/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include #include "fips_validation.h" #include "fips_dev_self_test.h" enum { #define OPT_REQ_FILE_PATH "req-file" OPT_REQ_FILE_PATH_NUM = 256, #define OPT_RSP_FILE_PATH "rsp-file" OPT_RSP_FILE_PATH_NUM, #define OPT_MBUF_DATAROOM "mbuf-dataroom" OPT_MBUF_DATAROOM_NUM, #define OPT_FOLDER "path-is-folder" OPT_FOLDER_NUM, #define OPT_CRYPTODEV "cryptodev" OPT_CRYPTODEV_NUM, #define OPT_CRYPTODEV_ID "cryptodev-id" OPT_CRYPTODEV_ID_NUM, #define OPT_CRYPTODEV_ST "self-test" OPT_CRYPTODEV_ST_NUM, #define OPT_CRYPTODEV_BK_ID "broken-test-id" OPT_CRYPTODEV_BK_ID_NUM, #define OPT_CRYPTODEV_BK_DIR_KEY "broken-test-dir" OPT_CRYPTODEV_BK_DIR_KEY_NUM, }; struct fips_test_vector vec; struct fips_test_interim_info info; struct cryptodev_fips_validate_env { const char *req_path; const char *rsp_path; uint32_t is_path_folder; uint8_t dev_id; uint8_t dev_support_sgl; uint16_t mbuf_data_room; struct rte_mempool *mpool; struct rte_mempool *sess_mpool; struct rte_mempool *sess_priv_mpool; struct rte_mempool *op_pool; struct rte_mbuf *mbuf; uint8_t *digest; uint16_t digest_len; struct rte_crypto_op *op; struct rte_cryptodev_sym_session *sess; uint16_t self_test; struct fips_dev_broken_test_config *broken_test_config; } env; static int cryptodev_fips_validate_app_int(void) { struct rte_cryptodev_config conf = {rte_socket_id(), 1, 0}; struct rte_cryptodev_qp_conf qp_conf = {128, NULL, NULL}; struct rte_cryptodev_info dev_info; uint32_t sess_sz = rte_cryptodev_sym_get_private_session_size( env.dev_id); uint32_t nb_mbufs = UINT16_MAX / env.mbuf_data_room + 1; int ret; if (env.self_test) { ret = fips_dev_self_test(env.dev_id, env.broken_test_config); if (ret < 0) { rte_cryptodev_close(env.dev_id); return ret; } } ret = rte_cryptodev_configure(env.dev_id, &conf); if (ret < 0) return ret; rte_cryptodev_info_get(env.dev_id, &dev_info); if (dev_info.feature_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL) env.dev_support_sgl = 1; else env.dev_support_sgl = 0; env.mpool = rte_pktmbuf_pool_create("FIPS_MEMPOOL", nb_mbufs, 0, 0, sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM + env.mbuf_data_room, rte_socket_id()); if (!env.mpool) return ret; ret = rte_cryptodev_queue_pair_setup(env.dev_id, 0, &qp_conf, rte_socket_id()); if (ret < 0) return ret; ret = -ENOMEM; env.sess_mpool = rte_cryptodev_sym_session_pool_create( "FIPS_SESS_MEMPOOL", 16, 0, 0, 0, rte_socket_id()); if (!env.sess_mpool) goto error_exit; env.sess_priv_mpool = rte_mempool_create("FIPS_SESS_PRIV_MEMPOOL", 16, sess_sz, 0, 0, NULL, NULL, NULL, NULL, rte_socket_id(), 0); if (!env.sess_priv_mpool) goto error_exit; env.op_pool = rte_crypto_op_pool_create( "FIPS_OP_POOL", RTE_CRYPTO_OP_TYPE_SYMMETRIC, 1, 0, 16, rte_socket_id()); if (!env.op_pool) goto error_exit; env.op = rte_crypto_op_alloc(env.op_pool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (!env.op) goto error_exit; qp_conf.mp_session = env.sess_mpool; qp_conf.mp_session_private = env.sess_priv_mpool; ret = rte_cryptodev_queue_pair_setup(env.dev_id, 0, &qp_conf, rte_socket_id()); if (ret < 0) goto error_exit; ret = rte_cryptodev_start(env.dev_id); if (ret < 0) goto error_exit; return 0; error_exit: rte_mempool_free(env.mpool); if (env.sess_mpool) rte_mempool_free(env.sess_mpool); if (env.sess_priv_mpool) rte_mempool_free(env.sess_priv_mpool); if (env.op_pool) rte_mempool_free(env.op_pool); return ret; } static void cryptodev_fips_validate_app_uninit(void) { rte_pktmbuf_free(env.mbuf); rte_crypto_op_free(env.op); rte_cryptodev_sym_session_clear(env.dev_id, env.sess); rte_cryptodev_sym_session_free(env.sess); rte_mempool_free(env.mpool); rte_mempool_free(env.sess_mpool); rte_mempool_free(env.sess_priv_mpool); rte_mempool_free(env.op_pool); } static int fips_test_one_file(void); static int parse_cryptodev_arg(char *arg) { int id = rte_cryptodev_get_dev_id(arg); if (id < 0) { RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev name %s\n", id, arg); return id; } env.dev_id = (uint8_t)id; return 0; } static int parse_cryptodev_id_arg(char *arg) { uint32_t cryptodev_id; if (parser_read_uint32(&cryptodev_id, arg) < 0) { RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev id %s\n", -EINVAL, arg); return -1; } if (!rte_cryptodev_is_valid_dev(cryptodev_id)) { RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev id %s\n", cryptodev_id, arg); return -1; } env.dev_id = (uint8_t)cryptodev_id; return 0; } static void cryptodev_fips_validate_usage(const char *prgname) { uint32_t def_mbuf_seg_size = DEF_MBUF_SEG_SIZE; printf("%s [EAL options] --\n" " --%s: REQUEST-FILE-PATH\n" " --%s: