/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation. * Copyright 2013-2014 6WIND S.A. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RTE_NET_IXGBE #include #endif #ifdef RTE_NET_I40E #include #endif #ifdef RTE_NET_BNXT #include #endif #ifdef RTE_LIB_GRO #include #endif #include #include "testpmd.h" #include "cmdline_mtr.h" #define ETHDEV_FWVERS_LEN 32 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */ #define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW #else #define CLOCK_TYPE_ID CLOCK_MONOTONIC #endif #define NS_PER_SEC 1E9 static const struct { enum tx_pkt_split split; const char *name; } tx_split_name[] = { { .split = TX_PKT_SPLIT_OFF, .name = "off", }, { .split = TX_PKT_SPLIT_ON, .name = "on", }, { .split = TX_PKT_SPLIT_RND, .name = "rand", }, }; const struct rss_type_info rss_type_table[] = { { "all", RTE_ETH_RSS_ETH | RTE_ETH_RSS_VLAN | RTE_ETH_RSS_IP | RTE_ETH_RSS_TCP | RTE_ETH_RSS_UDP | RTE_ETH_RSS_SCTP | RTE_ETH_RSS_L2_PAYLOAD | RTE_ETH_RSS_L2TPV3 | RTE_ETH_RSS_ESP | RTE_ETH_RSS_AH | RTE_ETH_RSS_PFCP | RTE_ETH_RSS_GTPU | RTE_ETH_RSS_ECPRI | RTE_ETH_RSS_MPLS}, { "none", 0 }, { "eth", RTE_ETH_RSS_ETH }, { "l2-src-only", RTE_ETH_RSS_L2_SRC_ONLY }, { "l2-dst-only", RTE_ETH_RSS_L2_DST_ONLY }, { "vlan", RTE_ETH_RSS_VLAN }, { "s-vlan", RTE_ETH_RSS_S_VLAN }, { "c-vlan", RTE_ETH_RSS_C_VLAN }, { "ipv4", RTE_ETH_RSS_IPV4 }, { "ipv4-frag", RTE_ETH_RSS_FRAG_IPV4 }, { "ipv4-tcp", RTE_ETH_RSS_NONFRAG_IPV4_TCP }, { "ipv4-udp", RTE_ETH_RSS_NONFRAG_IPV4_UDP }, { "ipv4-sctp", RTE_ETH_RSS_NONFRAG_IPV4_SCTP }, { "ipv4-other", RTE_ETH_RSS_NONFRAG_IPV4_OTHER }, { "ipv6", RTE_ETH_RSS_IPV6 }, { "ipv6-frag", RTE_ETH_RSS_FRAG_IPV6 }, { "ipv6-tcp", RTE_ETH_RSS_NONFRAG_IPV6_TCP }, { "ipv6-udp", RTE_ETH_RSS_NONFRAG_IPV6_UDP }, { "ipv6-sctp", RTE_ETH_RSS_NONFRAG_IPV6_SCTP }, { "ipv6-other", RTE_ETH_RSS_NONFRAG_IPV6_OTHER }, { "l2-payload", RTE_ETH_RSS_L2_PAYLOAD }, { "ipv6-ex", RTE_ETH_RSS_IPV6_EX }, { "ipv6-tcp-ex", RTE_ETH_RSS_IPV6_TCP_EX }, { "ipv6-udp-ex", RTE_ETH_RSS_IPV6_UDP_EX }, { "port", RTE_ETH_RSS_PORT }, { "vxlan", RTE_ETH_RSS_VXLAN }, { "geneve", RTE_ETH_RSS_GENEVE }, { "nvgre", RTE_ETH_RSS_NVGRE }, { "ip", RTE_ETH_RSS_IP }, { "udp", RTE_ETH_RSS_UDP }, { "tcp", RTE_ETH_RSS_TCP }, { "sctp", RTE_ETH_RSS_SCTP }, { "tunnel", RTE_ETH_RSS_TUNNEL }, { "l3-pre32", RTE_ETH_RSS_L3_PRE32 }, { "l3-pre40", RTE_ETH_RSS_L3_PRE40 }, { "l3-pre48", RTE_ETH_RSS_L3_PRE48 }, { "l3-pre56", RTE_ETH_RSS_L3_PRE56 }, { "l3-pre64", RTE_ETH_RSS_L3_PRE64 }, { "l3-pre96", RTE_ETH_RSS_L3_PRE96 }, { "l3-src-only", RTE_ETH_RSS_L3_SRC_ONLY }, { "l3-dst-only", RTE_ETH_RSS_L3_DST_ONLY }, { "l4-src-only", RTE_ETH_RSS_L4_SRC_ONLY }, { "l4-dst-only", RTE_ETH_RSS_L4_DST_ONLY }, { "esp", RTE_ETH_RSS_ESP }, { "ah", RTE_ETH_RSS_AH }, { "l2tpv3", RTE_ETH_RSS_L2TPV3 }, { "pfcp", RTE_ETH_RSS_PFCP }, { "pppoe", RTE_ETH_RSS_PPPOE }, { "gtpu", RTE_ETH_RSS_GTPU }, { "ecpri", RTE_ETH_RSS_ECPRI }, { "mpls", RTE_ETH_RSS_MPLS }, { "ipv4-chksum", RTE_ETH_RSS_IPV4_CHKSUM }, { "l4-chksum", RTE_ETH_RSS_L4_CHKSUM }, { NULL, 0 }, }; static const struct { enum rte_eth_fec_mode mode; const char *name; } fec_mode_name[] = { { .mode = RTE_ETH_FEC_NOFEC, .name = "off", }, { .mode = RTE_ETH_FEC_AUTO, .name = "auto", }, { .mode = RTE_ETH_FEC_BASER, .name = "baser", }, { .mode = RTE_ETH_FEC_RS, .name = "rs", }, }; static void print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) { char buf[RTE_ETHER_ADDR_FMT_SIZE]; rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } static void nic_xstats_display_periodic(portid_t port_id) { struct xstat_display_info *xstats_info; uint64_t *prev_values, *curr_values; uint64_t diff_value, value_rate; struct timespec cur_time; uint64_t *ids_supp; size_t ids_supp_sz; uint64_t diff_ns; unsigned int i; int rc; xstats_info = &ports[port_id].xstats_info; ids_supp_sz = xstats_info->ids_supp_sz; if (ids_supp_sz == 0) return; printf("\n"); ids_supp = xstats_info->ids_supp; prev_values = xstats_info->prev_values; curr_values = xstats_info->curr_values; rc = rte_eth_xstats_get_by_id(port_id, ids_supp, curr_values, ids_supp_sz); if (rc != (int)ids_supp_sz) { fprintf(stderr, "Failed to get values of %zu xstats for port %u - return code %d\n", ids_supp_sz, port_id, rc); return; } diff_ns = 0; if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) { uint64_t ns; ns = cur_time.tv_sec * NS_PER_SEC; ns += cur_time.tv_nsec; if (xstats_info->prev_ns != 0) diff_ns = ns - xstats_info->prev_ns; xstats_info->prev_ns = ns; } printf("%-31s%-17s%s\n", " ", "Value", "Rate (since last show)"); for (i = 0; i < ids_supp_sz; i++) { diff_value = (curr_values[i] > prev_values[i]) ? (curr_values[i] - prev_values[i]) : 0; prev_values[i] = curr_values[i]; value_rate = diff_ns > 0 ? (double)diff_value / diff_ns * NS_PER_SEC : 0; printf(" %-25s%12"PRIu64" %15"PRIu64"\n", xstats_display[i].name, curr_values[i], value_rate); } } void nic_stats_display(portid_t port_id) { static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS]; static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS]; static uint64_t prev_ns[RTE_MAX_ETHPORTS]; struct timespec cur_time; uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx, diff_ns; uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx; struct rte_eth_stats stats; static const char *nic_stats_border = "########################"; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } ret = rte_eth_stats_get(port_id, &stats); if (ret != 0) { fprintf(stderr, "%s: Error: failed to get stats (port %u): %d", __func__, port_id, ret); return; } printf("\n %s NIC statistics for port %-2d %s\n", nic_stats_border, port_id, nic_stats_border); printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes); printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); printf(" RX-nombuf: %-10"PRIu64"\n", stats.rx_nombuf); printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes); diff_ns = 0; if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) { uint64_t ns; ns = cur_time.tv_sec * NS_PER_SEC; ns += cur_time.tv_nsec; if (prev_ns[port_id] != 0) diff_ns = ns - prev_ns[port_id]; prev_ns[port_id] = ns; } diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? (stats.ipackets - prev_pkts_rx[port_id]) : 0; diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? (stats.opackets - prev_pkts_tx[port_id]) : 0; prev_pkts_rx[port_id] = stats.ipackets; prev_pkts_tx[port_id] = stats.opackets; mpps_rx = diff_ns > 0 ? (double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0; mpps_tx = diff_ns > 0 ? (double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0; diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ? (stats.ibytes - prev_bytes_rx[port_id]) : 0; diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ? (stats.obytes - prev_bytes_tx[port_id]) : 0; prev_bytes_rx[port_id] = stats.ibytes; prev_bytes_tx[port_id] = stats.obytes; mbps_rx = diff_ns > 0 ? (double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0; mbps_tx = diff_ns > 0 ? (double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0; printf("\n Throughput (since last show)\n"); printf(" Rx-pps: %12"PRIu64" Rx-bps: %12"PRIu64"\n Tx-pps: %12" PRIu64" Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8, mpps_tx, mbps_tx * 8); if (xstats_display_num > 0) nic_xstats_display_periodic(port_id); printf(" %s############################%s\n", nic_stats_border, nic_stats_border); } void nic_stats_clear(portid_t port_id) { int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } ret = rte_eth_stats_reset(port_id); if (ret != 0) { fprintf(stderr, "%s: Error: failed to reset stats (port %u): %s", __func__, port_id, strerror(-ret)); return; } ret = rte_eth_stats_get(port_id, &ports[port_id].stats); if (ret != 0) { if (ret < 0) ret = -ret; fprintf(stderr, "%s: Error: failed to get stats (port %u): %s", __func__, port_id, strerror(ret)); return; } printf("\n NIC statistics for port %d cleared\n", port_id); } void nic_xstats_display(portid_t port_id) { struct rte_eth_xstat *xstats; int cnt_xstats, idx_xstat; struct rte_eth_xstat_name *xstats_names; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } printf("###### NIC extended statistics for port %-2d\n", port_id); if (!rte_eth_dev_is_valid_port(port_id)) { fprintf(stderr, "Error: Invalid port number %i\n", port_id); return; } /* Get count */ cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); if (cnt_xstats < 0) { fprintf(stderr, "Error: Cannot get count of xstats\n"); return; } /* Get id-name lookup table */ xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); if (xstats_names == NULL) { fprintf(stderr, "Cannot allocate memory for xstats lookup\n"); return; } if (cnt_xstats != rte_eth_xstats_get_names( port_id, xstats_names, cnt_xstats)) { fprintf(stderr, "Error: Cannot get xstats lookup\n"); free(xstats_names); return; } /* Get stats themselves */ xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); if (xstats == NULL) { fprintf(stderr, "Cannot allocate memory for xstats\n"); free(xstats_names); return; } if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { fprintf(stderr, "Error: Unable to get xstats\n"); free(xstats_names); free(xstats); return; } /* Display xstats */ for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { if (xstats_hide_zero && !xstats[idx_xstat].value) continue; printf("%s: %"PRIu64"\n", xstats_names[idx_xstat].name, xstats[idx_xstat].value); } free(xstats_names); free(xstats); } void nic_xstats_clear(portid_t port_id) { int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } ret = rte_eth_xstats_reset(port_id); if (ret != 0) { fprintf(stderr, "%s: Error: failed to reset xstats (port %u): %s\n", __func__, port_id, strerror(-ret)); return; } ret = rte_eth_stats_get(port_id, &ports[port_id].stats); if (ret != 0) { if (ret < 0) ret = -ret; fprintf(stderr, "%s: Error: failed to get stats (port %u): %s", __func__, port_id, strerror(ret)); return; } } static const char * get_queue_state_name(uint8_t queue_state) { if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED) return "stopped"; else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED) return "started"; else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN) return "hairpin"; else return "unknown"; } void rx_queue_infos_display(portid_t port_id, uint16_t queue_id) { struct rte_eth_burst_mode mode; struct rte_eth_rxq_info qinfo; int32_t rc; static const char *info_border = "*********************"; rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); if (rc != 0) { fprintf(stderr, "Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n", port_id, queue_id, strerror(-rc), rc); return; } printf("\n%s Infos for port %-2u, RX queue %-2u %s", info_border, port_id, queue_id, info_border); printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); printf("\nRX drop packets: %s", (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); printf("\nRX deferred start: %s", (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); printf("\nRX scattered packets: %s", (qinfo.scattered_rx != 0) ? "on" : "off"); printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state)); if (qinfo.rx_buf_size != 0) printf("\nRX buffer size: %hu", qinfo.rx_buf_size); printf("\nNumber of RXDs: %hu", qinfo.nb_desc); if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0) printf("\nBurst mode: %s%s", mode.info, mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? " (per queue)" : ""); printf("\n"); } void tx_queue_infos_display(portid_t port_id, uint16_t queue_id) { struct rte_eth_burst_mode mode; struct rte_eth_txq_info qinfo; int32_t rc; static const char *info_border = "*********************"; rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); if (rc != 0) { fprintf(stderr, "Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n", port_id, queue_id, strerror(-rc), rc); return; } printf("\n%s Infos for port %-2u, TX queue %-2u %s", info_border, port_id, queue_id, info_border); printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); printf("\nTX deferred start: %s", (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); printf("\nNumber of TXDs: %hu", qinfo.nb_desc); printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state)); if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0) printf("\nBurst mode: %s%s", mode.info, mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ? " (per queue)" : ""); printf("\n"); } static int bus_match_all(const struct rte_bus *bus, const void *data) { RTE_SET_USED(bus); RTE_SET_USED(data); return 0; } static void device_infos_display_speeds(uint32_t speed_capa) { printf("\n\tDevice speed capability:"); if (speed_capa == RTE_ETH_LINK_SPEED_AUTONEG) printf(" Autonegotiate (all speeds)"); if (speed_capa & RTE_ETH_LINK_SPEED_FIXED) printf(" Disable autonegotiate (fixed speed) "); if (speed_capa & RTE_ETH_LINK_SPEED_10M_HD) printf(" 10 Mbps half-duplex "); if (speed_capa & RTE_ETH_LINK_SPEED_10M) printf(" 10 Mbps full-duplex "); if (speed_capa & RTE_ETH_LINK_SPEED_100M_HD) printf(" 100 Mbps half-duplex "); if (speed_capa & RTE_ETH_LINK_SPEED_100M) printf(" 100 Mbps full-duplex "); if (speed_capa & RTE_ETH_LINK_SPEED_1G) printf(" 1 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_2_5G) printf(" 2.5 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_5G) printf(" 5 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_10G) printf(" 10 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_20G) printf(" 20 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_25G) printf(" 25 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_40G) printf(" 40 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_50G) printf(" 50 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_56G) printf(" 56 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_100G) printf(" 100 Gbps "); if (speed_capa & RTE_ETH_LINK_SPEED_200G) printf(" 200 Gbps "); } void device_infos_display(const char *identifier) { static const char *info_border = "*********************"; struct rte_bus *start = NULL, *next; struct rte_dev_iterator dev_iter; char name[RTE_ETH_NAME_MAX_LEN]; struct rte_ether_addr mac_addr; struct rte_device *dev; struct rte_devargs da; portid_t port_id; struct rte_eth_dev_info dev_info; char devstr[128]; memset(&da, 0, sizeof(da)); if (!identifier) goto skip_parse; if (rte_devargs_parsef(&da, "%s", identifier)) { fprintf(stderr, "cannot parse identifier\n"); return; } skip_parse: while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) { start = next; if (identifier && da.bus != next) continue; /* Skip buses that don't have iterate method */ if (!next->dev_iterate) continue; snprintf(devstr, sizeof(devstr), "bus=%s", next->name); RTE_DEV_FOREACH(dev, devstr, &dev_iter) { if (!dev->driver) continue; /* Check for matching device if identifier is present */ if (identifier && strncmp(da.name, dev->name, strlen(dev->name))) continue; printf("\n%s Infos for device %s %s\n", info_border, dev->name, info_border); printf("Bus name: %s", dev->bus->name); printf("\nDriver name: %s", dev->driver->name); printf("\nDevargs: %s", dev->devargs ? dev->devargs->args : ""); printf("\nConnect to socket: %d", dev->numa_node); printf("\n"); /* List ports with matching device name */ RTE_ETH_FOREACH_DEV_OF(port_id, dev) { printf("\n\tPort id: %-2d", port_id); if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0) print_ethaddr("\n\tMAC address: ", &mac_addr); rte_eth_dev_get_name_by_port(port_id, name); printf("\n\tDevice name: %s", name); if (rte_eth_dev_info_get(port_id, &dev_info) == 0) device_infos_display_speeds(dev_info.speed_capa); printf("\n"); } } }; rte_devargs_reset(&da); } static void print_dev_capabilities(uint64_t capabilities) { uint64_t single_capa; int begin; int end; int bit; if (capabilities == 0) return; begin = __builtin_ctzll(capabilities); end = sizeof(capabilities) * CHAR_BIT - __builtin_clzll(capabilities); single_capa = 1ULL << begin; for (bit = begin; bit < end; bit++) { if (capabilities & single_capa) printf(" %s", rte_eth_dev_capability_name(single_capa)); single_capa <<= 1; } } const char * rsstypes_to_str(uint64_t rss_type) { uint16_t i; for (i = 0; rss_type_table[i].str != NULL; i++) { if (rss_type_table[i].rss_type == rss_type) return rss_type_table[i].str; } return NULL; } void port_infos_display(portid_t port_id) { struct rte_port *port; struct rte_ether_addr mac_addr; struct rte_eth_link link; struct rte_eth_dev_info dev_info; int vlan_offload; struct rte_mempool * mp; static const char *info_border = "*********************"; uint16_t mtu; char name[RTE_ETH_NAME_MAX_LEN]; int ret; char fw_version[ETHDEV_FWVERS_LEN]; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } port = &ports[port_id]; ret = eth_link_get_nowait_print_err(port_id, &link); if (ret < 0) return; ret = eth_dev_info_get_print_err(port_id, &dev_info); if (ret != 0) return; printf("\n%s Infos for port %-2d %s\n", info_border, port_id, info_border); if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0) print_ethaddr("MAC address: ", &mac_addr); rte_eth_dev_get_name_by_port(port_id, name); printf("\nDevice name: %s", name); printf("\nDriver name: %s", dev_info.driver_name); if (rte_eth_dev_fw_version_get(port_id, fw_version, ETHDEV_FWVERS_LEN) == 0) printf("\nFirmware-version: %s", fw_version); else printf("\nFirmware-version: %s", "not available"); if (dev_info.device->devargs && dev_info.device->devargs->args) printf("\nDevargs: %s", dev_info.device->devargs->args); printf("\nConnect to socket: %u", port->socket_id); if (port_numa[port_id] != NUMA_NO_CONFIG) { mp = mbuf_pool_find(port_numa[port_id], 0); if (mp) printf("\nmemory allocation on the socket: %d", port_numa[port_id]); } else printf("\nmemory allocation on the socket: %u",port->socket_id); printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed)); printf("Link duplex: %s\n", (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex")); printf("Autoneg status: %s\n", (link.link_autoneg == RTE_ETH_LINK_AUTONEG) ? ("On") : ("Off")); if (!rte_eth_dev_get_mtu(port_id, &mtu)) printf("MTU: %u\n", mtu); printf("Promiscuous mode: %s\n", rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); printf("Allmulticast mode: %s\n", rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); printf("Maximum number of MAC addresses: %u\n", (unsigned int)(port->dev_info.max_mac_addrs)); printf("Maximum number of MAC addresses of hash filtering: %u\n", (unsigned int)(port->dev_info.max_hash_mac_addrs)); vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (vlan_offload >= 0){ printf("VLAN offload: \n"); if (vlan_offload & RTE_ETH_VLAN_STRIP_OFFLOAD) printf(" strip on, "); else printf(" strip off, "); if (vlan_offload & RTE_ETH_VLAN_FILTER_OFFLOAD) printf("filter on, "); else printf("filter off, "); if (vlan_offload & RTE_ETH_VLAN_EXTEND_OFFLOAD) printf("extend on, "); else printf("extend off, "); if (vlan_offload & RTE_ETH_QINQ_STRIP_OFFLOAD) printf("qinq strip on\n"); else printf("qinq strip off\n"); } if (dev_info.hash_key_size > 0) printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); if (dev_info.reta_size > 0) printf("Redirection table size: %u\n", dev_info.reta_size); if (!dev_info.flow_type_rss_offloads) printf("No RSS offload flow type is supported.\n"); else { uint64_t rss_offload_types = dev_info.flow_type_rss_offloads; uint16_t i; printf("Supported RSS offload flow types:\n"); for (i = 0; i < sizeof(rss_offload_types) * CHAR_BIT; i++) { uint64_t rss_offload = RTE_BIT64(i); if ((rss_offload_types & rss_offload) != 0) { const char *p = rsstypes_to_str(rss_offload); if (p) printf(" %s\n", p); else printf(" user defined %u\n", i); } } } printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); printf("Maximum configurable length of RX packet: %u\n", dev_info.max_rx_pktlen); printf("Maximum configurable size of LRO aggregated packet: %u\n", dev_info.max_lro_pkt_size); if (dev_info.max_vfs) printf("Maximum number of VFs: %u\n", dev_info.max_vfs); if (dev_info.max_vmdq_pools) printf("Maximum number of VMDq pools: %u\n", dev_info.max_vmdq_pools); printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); printf("Max possible number of RXDs per queue: %hu\n", dev_info.rx_desc_lim.nb_max); printf("Min possible number of RXDs per queue: %hu\n", dev_info.rx_desc_lim.nb_min); printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); printf("Max possible number of TXDs per queue: %hu\n", dev_info.tx_desc_lim.nb_max); printf("Min possible number of TXDs per queue: %hu\n", dev_info.tx_desc_lim.nb_min); printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); printf("Max segment number per packet: %hu\n", dev_info.tx_desc_lim.nb_seg_max); printf("Max segment number per MTU/TSO: %hu\n", dev_info.tx_desc_lim.nb_mtu_seg_max); printf("Device capabilities: 0x%"PRIx64"(", dev_info.dev_capa); print_dev_capabilities(dev_info.dev_capa); printf(" )\n"); /* Show switch info only if valid switch domain and port id is set */ if (dev_info.switch_info.domain_id != RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) { if (dev_info.switch_info.name) printf("Switch name: %s\n", dev_info.switch_info.name); printf("Switch domain Id: %u\n", dev_info.switch_info.domain_id); printf("Switch Port Id: %u\n", dev_info.switch_info.port_id); if ((dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) != 0) printf("Switch Rx domain: %u\n", dev_info.switch_info.rx_domain); } } void port_summary_header_display(void) { uint16_t port_number; port_number = rte_eth_dev_count_avail(); printf("Number of available ports: %i\n", port_number); printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name", "Driver", "Status", "Link"); } void port_summary_display(portid_t port_id) { struct rte_ether_addr mac_addr; struct rte_eth_link link; struct rte_eth_dev_info dev_info; char name[RTE_ETH_NAME_MAX_LEN]; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } ret = eth_link_get_nowait_print_err(port_id, &link); if (ret < 0) return; ret = eth_dev_info_get_print_err(port_id, &dev_info); if (ret != 0) return; rte_eth_dev_get_name_by_port(port_id, name); ret = eth_macaddr_get_print_err(port_id, &mac_addr); if (ret != 0) return; printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n", port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name, dev_info.driver_name, (link.link_status) ? ("up") : ("down"), rte_eth_link_speed_to_str(link.link_speed)); } void port_eeprom_display(portid_t port_id) { struct rte_dev_eeprom_info einfo; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } int len_eeprom = rte_eth_dev_get_eeprom_length(port_id); if (len_eeprom < 0) { switch (len_eeprom) { case -ENODEV: fprintf(stderr, "port index %d invalid\n", port_id); break; case -ENOTSUP: fprintf(stderr, "operation not supported by device\n"); break; case -EIO: fprintf(stderr, "device is removed\n"); break; default: fprintf(stderr, "Unable to get EEPROM: %d\n", len_eeprom); break; } return; } einfo.offset = 0; einfo.length = len_eeprom; einfo.data = calloc(1, len_eeprom); if (!einfo.data) { fprintf(stderr, "Allocation of port %u eeprom data failed\n", port_id); return; } ret = rte_eth_dev_get_eeprom(port_id, &einfo); if (ret != 0) { switch (ret) { case -ENODEV: fprintf(stderr, "port index %d invalid\n", port_id); break; case -ENOTSUP: fprintf(stderr, "operation not supported by device\n"); break; case -EIO: fprintf(stderr, "device is removed\n"); break; default: fprintf(stderr, "Unable to get EEPROM: %d\n", ret); break; } free(einfo.data); return; } rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom); free(einfo.data); } void port_module_eeprom_display(portid_t port_id) { struct rte_eth_dev_module_info minfo; struct rte_dev_eeprom_info einfo; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) { print_valid_ports(); return; } ret = rte_eth_dev_get_module_info(port_id, &minfo); if (ret != 0) { switch (ret) { case -ENODEV: fprintf(stderr, "port index %d invalid\n", port_id); break; case -ENOTSUP: fprintf(stderr, "operation not supported by device\n"); break; case -EIO: fprintf(stderr, "device is removed\n"); break; default: fprintf(stderr, "Unable to get module EEPROM: %d\n", ret); break; } return; } einfo.offset = 0; einfo.length = minfo.eeprom_len; einfo.data = calloc(1, minfo.eeprom_len); if (!einfo.data) { fprintf(stderr, "Allocation of port %u eeprom data failed\n", port_id); return; } ret = rte_eth_dev_get_module_eeprom(port_id, &einfo); if (ret != 0) { switch (ret) { case -ENODEV: fprintf(stderr, "port index %d invalid\n", port_id); break; case -ENOTSUP: fprintf(stderr, "operation not supported by device\n"); break; case -EIO: fprintf(stderr, "device is removed\n"); break; default: fprintf(stderr, "Unable to get module EEPROM: %d\n", ret); break; } free(einfo.data); return; } rte_hexdump(stdout, "hexdump", einfo.data, einfo.length); printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length); free(einfo.data); } int port_id_is_invalid(portid_t port_id, enum print_warning warning) { uint16_t pid; if (port_id == (portid_t)RTE_PORT_ALL) return 0; RTE_ETH_FOREACH_DEV(pid) if (port_id == pid) return 0; if (warning == ENABLED_WARN) fprintf(stderr, "Invalid port %d\n", port_id); return 1; } void print_valid_ports(void) { portid_t pid; printf("The valid ports array is ["); RTE_ETH_FOREACH_DEV(pid) { printf(" %d", pid); } printf(" ]\n"); } static int vlan_id_is_invalid(uint16_t vlan_id) { if (vlan_id < 4096) return 0; fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id); return 1; } static int port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) { const struct rte_pci_device *pci_dev; const struct rte_bus *bus; uint64_t pci_len; if (reg_off & 0x3) { fprintf(stderr, "Port register offset 0x%X not aligned on a 4-byte boundary\n", (unsigned int)reg_off); return 1; } if (!ports[port_id].dev_info.device) { fprintf(stderr, "Invalid device\n"); return 0; } bus = rte_bus_find_by_device(ports[port_id].dev_info.device); if (bus && !strcmp(bus->name, "pci")) { pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device); } else { fprintf(stderr, "Not a PCI device\n"); return 1; } pci_len = pci_dev->mem_resource[0].len; if (reg_off >= pci_len) { fprintf(stderr, "Port %d: register offset %u (0x%X) out of port PCI resource (length=%"PRIu64")\n", port_id, (unsigned int)reg_off, (unsigned int)reg_off, pci_len); return 1; } return 0; } static int reg_bit_pos_is_invalid(uint8_t bit_pos) { if (bit_pos <= 31) return 0; fprintf(stderr, "Invalid bit position %d (must be <= 31)\n", bit_pos); return 1; } #define display_port_and_reg_off(port_id, reg_off) \ printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) static inline void display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) { display_port_and_reg_off(port_id, (unsigned)reg_off); printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); } void port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) { uint32_t reg_v; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit_x)) return; reg_v = port_id_pci_reg_read(port_id, reg_off); display_port_and_reg_off(port_id, (unsigned)reg_off); printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); } void port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, uint8_t bit1_pos, uint8_t bit2_pos) { uint32_t reg_v; uint8_t l_bit; uint8_t h_bit; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit1_pos)) return; if (reg_bit_pos_is_invalid(bit2_pos)) return; if (bit1_pos > bit2_pos) l_bit = bit2_pos, h_bit = bit1_pos; else l_bit = bit1_pos, h_bit = bit2_pos; reg_v = port_id_pci_reg_read(port_id, reg_off); reg_v >>= l_bit; if (h_bit < 31) reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); display_port_and_reg_off(port_id, (unsigned)reg_off); printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); } void port_reg_display(portid_t port_id, uint32_t reg_off) { uint32_t reg_v; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; reg_v = port_id_pci_reg_read(port_id, reg_off); display_port_reg_value(port_id, reg_off, reg_v); } void