct rte_flow_item_sctp sctp_mask; struct rte_flow_item sctp_item; struct rte_flow_item pattern_ipv4_5tuple[4]; struct rte_flow_classify_rule *rule; uint8_t ipv4_proto; if (num_classify_rules >= MAX_NUM_CLASSIFY) { printf( "\nINFO: classify rule capacity %d reached\n", num_classify_rules); return ret; } /* set up parameters for validate and add */ memset(&ipv4_spec, 0, sizeof(ipv4_spec)); ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; ipv4_proto = ipv4_spec.hdr.next_proto_id; memset(&ipv4_mask, 0, sizeof(ipv4_mask)); ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; ipv4_mask.hdr.src_addr = convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; ipv4_mask.hdr.dst_addr = convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); switch (ipv4_proto) { case IPPROTO_UDP: ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; ipv4_udp_item.spec = &ipv4_spec; ipv4_udp_item.mask = &ipv4_mask; ipv4_udp_item.last = NULL; udp_spec.hdr.src_port = ntuple_filter->src_port; udp_spec.hdr.dst_port = ntuple_filter->dst_port; udp_spec.hdr.dgram_len = 0; udp_spec.hdr.dgram_cksum = 0; udp_mask.hdr.src_port = ntuple_filter->src_port_mask; udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; udp_mask.hdr.dgram_len = 0; udp_mask.hdr.dgram_cksum = 0; udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; udp_item.spec = &udp_spec; udp_item.mask = &udp_mask; udp_item.last = NULL; attr.priority = ntuple_filter->priority; pattern_ipv4_5tuple[1] = ipv4_udp_item; pattern_ipv4_5tuple[2] = udp_item; break; case IPPROTO_TCP: ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; ipv4_tcp_item.spec = &ipv4_spec; ipv4_tcp_item.mask = &ipv4_mask; ipv4_tcp_item.last = NULL; memset(&tcp_spec, 0, sizeof(tcp_spec)); tcp_spec.hdr.src_port = ntuple_filter->src_port; tcp_spec.hdr.dst_port = ntuple_filter->dst_port; memset(&tcp_mask, 0, sizeof(tcp_mask)); tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; tcp_item.spec = &tcp_spec; tcp_item.mask = &tcp_mask; tcp_item.last = NULL; attr.priority = ntuple_filter->priority; pattern_ipv4_5tuple[1] = ipv4_tcp_item; pattern_ipv4_5tuple[2] = tcp_item; break; case IPPROTO_SCTP: ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; ipv4_sctp_item.spec = &ipv4_spec; ipv4_sctp_item.mask = &ipv4_mask; ipv4_sctp_item.last = NULL; sctp_spec.hdr.src_port = ntuple_filter->src_port; sctp_spec.hdr.dst_port = ntuple_filter->dst_port; sctp_spec.hdr.cksum = 0; sctp_spec.hdr.tag = 0; sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; sctp_mask.hdr.cksum = 0; sctp_mask.hdr.tag = 0; sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; sctp_item.spec = &sctp_spec; sctp_item.mask = &sctp_mask; sctp_item.last = NULL; attr.priority = ntuple_filter->priority; pattern_ipv4_5tuple[1] = ipv4_sctp_item; pattern_ipv4_5tuple[2] = sctp_item; break; default: return ret; } attr.ingress = 1; pattern_ipv4_5tuple[0] = eth_item; pattern_ipv4_5tuple[3] = end_item; actions[0] = count_action; actions[1] = end_action; /* Validate and add rule */ ret = rte_flow_classify_validate(cls_app->cls, &attr, pattern_ipv4_5tuple, actions, &error); if (ret) { printf("table entry validate failed ipv4_proto = %u\n", ipv4_proto); return ret; } rule = rte_flow_classify_table_entry_add( cls_app->cls, &attr, pattern_ipv4_5tuple, actions, &key_found, &error); if (rule == NULL) { printf("table entry add failed ipv4_proto = %u\n", ipv4_proto); ret = -1; return ret; } rules[num_classify_rules] = rule; num_classify_rules++; return 0; } /* Reads file and calls the add_classify_rule function. 