RESPONSE-FILE-PATH\n" " --%s: indicating both paths are folders\n" " --%s: mbuf dataroom size (default %u bytes)\n" " --%s: CRYPTODEV-NAME\n" " --%s: CRYPTODEV-ID-NAME\n" " --%s: self test indicator\n" " --%s: self broken test ID\n" " --%s: self broken test direction\n", prgname, OPT_REQ_FILE_PATH, OPT_RSP_FILE_PATH, OPT_FOLDER, OPT_MBUF_DATAROOM, def_mbuf_seg_size, OPT_CRYPTODEV, OPT_CRYPTODEV_ID, OPT_CRYPTODEV_ST, OPT_CRYPTODEV_BK_ID, OPT_CRYPTODEV_BK_DIR_KEY); } static int cryptodev_fips_validate_parse_args(int argc, char **argv) { int opt, ret; char *prgname = argv[0]; char **argvopt; int option_index; struct option lgopts[] = { {OPT_REQ_FILE_PATH, required_argument, NULL, OPT_REQ_FILE_PATH_NUM}, {OPT_RSP_FILE_PATH, required_argument, NULL, OPT_RSP_FILE_PATH_NUM}, {OPT_FOLDER, no_argument, NULL, OPT_FOLDER_NUM}, {OPT_MBUF_DATAROOM, required_argument, NULL, OPT_MBUF_DATAROOM_NUM}, {OPT_CRYPTODEV, required_argument, NULL, OPT_CRYPTODEV_NUM}, {OPT_CRYPTODEV_ID, required_argument, NULL, OPT_CRYPTODEV_ID_NUM}, {OPT_CRYPTODEV_ST, no_argument, NULL, OPT_CRYPTODEV_ST_NUM}, {OPT_CRYPTODEV_BK_ID, required_argument, NULL, OPT_CRYPTODEV_BK_ID_NUM}, {OPT_CRYPTODEV_BK_DIR_KEY, required_argument, NULL, OPT_CRYPTODEV_BK_DIR_KEY_NUM}, {NULL, 0, 0, 0} }; argvopt = argv; env.mbuf_data_room = DEF_MBUF_SEG_SIZE; if (rte_cryptodev_count()) env.dev_id = 0; else { cryptodev_fips_validate_usage(prgname); return -EINVAL; } while ((opt = getopt_long(argc, argvopt, "s:", lgopts, &option_index)) != EOF) { switch (opt) { case OPT_REQ_FILE_PATH_NUM: env.req_path = optarg; break; case OPT_RSP_FILE_PATH_NUM: env.rsp_path = optarg; break; case OPT_FOLDER_NUM: env.is_path_folder = 1; break; case OPT_CRYPTODEV_NUM: ret = parse_cryptodev_arg(optarg); if (ret < 0) { cryptodev_fips_validate_usage(prgname); return -EINVAL; } break; case OPT_CRYPTODEV_ID_NUM: ret = parse_cryptodev_id_arg(optarg); if (ret < 0) { cryptodev_fips_validate_usage(prgname); return -EINVAL; } break; case OPT_CRYPTODEV_ST_NUM: env.self_test = 1; break; case OPT_CRYPTODEV_BK_ID_NUM: if (!env.broken_test_config) { env.broken_test_config = rte_malloc( NULL, sizeof(*env.broken_test_config), 0); if (!env.broken_test_config) return -ENOMEM; env.broken_test_config->expect_fail_dir = self_test_dir_enc_auth_gen; } if (parser_read_uint32( &env.broken_test_config->expect_fail_test_idx, optarg) < 0) { rte_free(env.broken_test_config); cryptodev_fips_validate_usage(prgname); return -EINVAL; } break; case OPT_CRYPTODEV_BK_DIR_KEY_NUM: if (!env.broken_test_config) { env.broken_test_config = rte_malloc( NULL, sizeof(*env.broken_test_config), 0); if (!env.broken_test_config) return -ENOMEM; env.broken_test_config->expect_fail_test_idx = 0; } if (strcmp(optarg, "enc") == 0) env.broken_test_config->expect_fail_dir = self_test_dir_enc_auth_gen; else if (strcmp(optarg, "dec") == 0) env.broken_test_config->expect_fail_dir = self_test_dir_dec_auth_verify; else { rte_free(env.broken_test_config); cryptodev_fips_validate_usage(prgname); return -EINVAL; } break; case OPT_MBUF_DATAROOM_NUM: if (parser_read_uint16(&env.mbuf_data_room, optarg) < 0) { cryptodev_fips_validate_usage(prgname); return -EINVAL; } if (env.mbuf_data_room == 0) { cryptodev_fips_validate_usage(prgname); return -EINVAL; } break; default: cryptodev_fips_validate_usage(prgname); return -EINVAL; } } if ((env.req_path == NULL && env.rsp_path != NULL) || (env.req_path != NULL && env.rsp_path == NULL)) { RTE_LOG(ERR, USER1, "Missing req path or rsp path\n"); cryptodev_fips_validate_usage(prgname); return -EINVAL; } if (env.req_path == NULL && env.self_test == 0) { RTE_LOG(ERR, USER1, "--self-test must be set if req path is missing\n"); cryptodev_fips_validate_usage(prgname); return -EINVAL; } return 0; } int main(int argc, char *argv[]) { int ret; ret = rte_eal_init(argc, argv); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed init\n", ret); return -1; } argc -= ret; argv += ret; ret = cryptodev_fips_validate_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Failed to parse arguments!\n"); ret = cryptodev_fips_validate_app_int(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed init\n", ret); return -1; } if (env.req_path == NULL || env.rsp_path == NULL) { printf("No request, exit.