port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, uint8_t bit_v) { uint32_t reg_v; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit_pos)) return; if (bit_v > 1) { fprintf(stderr, "Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); return; } reg_v = port_id_pci_reg_read(port_id, reg_off); if (bit_v == 0) reg_v &= ~(1 << bit_pos); else reg_v |= (1 << bit_pos); port_id_pci_reg_write(port_id, reg_off, reg_v); display_port_reg_value(port_id, reg_off, reg_v); } void port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) { uint32_t max_v; uint32_t reg_v; uint8_t l_bit; uint8_t h_bit; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit1_pos)) return; if (reg_bit_pos_is_invalid(bit2_pos)) return; if (bit1_pos > bit2_pos) l_bit = bit2_pos, h_bit = bit1_pos; else l_bit = bit1_pos, h_bit = bit2_pos; if ((h_bit - l_bit) < 31) max_v = (1 << (h_bit - l_bit + 1)) - 1; else max_v = 0xFFFFFFFF; if (value > max_v) { fprintf(stderr, "Invalid value %u (0x%x) must be < %u (0x%x)\n", (unsigned)value, (unsigned)value, (unsigned)max_v, (unsigned)max_v); return; } reg_v = port_id_pci_reg_read(port_id, reg_off); reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ reg_v |= (value << l_bit); /* Set changed bits */ port_id_pci_reg_write(port_id, reg_off, reg_v); display_port_reg_value(port_id, reg_off, reg_v); } void port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) { if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; port_id_pci_reg_write(port_id, reg_off, reg_v); display_port_reg_value(port_id, reg_off, reg_v); } static uint32_t eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu) { uint32_t overhead_len; if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu) overhead_len = max_rx_pktlen - max_mtu; else overhead_len = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; return overhead_len; } static int eth_dev_validate_mtu(uint16_t port_id, uint16_t mtu) { struct rte_eth_dev_info dev_info; uint32_t overhead_len; uint32_t frame_size; int ret; ret = rte_eth_dev_info_get(port_id, &dev_info); if (ret != 0) return ret; if (mtu < dev_info.min_mtu) { fprintf(stderr, "MTU (%u) < device min MTU (%u) for port_id %u\n", mtu, dev_info.min_mtu, port_id); return -EINVAL; } if (mtu > dev_info.max_mtu) { fprintf(stderr, "MTU (%u) > device max MTU (%u) for port_id %u\n", mtu, dev_info.max_mtu, port_id); return -EINVAL; } overhead_len = eth_dev_get_overhead_len(dev_info.max_rx_pktlen, dev_info.max_mtu); frame_size = mtu + overhead_len; if (frame_size > dev_info.max_rx_pktlen) { fprintf(stderr, "Frame size (%u) > device max frame size (%u) for port_id %u\n", frame_size, dev_info.max_rx_pktlen, port_id); return -EINVAL; } return 0; } void port_mtu_set(portid_t port_id, uint16_t mtu) { struct rte_port *port = &ports[port_id]; int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; diag = eth_dev_validate_mtu(port_id, mtu); if (diag != 0) return; if (port->need_reconfig == 0) { diag = rte_eth_dev_set_mtu(port_id, mtu); if (diag != 0) { fprintf(stderr, "Set MTU failed. diag=%d\n", diag); return; } } port->dev_conf.rxmode.mtu = mtu; } /* Generic flow management functions. */ static struct port_flow_tunnel * port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id) { struct port_flow_tunnel *flow_tunnel; LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { if (flow_tunnel->id == port_tunnel_id) goto out; } flow_tunnel = NULL; out: return flow_tunnel; } const char * port_flow_tunnel_type(struct rte_flow_tunnel *tunnel) { const char *type; switch (tunnel->type) { default: type = "unknown"; break; case RTE_FLOW_ITEM_TYPE_VXLAN: type = "vxlan"; break; case RTE_FLOW_ITEM_TYPE_GRE: type = "gre"; break; case RTE_FLOW_ITEM_TYPE_NVGRE: type = "nvgre"; break; case RTE_FLOW_ITEM_TYPE_GENEVE: type = "geneve"; break; } return type; } struct port_flow_tunnel * port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun) { struct rte_port *port = &ports[port_id]; struct port_flow_tunnel *flow_tunnel; LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) { if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun))) goto out; } flow_tunnel = NULL; out: return flow_tunnel; } void port_flow_tunnel_list(portid_t port_id) { struct rte_port *port = &ports[port_id]; struct port_flow_tunnel *flt; LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { printf("port %u tunnel #%u type=%s", port_id, flt->id, port_flow_tunnel_type(&flt->tunnel)); if (flt->tunnel.tun_id) printf(" id=%" PRIu64, flt->tunnel.tun_id); printf("\n"); } } void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id) { struct rte_port *port = &ports[port_id]; struct port_flow_tunnel *flt; LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { if (flt->id == tunnel_id) break; } if (flt) { LIST_REMOVE(flt, chain); free(flt); printf("port %u: flow tunnel #%u destroyed\n", port_id, tunnel_id); } } void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops) { struct rte_port *port = &ports[port_id]; enum rte_flow_item_type type; struct port_flow_tunnel *flt; if (!strcmp(ops->type, "vxlan")) type = RTE_FLOW_ITEM_TYPE_VXLAN; else if (!strcmp(ops->type, "gre")) type = RTE_FLOW_ITEM_TYPE_GRE; else if (!strcmp(ops->type, "nvgre")) type = RTE_FLOW_ITEM_TYPE_NVGRE; else if (!strcmp(ops->type, "geneve")) type = RTE_FLOW_ITEM_TYPE_GENEVE; else { fprintf(stderr, "cannot offload \"%s\" tunnel type\n", ops->type); return; } LIST_FOREACH(flt, &port->flow_tunnel_list, chain) { if (flt->tunnel.type == type) break; } if (!flt) { flt = calloc(1, sizeof(*flt)); if (!flt) { fprintf(stderr, "failed to allocate port flt object\n"); return; } flt->tunnel.type = type; flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 : LIST_FIRST(&port->flow_tunnel_list)->id + 1; LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain); } printf("port %d: flow tunnel #%u type %s\n", port_id, flt->id, ops->type); } /** Generate a port_flow entry from attributes/pattern/actions. */ static struct port_flow * port_flow_new(const struct rte_flow_attr *attr, const struct rte_flow_item *pattern, const struct rte_flow_action *actions, struct rte_flow_error *error) { const struct rte_flow_conv_rule rule = { .attr_ro = attr, .pattern_ro = pattern, .actions_ro = actions, }; struct port_flow *pf; int ret; ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error); if (ret < 0) return NULL; pf = calloc(1, offsetof(struct port_flow, rule) + ret); if (!pf) { rte_flow_error_set (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "calloc() failed"); return NULL; } if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule, error) >= 0) return pf; free(pf); return NULL; } /** Print a message out of a flow error. */ static int port_flow_complain(struct rte_flow_error *error) { static const char *const errstrlist[] = { [RTE_FLOW_ERROR_TYPE_NONE] = "no error", [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field", [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification", [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range", [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask", [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration", [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", }; const char *errstr; char buf[32]; int err = rte_errno; if ((unsigned int)error->type >= RTE_DIM(errstrlist) || !errstrlist[error->type]) errstr = "unknown type"; else errstr = errstrlist[error->type]; fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n", __func__, error->type, errstr, error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", error->cause), buf) : "", error->message ? error->message : "(no stated reason)", rte_strerror(err)); switch (error->type) { case RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER: fprintf(stderr, "The status suggests the use of \"transfer\" " "as the possible cause of the failure. Make " "sure that the flow in question and its " "indirect components (if any) are managed " "via \"transfer\" proxy port. Use command " "\"show port (port_id) flow transfer proxy\" " "to figure out the proxy port ID\n"); break; default: break; } return -err; } static void rss_config_display(struct rte_flow_action_rss *rss_conf) { uint8_t i; if (rss_conf == NULL) { fprintf(stderr, "Invalid rule\n"); return; } printf("RSS:\n" " queues:"); if (rss_conf->queue_num == 0) printf(" none"); for (i = 0; i < rss_conf->queue_num; i++) printf(" %d", rss_conf->queue[i]); printf("\n"); printf(" function: "); switch (rss_conf->func) { case RTE_ETH_HASH_FUNCTION_DEFAULT: printf("default\n"); break; case RTE_ETH_HASH_FUNCTION_TOEPLITZ: printf("toeplitz\n"); break; case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR: printf("simple_xor\n"); break; case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ: printf("symmetric_toeplitz\n"); break; default: printf("Unknown function\n"); return; } printf(" types:\n"); if (rss_conf->types == 0) { printf(" none\n"); return; } for (i = 0; rss_type_table[i].str; i++) { if ((rss_conf->types & rss_type_table[i].rss_type) == rss_type_table[i].rss_type && rss_type_table[i].rss_type != 0) printf(" %s\n", rss_type_table[i].str); } } static struct port_indirect_action * action_get_by_id(portid_t port_id, uint32_t id) { struct rte_port *port; struct port_indirect_action **ppia; struct port_indirect_action *pia = NULL; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return NULL; port = &ports[port_id]; ppia = &port->actions_list; while (*ppia) { if ((*ppia)->id == id) { pia = *ppia; break; } ppia = &(*ppia)->next; } if (!pia) fprintf(stderr, "Failed to find indirect action #%u on port %u\n", id, port_id); return pia; } static int action_alloc(portid_t port_id, uint32_t id, struct port_indirect_action **action) { struct rte_port *port; struct port_indirect_action **ppia; struct port_indirect_action *pia = NULL; *action = NULL; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; port = &ports[port_id]; if (id == UINT32_MAX) { /* taking first available ID */ if (port->actions_list) { if (port->actions_list->id == UINT32_MAX - 1) { fprintf(stderr, "Highest indirect action ID is already assigned, delete it first\n"); return -ENOMEM; } id = port->actions_list->id + 1; } else { id = 0; } } pia = calloc(1, sizeof(*pia)); if (!pia) { fprintf(stderr, "Allocation of port %u indirect action failed\n", port_id); return -ENOMEM; } ppia = &port->actions_list; while (*ppia && (*ppia)->id > id) ppia = &(*ppia)->next; if (*ppia && (*ppia)->id == id) { fprintf(stderr, "Indirect action #%u is already assigned, delete it first\n", id); free(pia); return -EINVAL; } pia->next = *ppia; pia->id = id; *ppia = pia; *action = pia; return 0; } /** Create indirect action */ int port_action_handle_create(portid_t port_id, uint32_t id, const struct rte_flow_indir_action_conf *conf, const struct rte_flow_action *action) { struct port_indirect_action *pia; int ret; struct rte_flow_error error; ret = action_alloc(port_id, id, &pia); if (ret) return ret; if (action->type == RTE_FLOW_ACTION_TYPE_AGE) { struct rte_flow_action_age *age = (struct rte_flow_action_age *)(uintptr_t)(action->conf); pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION; age->context = &pia->age_type; } else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) { struct rte_flow_action_conntrack *ct = (struct rte_flow_action_conntrack *)(uintptr_t)(action->conf); memcpy(ct, &conntrack_context, sizeof(*ct)); } /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x22, sizeof(error)); pia->handle = rte_flow_action_handle_create(port_id, conf, action, &error); if (!pia->handle) { uint32_t destroy_id = pia->id; port_action_handle_destroy(port_id, 1, &destroy_id); return port_flow_complain(&error); } pia->type = action->type; printf("Indirect action #%u created\n", pia->id); return 0; } /** Destroy indirect action */ int port_action_handle_destroy(portid_t port_id, uint32_t n, const uint32_t *actions) { struct rte_port *port; struct port_indirect_action **tmp; int ret = 0; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; port = &ports[port_id]; tmp = &port->actions_list; while (*tmp) { uint32_t i; for (i = 0; i != n; ++i) { struct rte_flow_error error; struct port_indirect_action *pia = *tmp; if (actions[i] != pia->id) continue; /* * Poisoning to make sure PMDs update it in case * of error. */ memset(&error, 0x33, sizeof(error)); if (pia->handle && rte_flow_action_handle_destroy( port_id, pia->handle, &error)) { ret = port_flow_complain(&error); continue; } *tmp = pia->next; printf("Indirect action #%u destroyed\n", pia->id); free(pia); break; } if (i == n) tmp = &(*tmp)->next; } return ret; } int port_action_handle_flush(portid_t port_id) { struct rte_port *port; struct port_indirect_action **tmp; int ret = 0; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; port = &ports[port_id]; tmp = &port->actions_list; while (*tmp != NULL) { struct rte_flow_error error; struct port_indirect_action *pia = *tmp; /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x44, sizeof(error)); if (pia->handle != NULL && rte_flow_action_handle_destroy (port_id, pia->handle, &error) != 0) { printf("Indirect action #%u not destroyed\n", pia->id); ret = port_flow_complain(&error); tmp = &pia->next; } else { *tmp = pia->next; free(pia); } } return ret; } /** Get indirect action by port + id */ struct rte_flow_action_handle * port_action_handle_get_by_id(portid_t port_id, uint32_t id) { struct port_indirect_action *pia = action_get_by_id(port_id, id); return (pia) ? pia->handle : NULL; } /** Update indirect action */ int port_action_handle_update(portid_t port_id, uint32_t id, const struct rte_flow_action *action) { struct rte_flow_error error; struct rte_flow_action_handle *action_handle; struct port_indirect_action *pia; const void *update; action_handle = port_action_handle_get_by_id(port_id, id); if (!action_handle) return -EINVAL; pia = action_get_by_id(port_id, id); if (!pia) return -EINVAL; switch (pia->type) { case RTE_FLOW_ACTION_TYPE_CONNTRACK: update = action->conf; break; default: update = action; break; } if (rte_flow_action_handle_update(port_id, action_handle, update, &error)) { return port_flow_complain(&error); } printf("Indirect action #%u updated\n", id); return 0; } int port_action_handle_query(portid_t port_id, uint32_t id) { struct rte_flow_error error; struct port_indirect_action *pia; union { struct rte_flow_query_count count; struct rte_flow_query_age age; struct rte_flow_action_conntrack ct; } query; pia = action_get_by_id(port_id, id); if (!pia) return -EINVAL; switch (pia->type) { case RTE_FLOW_ACTION_TYPE_AGE: case RTE_FLOW_ACTION_TYPE_COUNT: break; default: fprintf(stderr, "Indirect action %u (type: %d) on port %u doesn't support query\n", id, pia->type, port_id); return -ENOTSUP; } /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x55, sizeof(error)); memset(&query, 0, sizeof(query)); if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error)) return port_flow_complain(&error); switch (pia->type) { case RTE_FLOW_ACTION_TYPE_AGE: printf("Indirect AGE action:\n" " aged: %u\n" " sec_since_last_hit_valid: %u\n" " sec_since_last_hit: %" PRIu32 "\n", query.age.aged, query.age.sec_since_last_hit_valid, query.age.sec_since_last_hit); break; case RTE_FLOW_ACTION_TYPE_COUNT: printf("Indirect COUNT action:\n" " hits_set: %u\n" " bytes_set: %u\n" " hits: %" PRIu64 "\n" " bytes: %" PRIu64 "\n", query.count.hits_set, query.count.bytes_set, query.count.hits, query.count.bytes); break; case RTE_FLOW_ACTION_TYPE_CONNTRACK: printf("Conntrack Context:\n" " Peer: %u, Flow dir: %s, Enable: %u\n" " Live: %u, SACK: %u, CACK: %u\n" " Packet dir: %s, Liberal: %u, State: %u\n" " Factor: %u, Retrans: %u, TCP flags: %u\n" " Last Seq: %u, Last ACK: %u\n" " Last Win: %u, Last End: %u\n", query.ct.peer_port, query.ct.is_original_dir ? "Original" : "Reply", query.ct.enable, query.ct.live_connection, query.ct.selective_ack, query.ct.challenge_ack_passed, query.ct.last_direction ? "Original" : "Reply", query.ct.liberal_mode, query.ct.state, query.ct.max_ack_window, query.ct.retransmission_limit, query.ct.last_index, query.ct.last_seq, query.ct.last_ack, query.ct.last_window, query.ct.last_end); printf(" Original Dir:\n" " scale: %u, fin: %u, ack seen: %u\n" " unacked data: %u\n Sent end: %u," " Reply end: %u, Max win: %u, Max ACK: %u\n", query.ct.original_dir.scale, query.ct.original_dir.close_initiated, query.ct.original_dir.last_ack_seen, query.ct.original_dir.data_unacked, query.ct.original_dir.sent_end, query.ct.original_dir.reply_end, query.ct.original_dir.max_win, query.ct.original_dir.max_ack); printf(" Reply Dir:\n" " scale: %u, fin: %u, ack seen: %u\n" " unacked data: %u\n Sent end: %u," " Reply end: %u, Max win: %u, Max ACK: %u\n", query.ct.reply_dir.scale, query.ct.reply_dir.close_initiated, query.ct.reply_dir.last_ack_seen, query.ct.reply_dir.data_unacked, query.ct.reply_dir.sent_end, query.ct.reply_dir.reply_end, query.ct.reply_dir.max_win, query.ct.reply_dir.max_ack); break; default: fprintf(stderr, "Indirect action %u (type: %d) on port %u doesn't support query\n", id, pia->type, port_id); break; } return 0; } static struct port_flow_tunnel * port_flow_tunnel_offload_cmd_prep(portid_t port_id, const struct rte_flow_item *pattern, const struct rte_flow_action *actions, const struct tunnel_ops *tunnel_ops) { int ret; struct rte_port *port; struct port_flow_tunnel *pft; struct rte_flow_error error; port = &ports[port_id]; pft = port_flow_locate_tunnel_id(port, tunnel_ops->id); if (!pft) { fprintf(stderr, "failed to locate port flow tunnel #%u\n", tunnel_ops->id); return NULL; } if (tunnel_ops->actions) { uint32_t num_actions; const struct rte_flow_action *aptr; ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel, &pft->pmd_actions, &pft->num_pmd_actions, &error); if (ret) { port_flow_complain(&error); return NULL; } for (aptr = actions, num_actions = 1; aptr->type != RTE_FLOW_ACTION_TYPE_END; aptr++, num_actions++); pft->actions = malloc( (num_actions + pft->num_pmd_actions) * sizeof(actions[0])); if (!pft->actions) { rte_flow_tunnel_action_decap_release( port_id, pft->actions, pft->num_pmd_actions, &error); return NULL; } rte_memcpy(pft->actions, pft->pmd_actions, pft->num_pmd_actions * sizeof(actions[0])); rte_memcpy(pft->actions + pft->num_pmd_actions, actions, num_actions * sizeof(actions[0])); } if (tunnel_ops->items) { uint32_t num_items; const struct rte_flow_item *iptr; ret = rte_flow_tunnel_match(port_id, &pft->tunnel, &pft->pmd_items, &pft->num_pmd_items, &error); if (ret) { port_flow_complain(&error); return NULL; } for (iptr = pattern, num_items = 1; iptr->type != RTE_FLOW_ITEM_TYPE_END; iptr++, num_items++); pft->items = malloc((num_items + pft->num_pmd_items) * sizeof(pattern[0])); if (!pft->items) { rte_flow_tunnel_item_release( port_id, pft->pmd_items, pft->num_pmd_items, &error); return NULL; } rte_memcpy(pft->items, pft->pmd_items, pft->num_pmd_items * sizeof(pattern[0])); rte_memcpy(pft->items + pft->num_pmd_items, pattern, num_items * sizeof(pattern[0])); } return pft; } static void port_flow_tunnel_offload_cmd_release(portid_t port_id, const struct tunnel_ops *tunnel_ops, struct port_flow_tunnel *pft) { struct rte_flow_error error; if (tunnel_ops->actions) { free(pft->actions); rte_flow_tunnel_action_decap_release( port_id, pft->pmd_actions, pft->num_pmd_actions, &error); pft->actions = NULL; pft->pmd_actions = NULL; } if (tunnel_ops->items) { free(pft->items); rte_flow_tunnel_item_release(port_id, pft->pmd_items, pft->num_pmd_items, &error); pft->items = NULL; pft->pmd_items = NULL; } } /** Add port meter policy */ int port_meter_policy_add(portid_t port_id, uint32_t policy_id, const struct rte_flow_action *actions) { struct rte_mtr_error error; const struct rte_flow_action *act = actions; const struct rte_flow_action *start; struct rte_mtr_meter_policy_params policy; uint32_t i = 0, act_n; int ret; for (i = 0; i < RTE_COLORS; i++) { for (act_n = 0, start = act; act->type != RTE_FLOW_ACTION_TYPE_END; act++) act_n++; if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END) policy.actions[i] = start; else policy.actions[i] = NULL; act++; } ret = rte_mtr_meter_policy_add(port_id, policy_id, &policy, &error); if (ret) print_mtr_err_msg(&error); return ret; } /** Validate flow rule. */ int port_flow_validate(portid_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item *pattern, const struct rte_flow_action *actions, const struct tunnel_ops *tunnel_ops) { struct rte_flow_error error; struct port_flow_tunnel *pft = NULL; int ret; /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x11, sizeof(error)); if (tunnel_ops->enabled) { pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, actions, tunnel_ops); if (!pft) return -ENOENT; if (pft->items) pattern = pft->items; if (pft->actions) actions = pft->actions; } ret = rte_flow_validate(port_id, attr, pattern, actions, &error); if (tunnel_ops->enabled) port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); if (ret) return port_flow_complain(&error); printf("Flow rule validated\n"); return 0; } /** Return age action structure if exists, otherwise NULL. */ static struct rte_flow_action_age * age_action_get(const struct rte_flow_action *actions) { for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { switch (actions->type) { case RTE_FLOW_ACTION_TYPE_AGE: return (struct rte_flow_action_age *) (uintptr_t)actions->conf; default: break; } } return NULL; } /** Create flow rule. */ int port_flow_create(portid_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item *pattern, const struct rte_flow_action *actions, const struct tunnel_ops *tunnel_ops) { struct rte_flow *flow; struct rte_port *port; struct port_flow *pf; uint32_t id = 0; struct rte_flow_error error; struct port_flow_tunnel *pft = NULL; struct rte_flow_action_age *age = age_action_get(actions); port = &ports[port_id]; if (port->flow_list) { if (port->flow_list->id == UINT32_MAX) { fprintf(stderr, "Highest rule ID is already assigned, delete it first"); return -ENOMEM; } id = port->flow_list->id + 1; } if (tunnel_ops->enabled) { pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern, actions, tunnel_ops); if (!pft) return -ENOENT; if (pft->items) pattern = pft->items; if (pft->actions) actions = pft->actions; } pf = port_flow_new(attr, pattern, actions, &error); if (!pf) return port_flow_complain(&error); if (age) { pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW; age->context = &pf->age_type; } /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x22, sizeof(error)); flow = rte_flow_create(port_id, attr, pattern, actions, &error); if (!flow) { if (tunnel_ops->enabled) port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); free(pf); return port_flow_complain(&error); } pf->next = port->flow_list; pf->id = id; pf->flow = flow; port->flow_list = pf; if (tunnel_ops->enabled) port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft); printf("Flow rule #%u created\n", pf->id); return 0; } /** Destroy a number of flow rules. */ int port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) { struct rte_port *port; struct port_flow **tmp; int ret = 0; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; port = &ports[port_id]; tmp = &port->flow_list; while (*tmp) { uint32_t i; for (i = 0; i != n; ++i) { struct rte_flow_error error; struct port_flow *pf = *tmp; if (rule[i] != pf->id) continue; /* * Poisoning to make sure PMDs update it in case * of error. */ memset(&error, 0x33, sizeof(error)); if (rte_flow_destroy(port_id, pf->flow, &error)) { ret = port_flow_complain(&error); continue; } printf("Flow rule #%u destroyed\n", pf->id); *tmp = pf->next; free(pf); break; } if (i == n) tmp = &(*tmp)->next; } return ret; } /** Remove all flow rules. */ int port_flow_flush(portid_t port_id) { struct rte_flow_error error; struct rte_port *port; int ret = 0; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; port = &ports[port_id]; if (port->flow_list == NULL) return ret; /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x44, sizeof(error)); if (rte_flow_flush(port_id, &error)) { port_flow_complain(&error); } while (port->flow_list) { struct port_flow *pf = port->flow_list->next; free(port->flow_list); port->flow_list = pf; } return ret; } /** Dump flow rules. */ int port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id, const char *file_name) { int ret = 0; FILE *file = stdout; struct rte_flow_error error; struct rte_port *port; struct port_flow *pflow; struct rte_flow *tmpFlow = NULL; bool found = false; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; if (!dump_all) { port = &ports[port_id]; pflow = port->flow_list; while (pflow) { if (rule_id != pflow->id) { pflow = pflow->next; } else { tmpFlow = pflow->flow; if (tmpFlow) found = true; break; } } if (found == false) { fprintf(stderr, "Failed to dump to flow %d\n", rule_id); return -EINVAL; } } if (file_name && strlen(file_name)) { file = fopen(file_name, "w"); if (!file) { fprintf(stderr, "Failed to create file %s: %s\n", file_name, strerror(errno)); return -errno; } } if (!dump_all) ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error); else ret = rte_flow_dev_dump(port_id, NULL, file, &error); if (ret) { port_flow_complain(&error); fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret)); } else printf("Flow dump finished\n"); if (file_name && strlen(file_name)) fclose(file); return ret; } /** Query a flow rule. */ int port_flow_query(portid_t port_id, uint32_t rule, const struct rte_flow_action *action) { struct rte_flow_error error; struct rte_port *port; struct port_flow *pf; const char *name; union { struct rte_flow_query_count count; struct rte_flow_action_rss rss_conf; struct rte_flow_query_age age; } query; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; port = &ports[port_id]; for (pf = port->flow_list; pf; pf = pf->next) if (pf->id == rule) break; if (!pf) { fprintf(stderr, "Flow rule #%u not found\n", rule); return -ENOENT; } ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, &name, sizeof(name), (void *)(uintptr_t)action->type, &error); if (ret < 0) return port_flow_complain(&error); switch (action->type) { case RTE_FLOW_ACTION_TYPE_COUNT: case RTE_FLOW_ACTION_TYPE_RSS: case RTE_FLOW_ACTION_TYPE_AGE: break; default: fprintf(stderr, "Cannot query action type %d (%s)\n", action->type, name); return -ENOTSUP; } /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x55, sizeof(error)); memset(&query, 0, sizeof(query)); if (rte_flow_query(port_id, pf->flow, action, &query, &error)) return port_flow_complain(&error); switch (action->type) { case RTE_FLOW_ACTION_TYPE_COUNT: printf("%s:\n" " hits_set: %u\n" " bytes_set: %u\n" " hits: %" PRIu64 "\n" " bytes: %" PRIu64 "\n", name, query.count.hits_set, query.count.bytes_set, query.count.hits, query.count.bytes); break; case RTE_FLOW_ACTION_TYPE_RSS: rss_config_display(&query.rss_conf); break; case RTE_FLOW_ACTION_TYPE_AGE: printf("%s:\n" " aged: %u\n" " sec_since_last_hit_valid: %u\n" " sec_since_last_hit: %" PRIu32 "\n", name, query.age.aged, query.age.sec_since_last_hit_valid, query.age.sec_since_last_hit); break; default: fprintf(stderr, "Cannot display result for action type %d (%s)\n", action->type, name); break; } return 0; } /** List simply and destroy all aged flows. */ void port_flow_aged(portid_t port_id, uint8_t destroy) { void **contexts; int nb_context, total = 0, idx; struct rte_flow_error error; enum age_action_context_type *type; union { struct port_flow *pf; struct port_indirect_action *pia; } ctx; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return; total = rte_flow_get_aged_flows(port_id, NULL, 0, &error); printf("Port %u total aged flows: %d\n", port_id, total); if (total < 0) { port_flow_complain(&error); return; } if (total == 0) return; contexts = malloc(sizeof(void *) * total); if (contexts == NULL) { fprintf(stderr, "Cannot allocate contexts for aged flow\n"); return; } printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type"); nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error); if (nb_context != total) { fprintf(stderr, "Port:%d get aged flows count(%d) != total(%d)\n", port_id, nb_context, total); free(contexts); return; } total = 0; for (idx = 0; idx < nb_context; idx++) { if (!contexts[idx]) { fprintf(stderr, "Error: get Null context in port %u\n", port_id); continue; } type = (enum age_action_context_type *)contexts[idx]; switch (*type) { case ACTION_AGE_CONTEXT_TYPE_FLOW: ctx.pf = container_of(type, struct port_flow, age_type); printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t\n", "Flow", ctx.pf->id, ctx.pf->rule.attr->group, ctx.pf->rule.attr->priority, ctx.pf->rule.attr->ingress ? 