8< */ static int add_rules(const char *rule_path, struct flow_classifier *cls_app) { FILE *fh; char buff[LINE_MAX]; unsigned int i = 0; unsigned int total_num = 0; struct rte_eth_ntuple_filter ntuple_filter; int ret; fh = fopen(rule_path, "rb"); if (fh == NULL) rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, rule_path); ret = fseek(fh, 0, SEEK_SET); if (ret) rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, ret); i = 0; while (fgets(buff, LINE_MAX, fh) != NULL) { i++; if (is_bypass_line(buff)) continue; if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { printf("\nINFO: classify rule capacity %d reached\n", total_num); break; } if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) rte_exit(EXIT_FAILURE, "%s Line %u: parse rules error\n", rule_path, i); if (add_classify_rule(&ntuple_filter, cls_app) != 0) rte_exit(EXIT_FAILURE, "add rule error\n"); total_num++; } fclose(fh); return 0; } /* >8 End of add_rules. */ /* display usage */ static void print_usage(const char *prgname) { printf("%s usage:\n", prgname); printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); printf("specify the ipv4 rules file.\n"); printf("Each rule occupies one line in the file.\n"); } /* Parse the argument given in the command line of the application */ static int parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {OPTION_RULE_IPV4, 1, 0, 0}, {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "", lgopts, &option_index)) != EOF) { switch (opt) { /* long options */ case 0: if (!strncmp(lgopts[option_index].name, OPTION_RULE_IPV4, sizeof(OPTION_RULE_IPV4))) parm_config.rule_ipv4_name = optarg; break; default: print_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ return ret; } /* * The main function, which does initialization and calls the lcore_main * function. */ int main(int argc, char *argv[]) { struct rte_mempool *mbuf_pool; uint16_t nb_ports; uint16_t portid; int ret; int socket_id; struct rte_table_acl_params table_acl_params; struct rte_flow_classify_table_params cls_table_params; struct flow_classifier *cls_app; struct rte_flow_classifier_params cls_params; uint32_t size; /* Initialize the Environment Abstraction Layer (EAL). 8< */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); /* >8 End of initialization of EAL. */ argc -= ret; argv += ret; /* Parse application arguments (after the EAL ones). 8< */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); /* >8 End of parse application arguments. */ /* Check that there is an even number of ports to send/receive on. */ nb_ports = rte_eth_dev_count_avail(); if (nb_ports < 2 || (nb_ports & 1)) rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); /* Creates a new mempool in memory to hold the mbufs. 8< */ mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); /* >8 End of creation of new mempool in memory. */ if (mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); /* Initialize all ports. 8< */ RTE_ETH_FOREACH_DEV(portid) if (port_init(portid, mbuf_pool) != 0) rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", portid); /* >8 End of initialization of all ports. */ if (rte_lcore_count() > 1) printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); socket_id = rte_eth_dev_socket_id(0); /* Memory allocation. 8< */ size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); if (cls_app == NULL) rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); cls_params.name = "flow_classifier"; cls_params.socket_id = socket_id; cls_app->cls = rte_flow_classifier_create(&cls_params); if (cls_app->cls == NULL) { rte_free(cls_app); rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); } /* initialise ACL table params */ table_acl_params.name = "table_acl_ipv4_5tuple"; table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); /* initialise table create params */ cls_table_params.ops = &rte_table_acl_ops; cls_table_params.arg_create = &table_acl_params; cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); if (ret) { rte_flow_classifier_free(cls_app->cls); rte_free(cls_app); rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); } /* >8 End of initialization of table create params. */ /* read file of IPv4 5 tuple rules and initialize parameters * for rte_flow_classify_validate and rte_flow_classify_table_entry_add * API's. */ /* Read file of IPv4 tuple rules. 8< */ if (add_rules(parm_config.rule_ipv4_name, cls_app)) { rte_flow_classifier_free(cls_app->cls); rte_free(cls_app); rte_exit(EXIT_FAILURE, "Failed to add rules\n"); } /* >8 End of reading file of IPv4 5 tuple rules. */ /* Call lcore_main on the main core only. */ lcore_main(cls_app); /* clean up the EAL */ rte_eal_cleanup(); return 0; }