\n"); goto exit; } if (!env.is_path_folder) { printf("Processing file %s... ", env.req_path); ret = fips_test_init(env.req_path, env.rsp_path, rte_cryptodev_name_get(env.dev_id)); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, env.req_path); goto exit; } ret = fips_test_one_file(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, env.req_path); goto exit; } printf("Done\n"); } else { struct dirent *dir; DIR *d_req, *d_rsp; char req_path[1024]; char rsp_path[1024]; d_req = opendir(env.req_path); if (!d_req) { RTE_LOG(ERR, USER1, "Error %i: Path %s not exist\n", -EINVAL, env.req_path); goto exit; } d_rsp = opendir(env.rsp_path); if (!d_rsp) { ret = mkdir(env.rsp_path, 0700); if (ret == 0) d_rsp = opendir(env.rsp_path); else { RTE_LOG(ERR, USER1, "Error %i: Invalid %s\n", -EINVAL, env.rsp_path); goto exit; } } closedir(d_rsp); while ((dir = readdir(d_req)) != NULL) { if (strstr(dir->d_name, "req") == NULL) continue; snprintf(req_path, 1023, "%s/%s", env.req_path, dir->d_name); snprintf(rsp_path, 1023, "%s/%s", env.rsp_path, dir->d_name); strlcpy(strstr(rsp_path, "req"), "rsp", 4); printf("Processing file %s... ", req_path); ret = fips_test_init(req_path, rsp_path, rte_cryptodev_name_get(env.dev_id)); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, req_path); break; } ret = fips_test_one_file(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, req_path); break; } printf("Done\n"); } closedir(d_req); } exit: fips_test_clear(); cryptodev_fips_validate_app_uninit(); /* clean up the EAL */ rte_eal_cleanup(); return ret; } #define IV_OFF (sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op)) #define CRYPTODEV_FIPS_MAX_RETRIES 16 struct fips_test_ops test_ops; static int prepare_data_mbufs(struct fips_val *val) { struct rte_mbuf *m, *head = 0; uint8_t *src = val->val; uint32_t total_len = val->len; uint16_t nb_seg; int ret = 0; if (env.mbuf) rte_pktmbuf_free(env.mbuf); if (total_len > RTE_MBUF_MAX_NB_SEGS) { RTE_LOG(ERR, USER1, "Data len %u too big\n", total_len); return -EPERM; } nb_seg = total_len / env.mbuf_data_room; if (total_len % env.mbuf_data_room) nb_seg++; m = rte_pktmbuf_alloc(env.mpool); if (!m) { RTE_LOG(ERR, USER1, "Error %i: Not enough mbuf\n", -ENOMEM); return -ENOMEM; } head = m; while (nb_seg) { uint16_t len = RTE_MIN(total_len, env.mbuf_data_room); uint8_t *dst = (uint8_t *)rte_pktmbuf_append(m, len); if (!dst) { RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n", -ENOMEM); ret = -ENOMEM; goto error_exit; } memcpy(dst, src, len); if (head != m) { ret = rte_pktmbuf_chain(head, m); if (ret) { rte_pktmbuf_free(m); RTE_LOG(ERR, USER1, "Error %i: SGL build\n", ret); goto error_exit; } } total_len -= len; if (total_len) { if (!env.dev_support_sgl) { RTE_LOG(ERR, USER1, "SGL not supported\n"); ret = -EPERM; goto error_exit; } m = rte_pktmbuf_alloc(env.mpool); if (!m) { RTE_LOG(ERR, USER1, "Error %i: No memory\n", -ENOMEM); goto error_exit; } } else break; src += len; nb_seg--; } if (total_len) { RTE_LOG(ERR, USER1, "Error %i: Failed to store all data\n", -ENOMEM); goto error_exit; } env.mbuf = head; return 0; error_exit: if (head) rte_pktmbuf_free(head); return ret; } static int prepare_cipher_op(void) { struct rte_crypto_sym_op *sym = env.op->sym; uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *, IV_OFF); int ret; __rte_crypto_op_reset(env.op, RTE_CRYPTO_OP_TYPE_SYMMETRIC); memcpy(iv, vec.iv.val, vec.iv.len); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { ret = prepare_data_mbufs(&vec.pt); if (ret < 0) return ret; sym->cipher.data.length = vec.pt.len; } else { ret = prepare_data_mbufs(&vec.ct); if (ret < 0) return ret; sym->cipher.data.length = vec.ct.len; } rte_crypto_op_attach_sym_session(env.op, env.sess); sym->m_src = env.mbuf; sym->cipher.data.offset = 0; return 0; } int prepare_auth_op(void) { struct rte_crypto_sym_op *sym = env.op->sym; int ret; __rte_crypto_op_reset(env.op, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (vec.iv.len) { uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *, IV_OFF); memset(iv, 0, vec.iv.len); if (vec.iv.val) memcpy(iv, vec.iv.val, vec.iv.len); } ret = prepare_data_mbufs(&vec.pt); if (ret < 0) return ret; if (env.digest) rte_free(env.digest); env.digest = rte_zmalloc(NULL, vec.cipher_auth.digest.len, RTE_CACHE_LINE_SIZE); if (!env.digest) { RTE_LOG(ERR, USER1, "Not enough memory\n"); return -ENOMEM; } env.digest_len = vec.cipher_auth.digest.len; sym->m_src = env.mbuf; sym->auth.data.offset = 0; sym->auth.data.length = vec.pt.len; sym->auth.digest.data = env.digest; sym->auth.digest.phys_addr = rte_malloc_virt2iova(env.digest); if (info.op == FIPS_TEST_DEC_AUTH_VERIF) memcpy(env.digest, vec.cipher_auth.digest.val, vec.cipher_auth.digest.len); rte_crypto_op_attach_sym_session(env.op, env.sess); return 0; } int prepare_aead_op(void) { struct rte_crypto_sym_op *sym = env.op->sym; uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *, IV_OFF); int