'i' : '-', ctx.pf->rule.attr->egress ? 'e' : '-', ctx.pf->rule.attr->transfer ? 't' : '-'); if (destroy && !port_flow_destroy(port_id, 1, &ctx.pf->id)) total++; break; case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION: ctx.pia = container_of(type, struct port_indirect_action, age_type); printf("%-20s\t%" PRIu32 "\n", "Indirect action", ctx.pia->id); break; default: fprintf(stderr, "Error: invalid context type %u\n", port_id); break; } } printf("\n%d flows destroyed\n", total); free(contexts); } /** List flow rules. */ void port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group) { struct rte_port *port; struct port_flow *pf; struct port_flow *list = NULL; uint32_t i; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return; port = &ports[port_id]; if (!port->flow_list) return; /* Sort flows by group, priority and ID. */ for (pf = port->flow_list; pf != NULL; pf = pf->next) { struct port_flow **tmp; const struct rte_flow_attr *curr = pf->rule.attr; if (n) { /* Filter out unwanted groups. */ for (i = 0; i != n; ++i) if (curr->group == group[i]) break; if (i == n) continue; } for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) { const struct rte_flow_attr *comp = (*tmp)->rule.attr; if (curr->group > comp->group || (curr->group == comp->group && curr->priority > comp->priority) || (curr->group == comp->group && curr->priority == comp->priority && pf->id > (*tmp)->id)) continue; break; } pf->tmp = *tmp; *tmp = pf; } printf("ID\tGroup\tPrio\tAttr\tRule\n"); for (pf = list; pf != NULL; pf = pf->tmp) { const struct rte_flow_item *item = pf->rule.pattern; const struct rte_flow_action *action = pf->rule.actions; const char *name; printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t", pf->id, pf->rule.attr->group, pf->rule.attr->priority, pf->rule.attr->ingress ? 'i' : '-', pf->rule.attr->egress ? 'e' : '-', pf->rule.attr->transfer ? 't' : '-'); while (item->type != RTE_FLOW_ITEM_TYPE_END) { if ((uint32_t)item->type > INT_MAX) name = "PMD_INTERNAL"; else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, &name, sizeof(name), (void *)(uintptr_t)item->type, NULL) <= 0) name = "[UNKNOWN]"; if (item->type != RTE_FLOW_ITEM_TYPE_VOID) printf("%s ", name); ++item; } printf("=>"); while (action->type != RTE_FLOW_ACTION_TYPE_END) { if ((uint32_t)action->type > INT_MAX) name = "PMD_INTERNAL"; else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, &name, sizeof(name), (void *)(uintptr_t)action->type, NULL) <= 0) name = "[UNKNOWN]"; if (action->type != RTE_FLOW_ACTION_TYPE_VOID) printf(" %s", name); ++action; } printf("\n"); } } /** Restrict ingress traffic to the defined flow rules. */ int port_flow_isolate(portid_t port_id, int set) { struct rte_flow_error error; /* Poisoning to make sure PMDs update it in case of error. */ memset(&error, 0x66, sizeof(error)); if (rte_flow_isolate(port_id, set, &error)) return port_flow_complain(&error); printf("Ingress traffic on port %u is %s to the defined flow rules\n", port_id, set ? "now restricted" : "not restricted anymore"); return 0; } /* * RX/TX ring descriptors display functions. */ int rx_queue_id_is_invalid(queueid_t rxq_id) { if (rxq_id < nb_rxq) return 0; fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); return 1; } int tx_queue_id_is_invalid(queueid_t txq_id) { if (txq_id < nb_txq) return 0; fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n", txq_id, nb_txq); return 1; } static int get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size) { struct rte_port *port = &ports[port_id]; struct rte_eth_rxq_info rx_qinfo; int ret; ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo); if (ret == 0) { *ring_size = rx_qinfo.nb_desc; return ret; } if (ret != -ENOTSUP) return ret; /* * If the rte_eth_rx_queue_info_get is not support for this PMD, * ring_size stored in testpmd will be used for validity verification. * When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc * being 0, it will use a default value provided by PMDs to setup this * rxq. If the default value is 0, it will use the * RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq. */ if (port->nb_rx_desc[rxq_id]) *ring_size = port->nb_rx_desc[rxq_id]; else if (port->dev_info.default_rxportconf.ring_size) *ring_size = port->dev_info.default_rxportconf.ring_size; else *ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE; return 0; } static int get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size) { struct rte_port *port = &ports[port_id]; struct rte_eth_txq_info tx_qinfo; int ret; ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo); if (ret == 0) { *ring_size = tx_qinfo.nb_desc; return ret; } if (ret != -ENOTSUP) return ret; /* * If the rte_eth_tx_queue_info_get is not support for this PMD, * ring_size stored in testpmd will be used for validity verification. * When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc * being 0, it will use a default value provided by PMDs to setup this * txq. If the default value is 0, it will use the * RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq. */ if (port->nb_tx_desc[txq_id]) *ring_size = port->nb_tx_desc[txq_id]; else if (port->dev_info.default_txportconf.ring_size) *ring_size = port->dev_info.default_txportconf.ring_size; else *ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE; return 0; } static int rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id) { uint16_t ring_size; int ret; ret = get_rx_ring_size(port_id, rxq_id, &ring_size); if (ret) return 1; if (rxdesc_id < ring_size) return 0; fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n", rxdesc_id, ring_size); return 1; } static int tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id) { uint16_t ring_size; int ret; ret = get_tx_ring_size(port_id, txq_id, &ring_size); if (ret) return 1; if (txdesc_id < ring_size) return 0; fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n", txdesc_id, ring_size); return 1; } static const struct rte_memzone * ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) { char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz; snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s", port_id, q_id, ring_name); mz = rte_memzone_lookup(mz_name); if (mz == NULL) fprintf(stderr, "%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n", ring_name, port_id, q_id, mz_name); return mz; } union igb_ring_dword { uint64_t dword; struct { #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN uint32_t lo; uint32_t hi; #else uint32_t hi; uint32_t lo; #endif } words; }; struct igb_ring_desc_32_bytes { union igb_ring_dword lo_dword; union igb_ring_dword hi_dword; union igb_ring_dword resv1; union igb_ring_dword resv2; }; struct igb_ring_desc_16_bytes { union igb_ring_dword lo_dword; union igb_ring_dword hi_dword; }; static void ring_rxd_display_dword(union igb_ring_dword dword) { printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, (unsigned)dword.words.hi); } static void ring_rx_descriptor_display(const struct rte_memzone *ring_mz, #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC portid_t port_id, #else __rte_unused portid_t port_id, #endif uint16_t desc_id) { struct igb_ring_desc_16_bytes *ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC int ret; struct rte_eth_dev_info dev_info; ret = eth_dev_info_get_print_err(port_id, &dev_info); if (ret != 0) return; if (strstr(dev_info.driver_name, "i40e") != NULL) { /* 32 bytes RX descriptor, i40e only */ struct igb_ring_desc_32_bytes *ring = (struct igb_ring_desc_32_bytes *)ring_mz->addr; ring[desc_id].lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); ring_rxd_display_dword(ring[desc_id].lo_dword); ring[desc_id].hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); ring_rxd_display_dword(ring[desc_id].hi_dword); ring[desc_id].resv1.dword = rte_le_to_cpu_64(ring[desc_id].resv1.dword); ring_rxd_display_dword(ring[desc_id].resv1); ring[desc_id].resv2.dword = rte_le_to_cpu_64(ring[desc_id].resv2.dword); ring_rxd_display_dword(ring[desc_id].resv2); return; } #endif /* 16 bytes RX descriptor */ ring[desc_id].lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); ring_rxd_display_dword(ring[desc_id].lo_dword); ring[desc_id].hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); ring_rxd_display_dword(ring[desc_id].hi_dword); } static void ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) { struct igb_ring_desc_16_bytes *ring; struct igb_ring_desc_16_bytes txd; ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", (unsigned)txd.lo_dword.words.lo, (unsigned)txd.lo_dword.words.hi, (unsigned)txd.hi_dword.words.lo, (unsigned)txd.hi_dword.words.hi); } void rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) { const struct rte_memzone *rx_mz; if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id)) return; rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); if (rx_mz == NULL) return; ring_rx_descriptor_display(rx_mz, port_id, rxd_id); } void tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) { const struct rte_memzone *tx_mz; if (tx_desc_id_is_invalid(port_id, txq_id, txd_id)) return; tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); if (tx_mz == NULL) return; ring_tx_descriptor_display(tx_mz, txd_id); } void fwd_lcores_config_display(void) { lcoreid_t lc_id; printf("List of forwarding lcores:"); for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) printf(" %2u", fwd_lcores_cpuids[lc_id]); printf("\n"); } void rxtx_config_display(void) { portid_t pid; queueid_t qid; printf(" %s packet forwarding%s packets/burst=%d\n", cur_fwd_eng->fwd_mode_name, retry_enabled == 0 ? "" : " with retry", nb_pkt_per_burst); if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) printf(" packet len=%u - nb packet segments=%d\n", (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", nb_fwd_lcores, nb_fwd_ports); RTE_ETH_FOREACH_DEV(pid) { struct rte_eth_rxconf *rx_conf = &ports[pid].rxq[0].conf; struct rte_eth_txconf *tx_conf = &ports[pid].txq[0].conf; uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0]; uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0]; struct rte_eth_rxq_info rx_qinfo; struct rte_eth_txq_info tx_qinfo; uint16_t rx_free_thresh_tmp; uint16_t tx_free_thresh_tmp; uint16_t tx_rs_thresh_tmp; uint16_t nb_rx_desc_tmp; uint16_t nb_tx_desc_tmp; uint64_t offloads_tmp; uint8_t pthresh_tmp; uint8_t hthresh_tmp; uint8_t wthresh_tmp; int32_t rc; /* per port config */ printf(" port %d: RX queue number: %d Tx queue number: %d\n", (unsigned int)pid, nb_rxq, nb_txq); printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n", ports[pid].dev_conf.rxmode.offloads, ports[pid].dev_conf.txmode.offloads); /* per rx queue config only for first queue to be less verbose */ for (qid = 0; qid < 1; qid++) { rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo); if (rc) { nb_rx_desc_tmp = nb_rx_desc[qid]; rx_free_thresh_tmp = rx_conf[qid].rx_free_thresh; pthresh_tmp = rx_conf[qid].rx_thresh.pthresh; hthresh_tmp = rx_conf[qid].rx_thresh.hthresh; wthresh_tmp = rx_conf[qid].rx_thresh.wthresh; offloads_tmp = rx_conf[qid].offloads; } else { nb_rx_desc_tmp = rx_qinfo.nb_desc; rx_free_thresh_tmp = rx_qinfo.conf.rx_free_thresh; pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh; hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh; wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh; offloads_tmp = rx_qinfo.conf.offloads; } printf(" RX queue: %d\n", qid); printf(" RX desc=%d - RX free threshold=%d\n", nb_rx_desc_tmp, rx_free_thresh_tmp); printf(" RX threshold registers: pthresh=%d hthresh=%d " " wthresh=%d\n", pthresh_tmp, hthresh_tmp, wthresh_tmp); printf(" RX Offloads=0x%"PRIx64, offloads_tmp); if (rx_conf->share_group > 0) printf(" share_group=%u share_qid=%u", rx_conf->share_group, rx_conf->share_qid); printf("\n"); } /* per tx queue config only for first queue to be less verbose */ for (qid = 0; qid < 1; qid++) { rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo); if (rc) { nb_tx_desc_tmp = nb_tx_desc[qid]; tx_free_thresh_tmp = tx_conf[qid].tx_free_thresh; pthresh_tmp = tx_conf[qid].tx_thresh.pthresh; hthresh_tmp = tx_conf[qid].tx_thresh.hthresh; wthresh_tmp = tx_conf[qid].tx_thresh.wthresh; offloads_tmp = tx_conf[qid].offloads; tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh; } else { nb_tx_desc_tmp = tx_qinfo.nb_desc; tx_free_thresh_tmp = tx_qinfo.conf.tx_free_thresh; pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh; hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh; wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh; offloads_tmp = tx_qinfo.conf.offloads; tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh; } printf(" TX queue: %d\n", qid); printf(" TX desc=%d - TX free threshold=%d\n", nb_tx_desc_tmp, tx_free_thresh_tmp); printf(" TX threshold registers: pthresh=%d hthresh=%d " " wthresh=%d\n", pthresh_tmp, hthresh_tmp, wthresh_tmp); printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n", offloads_tmp, tx_rs_thresh_tmp); } } } void port_rss_reta_info(portid_t port_id, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t nb_entries) { uint16_t i, idx, shift; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); if (ret != 0) { fprintf(stderr, "Failed to get RSS RETA info, return code = %d\n", ret); return; } for (i = 0; i < nb_entries; i++) { idx = i / RTE_ETH_RETA_GROUP_SIZE; shift = i % RTE_ETH_RETA_GROUP_SIZE; if (!(reta_conf[idx].mask & (1ULL << shift))) continue; printf("RSS RETA configuration: hash index=%u, queue=%u\n", i, reta_conf[idx].reta[shift]); } } /* * Displays the RSS hash functions of a port, and, optionally, the RSS hash * key of the port. */ void port_rss_hash_conf_show(portid_t port_id, int show_rss_key) { struct rte_eth_rss_conf rss_conf = {0}; uint8_t rss_key[RSS_HASH_KEY_LENGTH]; uint64_t rss_hf; uint8_t i; int diag; struct rte_eth_dev_info dev_info; uint8_t hash_key_size; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; ret = eth_dev_info_get_print_err(port_id, &dev_info); if (ret != 0) return; if (dev_info.hash_key_size > 0 && dev_info.hash_key_size <= sizeof(rss_key)) hash_key_size = dev_info.hash_key_size; else { fprintf(stderr, "dev_info did not provide a valid hash key size\n"); return; } /* Get RSS hash key if asked to display it */ rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; rss_conf.rss_key_len = hash_key_size; diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); if (diag != 0) { switch (diag) { case -ENODEV: fprintf(stderr, "port index %d invalid\n", port_id); break; case -ENOTSUP: fprintf(stderr, "operation not supported by device\n"); break; default: fprintf(stderr, "operation failed - diag=%d\n", diag); break; } return; } rss_hf = rss_conf.rss_hf; if (rss_hf == 0) { printf("RSS disabled\n"); return; } printf("RSS functions:\n "); for (i = 0; rss_type_table[i].str; i++) { if (rss_type_table[i].rss_type == 0) continue; if ((rss_hf & rss_type_table[i].rss_type) == rss_type_table[i].rss_type) printf("%s ", rss_type_table[i].str); } printf("\n"); if (!show_rss_key) return; printf("RSS key:\n"); for (i = 0; i < hash_key_size; i++) printf("%02X", rss_key[i]); printf("\n"); } void port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, uint8_t hash_key_len) { struct rte_eth_rss_conf rss_conf; int diag; unsigned int i; rss_conf.rss_key = NULL; rss_conf.rss_key_len = 0; rss_conf.rss_hf = 0; for (i = 0; rss_type_table[i].str; i++) { if (!strcmp(rss_type_table[i].str, rss_type)) rss_conf.rss_hf = rss_type_table[i].rss_type; } diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); if (diag == 0) { rss_conf.rss_key = hash_key; rss_conf.rss_key_len = hash_key_len; diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); } if (diag == 0) return; switch (diag) { case -ENODEV: fprintf(stderr, "port index %d invalid\n", port_id); break; case -ENOTSUP: fprintf(stderr, "operation not supported by device\n"); break; default: fprintf(stderr, "operation failed - diag=%d\n", diag); break; } } /* * Check whether a shared rxq scheduled on other lcores. */ static bool fwd_stream_on_other_lcores(uint16_t domain_id, lcoreid_t src_lc, portid_t src_port, queueid_t src_rxq, uint32_t share_group, queueid_t share_rxq) { streamid_t sm_id; streamid_t nb_fs_per_lcore; lcoreid_t nb_fc; lcoreid_t lc_id; struct fwd_stream *fs; struct rte_port *port; struct rte_eth_dev_info *dev_info; struct rte_eth_rxconf *rxq_conf; nb_fc = cur_fwd_config.nb_fwd_lcores; /* Check remaining cores. */ for (lc_id = src_lc + 1; lc_id < nb_fc; lc_id++) { sm_id = fwd_lcores[lc_id]->stream_idx; nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb; for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore; sm_id++) { fs = fwd_streams[sm_id]; port = &ports[fs->rx_port]; dev_info = &port->dev_info; rxq_conf = &port->rxq[fs->rx_queue].conf; if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) == 0 || rxq_conf->share_group == 0) /* Not shared rxq. */ continue; if (domain_id != port->dev_info.switch_info.domain_id) continue; if (rxq_conf->share_group != share_group) continue; if (rxq_conf->share_qid != share_rxq) continue; printf("Shared Rx queue group %u queue %hu can't be scheduled on different cores:\n", share_group, share_rxq); printf(" lcore %hhu Port %hu queue %hu\n", src_lc, src_port, src_rxq); printf(" lcore %hhu Port %hu queue %hu\n", lc_id, fs->rx_port, fs->rx_queue); printf("Please use --nb-cores=%hu to limit number of forwarding cores\n", nb_rxq); return true; } } return false; } /* * Check shared rxq configuration. * * Shared group must not being scheduled on different core. */ bool pkt_fwd_shared_rxq_check(void) { streamid_t sm_id; streamid_t nb_fs_per_lcore; lcoreid_t nb_fc; lcoreid_t lc_id; struct fwd_stream *fs; uint16_t domain_id; struct rte_port *port; struct rte_eth_dev_info *dev_info; struct rte_eth_rxconf *rxq_conf; if (rxq_share == 0) return true; nb_fc = cur_fwd_config.nb_fwd_lcores; /* * Check streams on each core, make sure the same switch domain + * group + queue doesn't get scheduled on other cores. */ for (lc_id = 0; lc_id < nb_fc; lc_id++) { sm_id = fwd_lcores[lc_id]->stream_idx; nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb; for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore; sm_id++) { fs = fwd_streams[sm_id]; /* Update lcore info stream being scheduled. */ fs->lcore = fwd_lcores[lc_id]; port = &ports[fs->rx_port]; dev_info = &port->dev_info; rxq_conf = &port->rxq[fs->rx_queue].conf; if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) == 0 || rxq_conf->share_group == 0) /* Not shared rxq. */ continue; /* Check shared rxq not scheduled on remaining cores. */ domain_id = port->dev_info.switch_info.domain_id; if (fwd_stream_on_other_lcores(domain_id, lc_id, fs->rx_port, fs->rx_queue, rxq_conf->share_group, rxq_conf->share_qid)) return false; } } return true; } /* * Setup forwarding configuration for each logical core. */ static void setup_fwd_config_of_each_lcore(struct fwd_config *cfg) { streamid_t nb_fs_per_lcore; streamid_t nb_fs; streamid_t sm_id; lcoreid_t nb_extra; lcoreid_t nb_fc; lcoreid_t nb_lc; lcoreid_t lc_id; nb_fs = cfg->nb_fwd_streams; nb_fc = cfg->nb_fwd_lcores; if (nb_fs <= nb_fc) { nb_fs_per_lcore = 1; nb_extra = 0; } else { nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); nb_extra = (lcoreid_t) (nb_fs % nb_fc); } nb_lc = (lcoreid_t) (nb_fc - nb_extra); sm_id = 0; for (lc_id = 0; lc_id < nb_lc; lc_id++) { fwd_lcores[lc_id]->stream_idx = sm_id; fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); } /* * Assign extra remaining streams, if any. */ nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); for (lc_id = 0; lc_id < nb_extra; lc_id++) { fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); } } static portid_t fwd_topology_tx_port_get(portid_t rxp) { static int warning_once = 1; RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); switch (port_topology) { default: case PORT_TOPOLOGY_PAIRED: if ((rxp & 0x1) == 0) { if (rxp + 1 < cur_fwd_config.nb_fwd_ports) return rxp + 1; if (warning_once) { fprintf(stderr, "\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n"); warning_once = 0; } return rxp; } return rxp - 1; case PORT_TOPOLOGY_CHAINED: return (rxp + 1) % cur_fwd_config.nb_fwd_ports; case PORT_TOPOLOGY_LOOP: return rxp; } } static void simple_fwd_config_setup(void) { portid_t i; cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) cur_fwd_config.nb_fwd_ports; /* reinitialize forwarding streams */ init_fwd_streams(); /* * In the simple forwarding test, the number of forwarding cores * must be lower or equal to the number of forwarding ports. */ cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) cur_fwd_config.nb_fwd_lcores = (lcoreid_t) cur_fwd_config.nb_fwd_ports; setup_fwd_config_of_each_lcore(&cur_fwd_config); for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { fwd_streams[i]->rx_port = fwd_ports_ids[i]; fwd_streams[i]->rx_queue = 0; fwd_streams[i]->tx_port = fwd_ports_ids[fwd_topology_tx_port_get(i)]; fwd_streams[i]->tx_queue = 0; fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; fwd_streams[i]->retry_enabled = retry_enabled; } } /** * For the RSS forwarding test all streams distributed over lcores. Each stream * being composed of a RX queue to poll on a RX port for input messages, * associated with a TX queue of a TX port where to send forwarded packets. */ static void rss_fwd_config_setup(void) { portid_t rxp; portid_t txp; queueid_t rxq; queueid_t nb_q; streamid_t sm_id; int start; int end; nb_q = nb_rxq; if (nb_q > nb_txq) nb_q = nb_txq; cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; cur_fwd_config.nb_fwd_ports = nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) cur_fwd_config.nb_fwd_lcores = (lcoreid_t)cur_fwd_config.nb_fwd_streams; /* reinitialize forwarding streams */ init_fwd_streams(); setup_fwd_config_of_each_lcore(&cur_fwd_config); if (proc_id > 0 && nb_q % num_procs != 0) printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n"); /** * In multi-process, All queues are allocated to different * processes based on num_procs and proc_id. For example: * if supports 4 queues(nb_q), 2 processes(num_procs), * the 0~1 queue for primary process. * the 2~3 queue for secondary process. */ start = proc_id * nb_q / num_procs; end = start + nb_q / num_procs; rxp = 0; rxq = start; for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { struct fwd_stream *fs; fs = fwd_streams[sm_id]; txp = fwd_topology_tx_port_get(rxp); fs->rx_port = fwd_ports_ids[rxp]; fs->rx_queue = rxq; fs->tx_port = fwd_ports_ids[txp]; fs->tx_queue = rxq; fs->peer_addr = fs->tx_port; fs->retry_enabled = retry_enabled; rxp++; if (rxp < nb_fwd_ports) continue; rxp = 0; rxq++; if (rxq >= end) rxq = start; } } static uint16_t get_fwd_port_total_tc_num(void) { struct rte_eth_dcb_info dcb_info; uint16_t total_tc_num = 0; unsigned int i; for (i = 0; i < nb_fwd_ports; i++) { (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info); total_tc_num += dcb_info.nb_tcs; } return total_tc_num; } /** * For the DCB forwarding test, each core is assigned on each traffic class. * * Each core is assigned a multi-stream, each stream being composed of * a RX queue to poll on a RX port for input messages, associated with * a TX queue of a TX port where to send forwarded packets. All RX and * TX queues are mapping to the same traffic class. * If VMDQ and DCB co-exist, each traffic class on different POOLs share * the same core */ static void dcb_fwd_config_setup(void) { struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; portid_t txp, rxp = 0; queueid_t txq, rxq = 0; lcoreid_t lc_id; uint16_t nb_rx_queue, nb_tx_queue; uint16_t i, j, k, sm_id = 0; uint16_t total_tc_num; struct rte_port *port; uint8_t tc = 0; portid_t pid; int ret; /* * The fwd_config_setup() is called when the port is RTE_PORT_STARTED * or RTE_PORT_STOPPED. * * Re-configure ports to get updated mapping between tc and queue in * case the queue number of the port is changed. Skip for started ports * since modifying queue number and calling dev_configure need to stop * ports first. */ for (pid = 0; pid < nb_fwd_ports; pid++) { if (port_is_started(pid) == 1) continue; port = &ports[pid]; ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq, &port->dev_conf); if (ret < 0) { fprintf(stderr, "Failed to re-configure port %d, ret = %d.\n", pid, ret); return; } } cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; cur_fwd_config.nb_fwd_ports = nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); total_tc_num = get_fwd_port_total_tc_num(); if (cur_fwd_config.nb_fwd_lcores > total_tc_num) cur_fwd_config.nb_fwd_lcores = total_tc_num; /* reinitialize forwarding streams */ init_fwd_streams(); sm_id = 0; txp = 1; /* get the dcb info on the first RX and TX ports */ (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { fwd_lcores[lc_id]->stream_nb = 0; fwd_lcores[lc_id]->stream_idx = sm_id; for (i = 0; i < RTE_ETH_MAX_VMDQ_POOL; i++) { /* if the nb_queue is zero, means this tc is * not enabled on the POOL */ if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) break; k = fwd_lcores[lc_id]->stream_nb + fwd_lcores[lc_id]->stream_idx; rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; for (j = 0; j < nb_rx_queue; j++) { struct fwd_stream *fs; fs = fwd_streams[k + j]; fs->rx_port = fwd_ports_ids[rxp]; fs->rx_queue = rxq + j; fs->tx_port = fwd_ports_ids[txp]; fs->tx_queue = txq + j % nb_tx_queue; fs->peer_addr = fs->tx_port; fs->retry_enabled = retry_enabled; } fwd_lcores[lc_id]->stream_nb += rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; } sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); tc++; if (tc < rxp_dcb_info.nb_tcs) continue; /* Restart from TC 0 on next RX port */ tc = 0; if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) rxp = (portid_t) (rxp + ((nb_ports >> 1) / nb_fwd_ports)); else rxp++; if (rxp >= nb_fwd_ports) return; /* get the dcb information on next RX and TX ports */ if ((rxp & 0x1) == 0) txp = (portid_t) (rxp + 1); else txp = (portid_t) (rxp - 1); rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); } } static void icmp_echo_config_setup(void) { portid_t rxp; queueid_t rxq; lcoreid_t lc_id; uint16_t sm_id; if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) cur_fwd_config.nb_fwd_lcores = (lcoreid_t) (nb_txq * nb_fwd_ports); else cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; cur_fwd_config.nb_fwd_ports = nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) cur_fwd_config.nb_fwd_lcores = (lcoreid_t)cur_fwd_config.nb_fwd_streams; if (verbose_level > 0) { printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", __FUNCTION__, cur_fwd_config.nb_fwd_lcores, cur_fwd_config.nb_fwd_ports, cur_fwd_config.nb_fwd_streams); } /* reinitialize forwarding streams */ init_fwd_streams(); setup_fwd_config_of_each_lcore(&cur_fwd_config); rxp = 0; rxq = 0; for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { if (verbose_level > 0) printf(" core=%d: \n", lc_id); for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { struct fwd_stream *fs; fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; fs->rx_port = fwd_ports_ids[rxp]; fs->rx_queue = rxq; fs->tx_port = fs->rx_port; fs->tx_queue = rxq; fs->peer_addr = fs->tx_port; fs->retry_enabled = retry_enabled; if (verbose_level > 0) printf(" stream=%d port=%d rxq=%d txq=%d\n", sm_id, fs->rx_port, fs->rx_queue, fs->tx_queue); rxq = (queueid_t) (rxq + 1); if (rxq == nb_rxq) { rxq = 0; rxp = (portid_t) (rxp + 1); } } } } void fwd_config_setup(void) { struct rte_port *port; portid_t pt_id; unsigned int i; cur_fwd_config.fwd_eng = cur_fwd_eng; if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { icmp_echo_config_setup(); return; } if ((nb_rxq > 1) && (nb_txq > 1)){ if (dcb_config) { for (i = 0; i < nb_fwd_ports; i++) { pt_id = fwd_ports_ids[i]; port = &ports[pt_id]; if (!port->dcb_flag) { fprintf(stderr, "In DCB mode, all forwarding ports must be configured in this mode.