ret; __rte_crypto_op_reset(env.op, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (info.algo == FIPS_TEST_ALGO_AES_CCM) iv++; if (vec.iv.val) memcpy(iv, vec.iv.val, vec.iv.len); else /* if REQ file has iv length but not data, default as all 0 */ memset(iv, 0, vec.iv.len); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { ret = prepare_data_mbufs(&vec.pt); if (ret < 0) return ret; if (env.digest) rte_free(env.digest); env.digest = rte_zmalloc(NULL, vec.aead.digest.len, RTE_CACHE_LINE_SIZE); if (!env.digest) { RTE_LOG(ERR, USER1, "Not enough memory\n"); return -ENOMEM; } env.digest_len = vec.aead.digest.len; sym->aead.data.length = vec.pt.len; sym->aead.digest.data = env.digest; sym->aead.digest.phys_addr = rte_malloc_virt2iova(env.digest); } else { ret = prepare_data_mbufs(&vec.ct); if (ret < 0) return ret; env.digest_len = vec.aead.digest.len; sym->aead.data.length = vec.ct.len; sym->aead.digest.data = vec.aead.digest.val; sym->aead.digest.phys_addr = rte_malloc_virt2iova( sym->aead.digest.data); } sym->m_src = env.mbuf; sym->aead.data.offset = 0; sym->aead.aad.data = vec.aead.aad.val; sym->aead.aad.phys_addr = rte_malloc_virt2iova(sym->aead.aad.data); rte_crypto_op_attach_sym_session(env.op, env.sess); return 0; } static int prepare_aes_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher; xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; if (info.interim_info.aes_data.cipher_algo == RTE_CRYPTO_CIPHER_AES_CBC) cipher_xform->algo = RTE_CRYPTO_CIPHER_AES_CBC; else cipher_xform->algo = RTE_CRYPTO_CIPHER_AES_ECB; cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_CIPHER_OP_ENCRYPT : RTE_CRYPTO_CIPHER_OP_DECRYPT; cipher_xform->key.data = vec.cipher_auth.key.val; cipher_xform->key.length = vec.cipher_auth.key.len; if (cipher_xform->algo == RTE_CRYPTO_CIPHER_AES_CBC) { cipher_xform->iv.length = vec.iv.len; cipher_xform->iv.offset = IV_OFF; } else { cipher_xform->iv.length = 0; cipher_xform->iv.offset = 0; } cap_idx.algo.cipher = cipher_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_cipher(cap, cipher_xform->key.length, cipher_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n", info.device_name, cipher_xform->key.length, cipher_xform->iv.length); return -EPERM; } return 0; } static int prepare_tdes_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher; xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; if (info.interim_info.tdes_data.test_mode == TDES_MODE_CBC) cipher_xform->algo = RTE_CRYPTO_CIPHER_3DES_CBC; else cipher_xform->algo = RTE_CRYPTO_CIPHER_3DES_ECB; cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_CIPHER_OP_ENCRYPT : RTE_CRYPTO_CIPHER_OP_DECRYPT; cipher_xform->key.data = vec.cipher_auth.key.val; cipher_xform->key.length = vec.cipher_auth.key.len; if (cipher_xform->algo == RTE_CRYPTO_CIPHER_3DES_CBC) { cipher_xform->iv.length = vec.iv.len; cipher_xform->iv.offset = IV_OFF; } else { cipher_xform->iv.length = 0; cipher_xform->iv.offset = 0; } cap_idx.algo.cipher = cipher_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_cipher(cap, cipher_xform->key.length, cipher_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n", info.device_name, cipher_xform->key.length, cipher_xform->iv.length); return -EPERM; } return 0; } static int prepare_hmac_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_auth_xform *auth_xform = &xform->auth; xform->type = RTE_CRYPTO_SYM_XFORM_AUTH; auth_xform->algo = info.interim_info.hmac_data.algo; auth_xform->op = RTE_CRYPTO_AUTH_OP_GENERATE; auth_xform->digest_length = vec.cipher_auth.digest.len; auth_xform->key.data = vec.cipher_auth.key.val; auth_xform->key.length = vec.cipher_auth.key.len; cap_idx.algo.auth = auth_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_auth(cap, auth_xform->key.length, auth_xform->digest_length, 0) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u Digest length %u\n", info.device_name, auth_xform->key.length, auth_xform->digest_length); return -EPERM; } return 0; } int prepare_gcm_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_aead_xform *aead_xform = &xform->aead; xform->type = RTE_CRYPTO_SYM_XFORM_AEAD; aead_xform->algo = RTE_CRYPTO_AEAD_AES_GCM; aead_xform->aad_length = vec.aead.aad.len; aead_xform->digest_length = vec.aead.digest.len; aead_xform->iv.offset = IV_OFF; aead_xform->iv.length = vec.iv.len; aead_xform->key.data = vec.aead.key.val; aead_xform->key.length = vec.aead.key.len; aead_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_AEAD_OP_ENCRYPT : RTE_CRYPTO_AEAD_OP_DECRYPT; cap_idx.algo.aead = aead_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_aead(cap, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key_len %u tag_len %u aad_len %u iv_len %u\n", info.device_name, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length); return -EPERM; } return 0; } int prepare_gmac_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_auth_xform *auth_xform = &xform->auth; xform->type = RTE_CRYPTO_SYM_XFORM_AUTH; auth_xform->algo = RTE_CRYPTO_AUTH_AES_GMAC; auth_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_AUTH_OP_GENERATE : RTE_CRYPTO_AUTH_OP_VERIFY; auth_xform->iv.offset = IV_OFF; auth_xform->iv.length = vec.iv.len; auth_xform->digest_length = vec.aead.digest.len; auth_xform->key.data = vec.aead.key.val; auth_xform->key.length = vec.aead.key.len; cap_idx.algo.auth = auth_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_auth(cap, auth_xform->key.length, auth_xform->digest_length, auth_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u Digest length %u IV length %u\n", info.device_name, auth_xform->key.length, auth_xform->digest_length, auth_xform->iv.length); return -EPERM; } return 0; } static int prepare_cmac_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_auth_xform *auth_xform = &xform->auth; xform->type = RTE_CRYPTO_SYM_XFORM_AUTH; auth_xform->algo = RTE_CRYPTO_AUTH_AES_CMAC; auth_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_AUTH_OP_GENERATE : RTE_CRYPTO_AUTH_OP_VERIFY; auth_xform->digest_length = vec.cipher_auth.digest.len; auth_xform->key.data = vec.cipher_auth.key.val; auth_xform->key.length = vec.cipher_auth.key.len; cap_idx.algo.auth = auth_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_auth(cap, auth_xform->key.length, auth_xform->digest_length, 0) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u Digest length %u\n", info.device_name, auth_xform->key.length, auth_xform->digest_length); return -EPERM; } return 0; } static int prepare_ccm_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_aead_xform *aead_xform = &xform->aead; xform->type = RTE_CRYPTO_SYM_XFORM_AEAD; aead_xform->algo = RTE_CRYPTO_AEAD_AES_CCM; aead_xform->aad_length = vec.aead.aad.len; aead_xform->digest_length = vec.aead.digest.len; aead_xform->iv.offset = IV_OFF; aead_xform->iv.length = vec.iv.len; aead_xform->key.data = vec.aead.key.val; aead_xform->key.length = vec.aead.key.len; aead_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_AEAD_OP_ENCRYPT : RTE_CRYPTO_AEAD_OP_DECRYPT; cap_idx.algo.aead = aead_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_aead(cap, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key_len %u tag_len %u aad_len %u iv_len %u\n", info.device_name, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length); return -EPERM; } return 0; } static int prepare_sha_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_auth_xform *auth_xform = &xform->auth; xform->type = RTE_CRYPTO_SYM_XFORM_AUTH; auth_xform->algo = info.interim_info.sha_data.algo; auth_xform->op = RTE_CRYPTO_AUTH_OP_GENERATE; auth_xform->digest_length = vec.cipher_auth.digest.len; cap_idx.algo.auth = auth_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_auth(cap, auth_xform->key.length, auth_xform->digest_length, 0) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u digest length %u\n", info.device_name, auth_xform->key.length, auth_xform->digest_length); return -EPERM; } return 0; } static int prepare_xts_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher; xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; cipher_xform->algo = RTE_CRYPTO_CIPHER_AES_XTS; cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_CIPHER_OP_ENCRYPT : RTE_CRYPTO_CIPHER_OP_DECRYPT; cipher_xform->key.data = vec.cipher_auth.key.val; cipher_xform->key.length = vec.cipher_auth.key.len; cipher_xform->iv.length = vec.iv.len; cipher_xform->iv.offset = IV_OFF; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_AES_XTS; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_cipher(cap, cipher_xform->key.length, cipher_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n", info.device_name, cipher_xform->key.length, cipher_xform->iv.length); return -EPERM; } return 0; } static int get_writeback_data(struct fips_val *val) { struct rte_mbuf *m = env.mbuf; uint16_t data_len = rte_pktmbuf_pkt_len(m); uint16_t total_len = data_len + env.digest_len; uint8_t *src, *dst, *wb_data; /* in case val is reused for MCT test, try to free the buffer first */ if (val->val) { free(val->val); val->val = NULL; } wb_data = dst = calloc(1, total_len); if (!dst) { RTE_LOG(ERR, USER1, "Error %i: Not enough memory\n", -ENOMEM); return -ENOMEM; } while (m && data_len) { uint16_t seg_len = RTE_MIN(rte_pktmbuf_data_len(m), data_len); src = rte_pktmbuf_mtod(m, uint8_t *); memcpy(dst, src, seg_len); m = m->next; data_len -= seg_len; dst += seg_len; } if (data_len) { RTE_LOG(ERR, USER1, "Error -1: write back data\n"); free(wb_data); return -1; } if (env.digest) memcpy(dst, env.digest, env.digest_len); val->val = wb_data; val->len = total_len; return 0; } static int fips_run_test(void) { struct rte_crypto_sym_xform xform = {0}; uint16_t n_deqd; int ret; ret = test_ops.prepare_xform(&xform); if (ret < 0) return ret; env.sess = rte_cryptodev_sym_session_create(env.sess_mpool); if (!env.sess) return -ENOMEM; ret = rte_cryptodev_sym_session_init(env.dev_id, env.sess, &xform, env.sess_priv_mpool); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Init session\n", ret); goto exit; } ret = test_ops.prepare_op(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Prepare op\n", ret); goto exit; } if (rte_cryptodev_enqueue_burst(env.dev_id, 0, &env.op, 1) < 1) { RTE_LOG(ERR, USER1, "Error: Failed enqueue\n"); ret = -1; goto exit; } do { struct rte_crypto_op *deqd_op; n_deqd = rte_cryptodev_dequeue_burst(env.dev_id, 0, &deqd_op, 1); } while (n_deqd == 0); vec.status = env.op->status; exit: rte_cryptodev_sym_session_clear(env.dev_id, env.sess); rte_cryptodev_sym_session_free(env.sess); env.sess = NULL; return ret; } static int fips_generic_test(void) { struct fips_val val = {NULL, 0}; int ret; fips_test_write_one_case(); ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM || ret == -ENOTSUP) { fprintf(info.fp_wr, "Bypass\n\n"); return 0; } return ret; } ret = get_writeback_data(&val); if (ret < 0) return ret; switch (info.file_type) { case FIPS_TYPE_REQ: case FIPS_TYPE_RSP: if (info.parse_writeback == NULL) return -EPERM; ret = info.parse_writeback(&val); if (ret < 0) return ret; break; case FIPS_TYPE_FAX: if (info.kat_check == NULL) return -EPERM; ret = info.kat_check(&val); if (ret < 0) return ret; break; } fprintf(info.fp_wr, "\n"); free(val.val); return 0; } static int fips_mct_tdes_test(void) { #define TDES_BLOCK_SIZE 8 #define TDES_EXTERN_ITER 400 #define TDES_INTERN_ITER 10000 struct fips_val val = {NULL, 0}, val_key; uint8_t prev_out[TDES_BLOCK_SIZE] = {0}; uint8_t prev_prev_out[TDES_BLOCK_SIZE] = {0}; uint8_t prev_in[TDES_BLOCK_SIZE] = {0}; uint32_t i, j, k; int ret; int test_mode = info.interim_info.tdes_data.test_mode; for (i = 0; i < TDES_EXTERN_ITER; i++) { if ((i == 0) && (info.version == 21.4f)) { if (!(strstr(info.vec[0], "COUNT"))) fprintf(info.fp_wr, "%s%u\n", "COUNT = ", 0); } if (i != 0) update_info_vec(i); fips_test_write_one_case(); for (j = 0; j < TDES_INTERN_ITER; j++) { ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM) { fprintf(info.fp_wr, "Bypass\n"); return 0; } return ret; } ret = get_writeback_data(&val); if (ret < 0) return ret; if (info.op == FIPS_TEST_DEC_AUTH_VERIF) memcpy(prev_in, vec.ct.val, TDES_BLOCK_SIZE); if (j == 0) { memcpy(prev_out, val.val, TDES_BLOCK_SIZE); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { if (test_mode == TDES_MODE_ECB) { memcpy(vec.pt.val, val.val, TDES_BLOCK_SIZE); } else { memcpy(vec.pt.val, vec.iv.val, TDES_BLOCK_SIZE); memcpy(vec.iv.val, val.val, TDES_BLOCK_SIZE); } } else { if (test_mode == TDES_MODE_ECB) { memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, vec.ct.val, TDES_BLOCK_SIZE); memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } } continue; } if (info.op == FIPS_TEST_ENC_AUTH_GEN) { if (test_mode == TDES_MODE_ECB) { memcpy(vec.pt.val, val.val, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, val.val, TDES_BLOCK_SIZE); memcpy(vec.pt.val, prev_out, TDES_BLOCK_SIZE); } } else { if (test_mode == TDES_MODE_ECB) { memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, vec.ct.val, TDES_BLOCK_SIZE); memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } } if (j == TDES_INTERN_ITER - 1) continue; memcpy(prev_out, val.val, TDES_BLOCK_SIZE); if (j == TDES_INTERN_ITER - 3) memcpy(prev_prev_out, val.val, TDES_BLOCK_SIZE); } info.parse_writeback(&val); fprintf(info.fp_wr, "\n"); if (i == TDES_EXTERN_ITER - 1) continue; /** update key */ memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key)); if (info.interim_info.tdes_data.nb_keys == 0) { if (memcmp(val_key.val, val_key.val + 8, 8) == 0) info.interim_info.tdes_data.nb_keys = 1; else if (memcmp(val_key.val, val_key.val + 16, 8) == 0) info.interim_info.tdes_data.nb_keys = 2; else info.interim_info.tdes_data.nb_keys = 3; } for (k = 0; k < TDES_BLOCK_SIZE; k++) { switch (info.interim_info.tdes_data.nb_keys) { case 3: val_key.val[k] ^= val.val[k]; val_key.val[k + 8] ^= prev_out[k]; val_key.val[k + 16] ^= prev_prev_out[k]; break; case 2: val_key.val[k] ^= val.val[k]; val_key.val[k + 8] ^= prev_out[k]; val_key.val[k + 16] ^= val.val[k]; break; default: /* case 1 */ val_key.val[k] ^= val.val[k]; val_key.val[k + 8] ^= val.val[k]; val_key.val[k + 16] ^= val.val[k]; break; } } for (k = 0; k < 24; k++) val_key.val[k] = (__builtin_popcount(val_key.val[k]) & 0x1) ? val_key.val[k] : (val_key.val[k] ^ 0x1); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { if (test_mode == TDES_MODE_ECB) { memcpy(vec.pt.val, val.val, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, val.val, TDES_BLOCK_SIZE); memcpy(vec.pt.val, prev_out, TDES_BLOCK_SIZE); } } else { if (test_mode == TDES_MODE_ECB) { memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, prev_out, TDES_BLOCK_SIZE); memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } } } if (val.val) free(val.val); return 0; } static int fips_mct_aes_ecb_test(void) { #define AES_BLOCK_SIZE 16 #define AES_EXTERN_ITER 100 #define AES_INTERN_ITER 1000 struct fips_val val = {NULL, 0}, val_key; uint8_t prev_out[AES_BLOCK_SIZE] = {0}; uint32_t i, j, k; int ret; for (i = 0; i < AES_EXTERN_ITER; i++) { if (i != 0) update_info_vec(i); fips_test_write_one_case(); for (j = 0; j < AES_INTERN_ITER; j++) { ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM) { fprintf(info.fp_wr, "Bypass\n"); return 0; } return ret; } ret = get_writeback_data(&val); if (ret < 0) return ret; if (info.op == FIPS_TEST_ENC_AUTH_GEN) memcpy(vec.pt.val, val.val, AES_BLOCK_SIZE); else memcpy(vec.ct.val, val.val, AES_BLOCK_SIZE); if (j == AES_INTERN_ITER - 1) continue; memcpy(prev_out, val.val, AES_BLOCK_SIZE); } info.parse_writeback(&val); fprintf(info.fp_wr, "\n"); if (i == AES_EXTERN_ITER - 1) continue; /** update key */ memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key)); for (k = 0; k < vec.cipher_auth.key.len; k++) { switch (vec.cipher_auth.key.len) { case 16: val_key.val[k] ^= val.val[k]; break; case 24: if (k < 8) val_key.val[k] ^= prev_out[k + 8]; else val_key.val[k] ^= val.val[k - 8]; break; case 32: if (k < 16) val_key.val[k] ^= prev_out[k]; else val_key.val[k] ^= val.val[k - 16]; break; default: return -1; } } } if (val.val) free(val.val); return 0; } static int fips_mct_aes_test(void) { #define AES_BLOCK_SIZE 16 #define AES_EXTERN_ITER 100 #define AES_INTERN_ITER 1000 struct fips_val val = {NULL, 0}, val_key; uint8_t prev_out[AES_BLOCK_SIZE] = {0}; uint8_t prev_in[AES_BLOCK_SIZE] = {0}; uint32_t i, j, k; int ret; if (info.interim_info.aes_data.cipher_algo == RTE_CRYPTO_CIPHER_AES_ECB) return fips_mct_aes_ecb_test(); for (i = 0; i < AES_EXTERN_ITER; i++) { if (i != 0) update_info_vec(i); fips_test_write_one_case(); for (j = 0; j < AES_INTERN_ITER; j++) { ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM) { fprintf(info.fp_wr, "Bypass\n"); return 0; } return ret; } ret = get_writeback_data(&val); if (ret < 0) return ret; if (info.op == FIPS_TEST_DEC_AUTH_VERIF) memcpy(prev_in, vec.ct.val, AES_BLOCK_SIZE); if (j == 0) { memcpy(prev_out, val.val, AES_BLOCK_SIZE); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { memcpy(vec.pt.val, vec.iv.val, AES_BLOCK_SIZE); memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE); } else { memcpy(vec.ct.val, vec.iv.val, AES_BLOCK_SIZE); memcpy(vec.iv.val, prev_in, AES_BLOCK_SIZE); } continue; } if (info.op == FIPS_TEST_ENC_AUTH_GEN) { memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE); memcpy(vec.pt.val, prev_out, AES_BLOCK_SIZE); } else { memcpy(vec.iv.val, prev_in, AES_BLOCK_SIZE); memcpy(vec.ct.val, prev_out, AES_BLOCK_SIZE); } if (j == AES_INTERN_ITER - 1) continue; memcpy(prev_out, val.val, AES_BLOCK_SIZE); } info.parse_writeback(&val); fprintf(info.fp_wr, "\n"); if (i == AES_EXTERN_ITER - 1) continue; /** update key */ memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key)); for (k = 0; k < vec.cipher_auth.key.len; k++) { switch (vec.cipher_auth.key.len) { case 16: val_key.val[k] ^= val.val[k]; break; case 24: if (k < 8) val_key.val[k] ^= prev_out[k + 8]; else val_key.val[k] ^= val.val[k - 8]; break; case 32: if (k < 16) val_key.val[k] ^= prev_out[k]; else val_key.val[k] ^= val.val[k - 16]; break; default: return -1; } } if (info.op == FIPS_TEST_DEC_AUTH_VERIF) memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE); } if (val.val) free(val.val); return 0; } static int fips_mct_sha_test(void) { #define SHA_EXTERN_ITER 100 #define SHA_INTERN_ITER 1000 #define SHA_MD_BLOCK 3 struct fips_val val = {NULL, 0}, md[SHA_MD_BLOCK]; char temp[MAX_DIGEST_SIZE*2]; int ret; uint32_t i, j; for (i = 0; i < SHA_MD_BLOCK; i++) md[i].val = rte_malloc(NULL, (MAX_DIGEST_SIZE*2), 