\n"); return; } } if (nb_fwd_lcores == 1) { fprintf(stderr, "In DCB mode,the nb forwarding cores should be larger than 1.\n"); return; } dcb_fwd_config_setup(); } else rss_fwd_config_setup(); } else simple_fwd_config_setup(); } static const char * mp_alloc_to_str(uint8_t mode) { switch (mode) { case MP_ALLOC_NATIVE: return "native"; case MP_ALLOC_ANON: return "anon"; case MP_ALLOC_XMEM: return "xmem"; case MP_ALLOC_XMEM_HUGE: return "xmemhuge"; case MP_ALLOC_XBUF: return "xbuf"; default: return "invalid"; } } void pkt_fwd_config_display(struct fwd_config *cfg) { struct fwd_stream *fs; lcoreid_t lc_id; streamid_t sm_id; printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " "NUMA support %s, MP allocation mode: %s\n", cfg->fwd_eng->fwd_mode_name, retry_enabled == 0 ? "" : " with retry", cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, numa_support == 1 ? "enabled" : "disabled", mp_alloc_to_str(mp_alloc_type)); if (retry_enabled) printf("TX retry num: %u, delay between TX retries: %uus\n", burst_tx_retry_num, burst_tx_delay_time); for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { printf("Logical Core %u (socket %u) forwards packets on " "%d streams:", fwd_lcores_cpuids[lc_id], rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), fwd_lcores[lc_id]->stream_nb); for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; printf("\n RX P=%d/Q=%d (socket %u) -> TX " "P=%d/Q=%d (socket %u) ", fs->rx_port, fs->rx_queue, ports[fs->rx_port].socket_id, fs->tx_port, fs->tx_queue, ports[fs->tx_port].socket_id); print_ethaddr("peer=", &peer_eth_addrs[fs->peer_addr]); } printf("\n"); } printf("\n"); } void set_fwd_eth_peer(portid_t port_id, char *peer_addr) { struct rte_ether_addr new_peer_addr; if (!rte_eth_dev_is_valid_port(port_id)) { fprintf(stderr, "Error: Invalid port number %i\n", port_id); return; } if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) { fprintf(stderr, "Error: Invalid ethernet address: %s\n", peer_addr); return; } peer_eth_addrs[port_id] = new_peer_addr; } int set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) { unsigned int i; unsigned int lcore_cpuid; int record_now; record_now = 0; again: for (i = 0; i < nb_lc; i++) { lcore_cpuid = lcorelist[i]; if (! rte_lcore_is_enabled(lcore_cpuid)) { fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid); return -1; } if (lcore_cpuid == rte_get_main_lcore()) { fprintf(stderr, "lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n", lcore_cpuid); return -1; } if (record_now) fwd_lcores_cpuids[i] = lcore_cpuid; } if (record_now == 0) { record_now = 1; goto again; } nb_cfg_lcores = (lcoreid_t) nb_lc; if (nb_fwd_lcores != (lcoreid_t) nb_lc) { printf("previous number of forwarding cores %u - changed to " "number of configured cores %u\n", (unsigned int) nb_fwd_lcores, nb_lc); nb_fwd_lcores = (lcoreid_t) nb_lc; } return 0; } int set_fwd_lcores_mask(uint64_t lcoremask) { unsigned int lcorelist[64]; unsigned int nb_lc; unsigned int i; if (lcoremask == 0) { fprintf(stderr, "Invalid NULL mask of cores\n"); return -1; } nb_lc = 0; for (i = 0; i < 64; i++) { if (! ((uint64_t)(1ULL << i) & lcoremask)) continue; lcorelist[nb_lc++] = i; } return set_fwd_lcores_list(lcorelist, nb_lc); } void set_fwd_lcores_number(uint16_t nb_lc) { if (test_done == 0) { fprintf(stderr, "Please stop forwarding first\n"); return; } if (nb_lc > nb_cfg_lcores) { fprintf(stderr, "nb fwd cores %u > %u (max. number of configured lcores) - ignored\n", (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); return; } nb_fwd_lcores = (lcoreid_t) nb_lc; printf("Number of forwarding cores set to %u\n", (unsigned int) nb_fwd_lcores); } void set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) { unsigned int i; portid_t port_id; int record_now; record_now = 0; again: for (i = 0; i < nb_pt; i++) { port_id = (portid_t) portlist[i]; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (record_now) fwd_ports_ids[i] = port_id; } if (record_now == 0) { record_now = 1; goto again; } nb_cfg_ports = (portid_t) nb_pt; if (nb_fwd_ports != (portid_t) nb_pt) { printf("previous number of forwarding ports %u - changed to " "number of configured ports %u\n", (unsigned int) nb_fwd_ports, nb_pt); nb_fwd_ports = (portid_t) nb_pt; } } /** * Parse the user input and obtain the list of forwarding ports * * @param[in] list * String containing the user input. User can specify * in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6. * For example, if the user wants to use all the available * 4 ports in his system, then the input can be 0-3 or 0,1,2,3. * If the user wants to use only the ports 1,2 then the input * is 1,2. * valid characters are '-' and ',' * @param[out] values * This array will be filled with a list of port IDs * based on the user input * Note that duplicate entries are discarded and only the first * count entries in this array are port IDs and all the rest * will contain default values * @param[in] maxsize * This parameter denotes 2 things * 1) Number of elements in the values array * 2) Maximum value of each element in the values array * @return * On success, returns total count of parsed port IDs * On failure, returns 0 */ static unsigned int parse_port_list(const char *list, unsigned int *values, unsigned int maxsize) { unsigned int count = 0; char *end = NULL; int min, max; int value, i; unsigned int marked[maxsize]; if (list == NULL || values == NULL) return 0; for (i = 0; i < (int)maxsize; i++) marked[i] = 0; min = INT_MAX; do { /*Remove the blank spaces if any*/ while (isblank(*list)) list++; if (*list == '\0') break; errno = 0; value = strtol(list, &end, 10); if (errno || end == NULL) return 0; if (value < 0 || value >= (int)maxsize) return 0; while (isblank(*end)) end++; if (*end == '-' && min == INT_MAX) { min = value; } else if ((*end == ',') || (*end == '\0')) { max = value; if (min == INT_MAX) min = value; for (i = min; i <= max; i++) { if (count < maxsize) { if (marked[i]) continue; values[count] = i; marked[i] = 1; count++; } } min = INT_MAX; } else return 0; list = end + 1; } while (*end != '\0'); return count; } void parse_fwd_portlist(const char *portlist) { unsigned int portcount; unsigned int portindex[RTE_MAX_ETHPORTS]; unsigned int i, valid_port_count = 0; portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS); if (!portcount) rte_exit(EXIT_FAILURE, "Invalid fwd port list\n"); /* * Here we verify the validity of the ports * and thereby calculate the total number of * valid ports */ for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) { if (rte_eth_dev_is_valid_port(portindex[i])) { portindex[valid_port_count] = portindex[i]; valid_port_count++; } } set_fwd_ports_list(portindex, valid_port_count); } void set_fwd_ports_mask(uint64_t portmask) { unsigned int portlist[64]; unsigned int nb_pt; unsigned int i; if (portmask == 0) { fprintf(stderr, "Invalid NULL mask of ports\n"); return; } nb_pt = 0; RTE_ETH_FOREACH_DEV(i) { if (! ((uint64_t)(1ULL << i) & portmask)) continue; portlist[nb_pt++] = i; } set_fwd_ports_list(portlist, nb_pt); } void set_fwd_ports_number(uint16_t nb_pt) { if (nb_pt > nb_cfg_ports) { fprintf(stderr, "nb fwd ports %u > %u (number of configured ports) - ignored\n", (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); return; } nb_fwd_ports = (portid_t) nb_pt; printf("Number of forwarding ports set to %u\n", (unsigned int) nb_fwd_ports); } int port_is_forwarding(portid_t port_id) { unsigned int i; if (port_id_is_invalid(port_id, ENABLED_WARN)) return -1; for (i = 0; i < nb_fwd_ports; i++) { if (fwd_ports_ids[i] == port_id) return 1; } return 0; } void set_nb_pkt_per_burst(uint16_t nb) { if (nb > MAX_PKT_BURST) { fprintf(stderr, "nb pkt per burst: %u > %u (maximum packet per burst) ignored\n", (unsigned int) nb, (unsigned int) MAX_PKT_BURST); return; } nb_pkt_per_burst = nb; printf("Number of packets per burst set to %u\n", (unsigned int) nb_pkt_per_burst); } static const char * tx_split_get_name(enum tx_pkt_split split) { uint32_t i; for (i = 0; i != RTE_DIM(tx_split_name); i++) { if (tx_split_name[i].split == split) return tx_split_name[i].name; } return NULL; } void set_tx_pkt_split(const char *name) { uint32_t i; for (i = 0; i != RTE_DIM(tx_split_name); i++) { if (strcmp(tx_split_name[i].name, name) == 0) { tx_pkt_split = tx_split_name[i].split; return; } } fprintf(stderr, "unknown value: \"%s\"\n", name); } int parse_fec_mode(const char *name, uint32_t *fec_capa) { uint8_t i; for (i = 0; i < RTE_DIM(fec_mode_name); i++) { if (strcmp(fec_mode_name[i].name, name) == 0) { *fec_capa = RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode); return 0; } } return -1; } void show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa) { unsigned int i, j; printf("FEC capabilities:\n"); for (i = 0; i < num; i++) { printf("%s : ", rte_eth_link_speed_to_str(speed_fec_capa[i].speed)); for (j = 0; j < RTE_DIM(fec_mode_name); j++) { if (RTE_ETH_FEC_MODE_TO_CAPA(j) & speed_fec_capa[i].capa) printf("%s ", fec_mode_name[j].name); } printf("\n"); } } void show_rx_pkt_offsets(void) { uint32_t i, n; n = rx_pkt_nb_offs; printf("Number of offsets: %u\n", n); if (n) { printf("Segment offsets: "); for (i = 0; i != n - 1; i++) printf("%hu,", rx_pkt_seg_offsets[i]); printf("%hu\n", rx_pkt_seg_lengths[i]); } } void set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs) { unsigned int i; if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) { printf("nb segments per RX packets=%u >= " "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs); return; } /* * No extra check here, the segment length will be checked by PMD * in the extended queue setup. */ for (i = 0; i < nb_offs; i++) { if (seg_offsets[i] >= UINT16_MAX) { printf("offset[%u]=%u > UINT16_MAX - give up\n", i, seg_offsets[i]); return; } } for (i = 0; i < nb_offs; i++) rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i]; rx_pkt_nb_offs = (uint8_t) nb_offs; } void show_rx_pkt_segments(void) { uint32_t i, n; n = rx_pkt_nb_segs; printf("Number of segments: %u\n", n); if (n) { printf("Segment sizes: "); for (i = 0; i != n - 1; i++) printf("%hu,", rx_pkt_seg_lengths[i]); printf("%hu\n", rx_pkt_seg_lengths[i]); } } void set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) { unsigned int i; if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) { printf("nb segments per RX packets=%u >= " "MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs); return; } /* * No extra check here, the segment length will be checked by PMD * in the extended queue setup. */ for (i = 0; i < nb_segs; i++) { if (seg_lengths[i] >= UINT16_MAX) { printf("length[%u]=%u > UINT16_MAX - give up\n", i, seg_lengths[i]); return; } } for (i = 0; i < nb_segs; i++) rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; rx_pkt_nb_segs = (uint8_t) nb_segs; } void show_tx_pkt_segments(void) { uint32_t i, n; const char *split; n = tx_pkt_nb_segs; split = tx_split_get_name(tx_pkt_split); printf("Number of segments: %u\n", n); printf("Segment sizes: "); for (i = 0; i != n - 1; i++) printf("%hu,", tx_pkt_seg_lengths[i]); printf("%hu\n", tx_pkt_seg_lengths[i]); printf("Split packet: %s\n", split); } static bool nb_segs_is_invalid(unsigned int nb_segs) { uint16_t ring_size; uint16_t queue_id; uint16_t port_id; int ret; RTE_ETH_FOREACH_DEV(port_id) { for (queue_id = 0; queue_id < nb_txq; queue_id++) { ret = get_tx_ring_size(port_id, queue_id, &ring_size); if (ret) { /* Port may not be initialized yet, can't say * the port is invalid in this stage. */ continue; } if (ring_size < nb_segs) { printf("nb segments per TX packets=%u >= TX " "queue(%u) ring_size=%u - txpkts ignored\n", nb_segs, queue_id, ring_size); return true; } } } return false; } void set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs) { uint16_t tx_pkt_len; unsigned int i; /* * For single segment settings failed check is ignored. * It is a very basic capability to send the single segment * packets, suppose it is always supported. */ if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) { fprintf(stderr, "Tx segment size(%u) is not supported - txpkts ignored\n", nb_segs); return; } if (nb_segs > RTE_MAX_SEGS_PER_PKT) { fprintf(stderr, "Tx segment size(%u) is bigger than max number of segment(%u)\n", nb_segs, RTE_MAX_SEGS_PER_PKT); return; } /* * Check that each segment length is greater or equal than * the mbuf data size. * Check also that the total packet length is greater or equal than the * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) + * 20 + 8). */ tx_pkt_len = 0; for (i = 0; i < nb_segs; i++) { if (seg_lengths[i] > mbuf_data_size[0]) { fprintf(stderr, "length[%u]=%u > mbuf_data_size=%u - give up\n", i, seg_lengths[i], mbuf_data_size[0]); return; } tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); } if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) { fprintf(stderr, "total packet length=%u < %d - give up\n", (unsigned) tx_pkt_len, (int)(sizeof(struct rte_ether_hdr) + 20 + 8)); return; } for (i = 0; i < nb_segs; i++) tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; tx_pkt_length = tx_pkt_len; tx_pkt_nb_segs = (uint8_t) nb_segs; } void show_tx_pkt_times(void) { printf("Interburst gap: %u\n", tx_pkt_times_inter); printf("Intraburst gap: %u\n", tx_pkt_times_intra); } void set_tx_pkt_times(unsigned int *tx_times) { tx_pkt_times_inter = tx_times[0]; tx_pkt_times_intra = tx_times[1]; } #ifdef RTE_LIB_GRO void setup_gro(const char *onoff, portid_t port_id) { if (!rte_eth_dev_is_valid_port(port_id)) { fprintf(stderr, "invalid port id %u\n", port_id); return; } if (test_done == 0) { fprintf(stderr, "Before enable/disable GRO, please stop forwarding first\n"); return; } if (strcmp(onoff, "on") == 0) { if (gro_ports[port_id].enable != 0) { fprintf(stderr, "Port %u has enabled GRO. Please disable GRO first\n", port_id); return; } if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; gro_ports[port_id].param.max_flow_num = GRO_DEFAULT_FLOW_NUM; gro_ports[port_id].param.max_item_per_flow = GRO_DEFAULT_ITEM_NUM_PER_FLOW; } gro_ports[port_id].enable = 1; } else { if (gro_ports[port_id].enable == 0) { fprintf(stderr, "Port %u has disabled GRO\n", port_id); return; } gro_ports[port_id].enable = 0; } } void setup_gro_flush_cycles(uint8_t cycles) { if (test_done == 0) { fprintf(stderr, "Before change flush interval for GRO, please stop forwarding first.