0); rte_free(vec.pt.val); vec.pt.val = rte_malloc(NULL, (MAX_DIGEST_SIZE*SHA_MD_BLOCK), 0); fips_test_write_one_case(); fprintf(info.fp_wr, "\n"); for (j = 0; j < SHA_EXTERN_ITER; j++) { memcpy(md[0].val, vec.cipher_auth.digest.val, vec.cipher_auth.digest.len); md[0].len = vec.cipher_auth.digest.len; memcpy(md[1].val, vec.cipher_auth.digest.val, vec.cipher_auth.digest.len); md[1].len = vec.cipher_auth.digest.len; memcpy(md[2].val, vec.cipher_auth.digest.val, vec.cipher_auth.digest.len); md[2].len = vec.cipher_auth.digest.len; for (i = 0; i < (SHA_INTERN_ITER); i++) { memcpy(vec.pt.val, md[0].val, (size_t)md[0].len); memcpy((vec.pt.val + md[0].len), md[1].val, (size_t)md[1].len); memcpy((vec.pt.val + md[0].len + md[1].len), md[2].val, (size_t)md[2].len); vec.pt.len = md[0].len + md[1].len + md[2].len; ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM || ret == -ENOTSUP) { fprintf(info.fp_wr, "Bypass\n\n"); return 0; } return ret; } ret = get_writeback_data(&val); if (ret < 0) return ret; memcpy(md[0].val, md[1].val, md[1].len); md[0].len = md[1].len; memcpy(md[1].val, md[2].val, md[2].len); md[1].len = md[2].len; memcpy(md[2].val, (val.val + vec.pt.len), vec.cipher_auth.digest.len); md[2].len = vec.cipher_auth.digest.len; } memcpy(vec.cipher_auth.digest.val, md[2].val, md[2].len); vec.cipher_auth.digest.len = md[2].len; fprintf(info.fp_wr, "COUNT = %u\n", j); writeback_hex_str("", temp, &vec.cipher_auth.digest); fprintf(info.fp_wr, "MD = %s\n\n", temp); } for (i = 0; i < (SHA_MD_BLOCK); i++) rte_free(md[i].val); rte_free(vec.pt.val); if (val.val) free(val.val); return 0; } static int init_test_ops(void) { switch (info.algo) { case FIPS_TEST_ALGO_AES: test_ops.prepare_op = prepare_cipher_op; test_ops.prepare_xform = prepare_aes_xform; if (info.interim_info.aes_data.test_type == AESAVS_TYPE_MCT) test_ops.test = fips_mct_aes_test; else test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_HMAC: test_ops.prepare_op = prepare_auth_op; test_ops.prepare_xform = prepare_hmac_xform; test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_TDES: test_ops.prepare_op = prepare_cipher_op; test_ops.prepare_xform = prepare_tdes_xform; if (info.interim_info.tdes_data.test_type == TDES_MCT) test_ops.test = fips_mct_tdes_test; else test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_AES_GCM: test_ops.prepare_op = prepare_aead_op; test_ops.prepare_xform = prepare_gcm_xform; test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_AES_CMAC: test_ops.prepare_op = prepare_auth_op; test_ops.prepare_xform = prepare_cmac_xform; test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_AES_CCM: test_ops.prepare_op = prepare_aead_op; test_ops.prepare_xform = prepare_ccm_xform; test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_SHA: test_ops.prepare_op = prepare_auth_op; test_ops.prepare_xform = prepare_sha_xform; if (info.interim_info.sha_data.test_type == SHA_MCT) test_ops.test = fips_mct_sha_test; else test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_AES_XTS: test_ops.prepare_op = prepare_cipher_op; test_ops.prepare_xform = prepare_xts_xform; test_ops.test = fips_generic_test; break; default: if (strstr(info.file_name, "TECB") || strstr(info.file_name, "TCBC")) { info.algo = FIPS_TEST_ALGO_TDES; test_ops.prepare_op = prepare_cipher_op; test_ops.prepare_xform = prepare_tdes_xform; if (info.interim_info.tdes_data.test_type == TDES_MCT) test_ops.test = fips_mct_tdes_test; else test_ops.test = fips_generic_test; break; } return -1; } return 0; } static void print_test_block(void) { uint32_t i; for (i = 0; i < info.nb_vec_lines; i++) printf("%s\n", info.vec[i]); printf("\n"); } static int fips_test_one_file(void) { int fetch_ret = 0, ret; ret = init_test_ops(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Init test op\n", ret); return ret; } while (ret >= 0 && fetch_ret == 0) { fetch_ret = fips_test_fetch_one_block(); if (fetch_ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Fetch block\n", fetch_ret); ret = fetch_ret; goto error_one_case; } if (info.nb_vec_lines == 0) { if (fetch_ret == -EOF) break; fprintf(info.fp_wr, "\n"); continue; } ret = fips_test_parse_one_case(); switch (ret) { case 0: ret = test_ops.test(); if (ret == 0) break; RTE_LOG(ERR, USER1, "Error %i: test block\n", ret); goto error_one_case; case 1: break; default: RTE_LOG(ERR, USER1, "Error %i: Parse block\n", ret); goto error_one_case; } continue; error_one_case: print_test_block(); } fips_test_clear(); if (env.digest) { rte_free(env.digest); env.digest = NULL; env.digest_len = 0; } if (env.mbuf) rte_pktmbuf_free(env.mbuf); return ret; }