\n"); return; } if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < GRO_DEFAULT_FLUSH_CYCLES) { fprintf(stderr, "The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n", GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES); cycles = GRO_DEFAULT_FLUSH_CYCLES; } gro_flush_cycles = cycles; } void show_gro(portid_t port_id) { struct rte_gro_param *param; uint32_t max_pkts_num; param = &gro_ports[port_id].param; if (!rte_eth_dev_is_valid_port(port_id)) { fprintf(stderr, "Invalid port id %u.\n", port_id); return; } if (gro_ports[port_id].enable) { printf("GRO type: TCP/IPv4\n"); if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { max_pkts_num = param->max_flow_num * param->max_item_per_flow; } else max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; printf("Max number of packets to perform GRO: %u\n", max_pkts_num); printf("Flushing cycles: %u\n", gro_flush_cycles); } else printf("Port %u doesn't enable GRO.\n", port_id); } #endif /* RTE_LIB_GRO */ #ifdef RTE_LIB_GSO void setup_gso(const char *mode, portid_t port_id) { if (!rte_eth_dev_is_valid_port(port_id)) { fprintf(stderr, "invalid port id %u\n", port_id); return; } if (strcmp(mode, "on") == 0) { if (test_done == 0) { fprintf(stderr, "before enabling GSO, please stop forwarding first\n"); return; } gso_ports[port_id].enable = 1; } else if (strcmp(mode, "off") == 0) { if (test_done == 0) { fprintf(stderr, "before disabling GSO, please stop forwarding first\n"); return; } gso_ports[port_id].enable = 0; } } #endif /* RTE_LIB_GSO */ char* list_pkt_forwarding_modes(void) { static char fwd_modes[128] = ""; const char *separator = "|"; struct fwd_engine *fwd_eng; unsigned i = 0; if (strlen (fwd_modes) == 0) { while ((fwd_eng = fwd_engines[i++]) != NULL) { strncat(fwd_modes, fwd_eng->fwd_mode_name, sizeof(fwd_modes) - strlen(fwd_modes) - 1); strncat(fwd_modes, separator, sizeof(fwd_modes) - strlen(fwd_modes) - 1); } fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; } return fwd_modes; } char* list_pkt_forwarding_retry_modes(void) { static char fwd_modes[128] = ""; const char *separator = "|"; struct fwd_engine *fwd_eng; unsigned i = 0; if (strlen(fwd_modes) == 0) { while ((fwd_eng = fwd_engines[i++]) != NULL) { if (fwd_eng == &rx_only_engine) continue; strncat(fwd_modes, fwd_eng->fwd_mode_name, sizeof(fwd_modes) - strlen(fwd_modes) - 1); strncat(fwd_modes, separator, sizeof(fwd_modes) - strlen(fwd_modes) - 1); } fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; } return fwd_modes; } void set_pkt_forwarding_mode(const char *fwd_mode_name) { struct fwd_engine *fwd_eng; unsigned i; i = 0; while ((fwd_eng = fwd_engines[i]) != NULL) { if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { printf("Set %s packet forwarding mode%s\n", fwd_mode_name, retry_enabled == 0 ? "" : " with retry"); cur_fwd_eng = fwd_eng; return; } i++; } fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name); } void add_rx_dump_callbacks(portid_t portid) { struct rte_eth_dev_info dev_info; uint16_t queue; int ret; if (port_id_is_invalid(portid, ENABLED_WARN)) return; ret = eth_dev_info_get_print_err(portid, &dev_info); if (ret != 0) return; for (queue = 0; queue < dev_info.nb_rx_queues; queue++) if (!ports[portid].rx_dump_cb[queue]) ports[portid].rx_dump_cb[queue] = rte_eth_add_rx_callback(portid, queue, dump_rx_pkts, NULL); } void add_tx_dump_callbacks(portid_t portid) { struct rte_eth_dev_info dev_info; uint16_t queue; int ret; if (port_id_is_invalid(portid, ENABLED_WARN)) return; ret = eth_dev_info_get_print_err(portid, &dev_info); if (ret != 0) return; for (queue = 0; queue < dev_info.nb_tx_queues; queue++) if (!ports[portid].tx_dump_cb[queue]) ports[portid].tx_dump_cb[queue] = rte_eth_add_tx_callback(portid, queue, dump_tx_pkts, NULL); } void remove_rx_dump_callbacks(portid_t portid) { struct rte_eth_dev_info dev_info; uint16_t queue; int ret; if (port_id_is_invalid(portid, ENABLED_WARN)) return; ret = eth_dev_info_get_print_err(portid, &dev_info); if (ret != 0) return; for (queue = 0; queue < dev_info.nb_rx_queues; queue++) if (ports[portid].rx_dump_cb[queue]) { rte_eth_remove_rx_callback(portid, queue, ports[portid].rx_dump_cb[queue]); ports[portid].rx_dump_cb[queue] = NULL; } } void remove_tx_dump_callbacks(portid_t portid) { struct rte_eth_dev_info dev_info; uint16_t queue; int ret; if (port_id_is_invalid(portid, ENABLED_WARN)) return; ret = eth_dev_info_get_print_err(portid, &dev_info); if (ret != 0) return; for (queue = 0; queue < dev_info.nb_tx_queues; queue++) if (ports[portid].tx_dump_cb[queue]) { rte_eth_remove_tx_callback(portid, queue, ports[portid].tx_dump_cb[queue]); ports[portid].tx_dump_cb[queue] = NULL; } } void configure_rxtx_dump_callbacks(uint16_t verbose) { portid_t portid; #ifndef RTE_ETHDEV_RXTX_CALLBACKS TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n"); return; #endif RTE_ETH_FOREACH_DEV(portid) { if (verbose == 1 || verbose > 2) add_rx_dump_callbacks(portid); else remove_rx_dump_callbacks(portid); if (verbose >= 2) add_tx_dump_callbacks(portid); else remove_tx_dump_callbacks(portid); } } void set_verbose_level(uint16_t vb_level) { printf("Change verbose level from %u to %u\n", (unsigned int) verbose_level, (unsigned int) vb_level); verbose_level = vb_level; configure_rxtx_dump_callbacks(verbose_level); } void vlan_extend_set(portid_t port_id, int on) { int diag; int vlan_offload; uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (on) { vlan_offload |= RTE_ETH_VLAN_EXTEND_OFFLOAD; port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND; } else { vlan_offload &= ~RTE_ETH_VLAN_EXTEND_OFFLOAD; port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_EXTEND; } diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); if (diag < 0) { fprintf(stderr, "rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n", port_id, on, diag); return; } ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; } void rx_vlan_strip_set(portid_t port_id, int on) { int diag; int vlan_offload; uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (on) { vlan_offload |= RTE_ETH_VLAN_STRIP_OFFLOAD; port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP; } else { vlan_offload &= ~RTE_ETH_VLAN_STRIP_OFFLOAD; port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP; } diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); if (diag < 0) { fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n", __func__, port_id, on, diag); return; } ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; } void rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); if (diag < 0) fprintf(stderr, "%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n", __func__, port_id, queue_id, on, diag); } void rx_vlan_filter_set(portid_t port_id, int on) { int diag; int vlan_offload; uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (on) { vlan_offload |= RTE_ETH_VLAN_FILTER_OFFLOAD; port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER; } else { vlan_offload &= ~RTE_ETH_VLAN_FILTER_OFFLOAD; port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_FILTER; } diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); if (diag < 0) { fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n", __func__, port_id, on, diag); return; } ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; } void rx_vlan_qinq_strip_set(portid_t port_id, int on) { int diag; int vlan_offload; uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (on) { vlan_offload |= RTE_ETH_QINQ_STRIP_OFFLOAD; port_rx_offloads |= RTE_ETH_RX_OFFLOAD_QINQ_STRIP; } else { vlan_offload &= ~RTE_ETH_QINQ_STRIP_OFFLOAD; port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_QINQ_STRIP; } diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); if (diag < 0) { fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n", __func__, port_id, on, diag); return; } ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; } int rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return 1; if (vlan_id_is_invalid(vlan_id)) return 1; diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); if (diag == 0) return 0; fprintf(stderr, "rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n", port_id, vlan_id, on, diag); return -1; } void rx_vlan_all_filter_set(portid_t port_id, int on) { uint16_t vlan_id; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; for (vlan_id = 0; vlan_id < 4096; vlan_id++) { if (rx_vft_set(port_id, vlan_id, on)) break; } } void vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); if (diag == 0) return; fprintf(stderr, "tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n", port_id, vlan_type, tp_id, diag); } void tx_vlan_set(portid_t port_id, uint16_t vlan_id) { struct rte_eth_dev_info dev_info; int ret; if (vlan_id_is_invalid(vlan_id)) return; if (ports[port_id].dev_conf.txmode.offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) { fprintf(stderr, "Error, as QinQ has been enabled.\n"); return; } ret = eth_dev_info_get_print_err(port_id, &dev_info); if (ret != 0) return; if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) == 0) { fprintf(stderr, "Error: vlan insert is not supported by port %d\n", port_id); return; } tx_vlan_reset(port_id); ports[port_id].dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT; ports[port_id].tx_vlan_id = vlan_id; } void tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) { struct rte_eth_dev_info dev_info; int ret; if (vlan_id_is_invalid(vlan_id)) return; if (vlan_id_is_invalid(vlan_id_outer)) return; ret = eth_dev_info_get_print_err(port_id, &dev_info); if (ret != 0) return; if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) == 0) { fprintf(stderr, "Error: qinq insert not supported by port %d\n", port_id); return; } tx_vlan_reset(port_id); ports[port_id].dev_conf.txmode.offloads |= (RTE_ETH_TX_OFFLOAD_VLAN_INSERT | RTE_ETH_TX_OFFLOAD_QINQ_INSERT); ports[port_id].tx_vlan_id = vlan_id; ports[port_id].tx_vlan_id_outer = vlan_id_outer; } void tx_vlan_reset(portid_t port_id) { ports[port_id].dev_conf.txmode.offloads &= ~(RTE_ETH_TX_OFFLOAD_VLAN_INSERT | RTE_ETH_TX_OFFLOAD_QINQ_INSERT); ports[port_id].tx_vlan_id = 0; ports[port_id].tx_vlan_id_outer = 0; } void tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) { if (port_id_is_invalid(port_id, ENABLED_WARN)) return; rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); } void set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) { int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) return; if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { fprintf(stderr, "map_value not in required range 0..%d\n", RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); return; } if (!is_rx) { /* tx */ ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id, map_value); if (ret) { fprintf(stderr, "failed to set tx queue stats mapping.\n"); return; } } else { /* rx */ ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id, map_value); if (ret) { fprintf(stderr, "failed to set rx queue stats mapping.\n"); return; } } } void set_xstats_hide_zero(uint8_t on_off) { xstats_hide_zero = on_off; } void set_record_core_cycles(uint8_t on_off) { record_core_cycles = on_off; } void set_record_burst_stats(uint8_t on_off) { record_burst_stats = on_off; } #if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE) static char* flowtype_to_str(uint16_t flow_type) { struct flow_type_info { char str[32]; uint16_t ftype; }; uint8_t i; static struct flow_type_info flowtype_str_table[] = { {"raw", RTE_ETH_FLOW_RAW}, {"ipv4", RTE_ETH_FLOW_IPV4}, {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, {"ipv6", RTE_ETH_FLOW_IPV6}, {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, {"ipv6-ex", RTE_ETH_FLOW_IPV6_EX}, {"ipv6-tcp-ex", RTE_ETH_FLOW_IPV6_TCP_EX}, {"ipv6-udp-ex", RTE_ETH_FLOW_IPV6_UDP_EX}, {"port", RTE_ETH_FLOW_PORT}, {"vxlan", RTE_ETH_FLOW_VXLAN}, {"geneve", RTE_ETH_FLOW_GENEVE}, {"nvgre", RTE_ETH_FLOW_NVGRE}, {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE}, {"gtpu", RTE_ETH_FLOW_GTPU}, }; for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { if (flowtype_str_table[i].ftype == flow_type) return flowtype_str_table[i].str; } return NULL; } static inline void print_fdir_mask(struct rte_eth_fdir_masks *mask) { printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," " tunnel_id: 0x%08x", mask->mac_addr_byte_mask, mask->tunnel_type_mask, rte_be_to_cpu_32(mask->tunnel_id_mask)); else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", rte_be_to_cpu_32(mask->ipv4_mask.src_ip), rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); printf("\n src_port: 0x%04x, dst_port: 0x%04x", rte_be_to_cpu_16(mask->src_port_mask), rte_be_to_cpu_16(mask->dst_port_mask)); printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); } printf("\n"); } static inline void print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) { struct rte_eth_flex_payload_cfg *cfg; uint32_t i, j; for (i = 0; i < flex_conf->nb_payloads; i++) { cfg = &flex_conf->flex_set[i]; if (cfg->type == RTE_ETH_RAW_PAYLOAD) printf("\n RAW: "); else if (cfg->type == RTE_ETH_L2_PAYLOAD) printf("\n L2_PAYLOAD: "); else if (cfg->type == RTE_ETH_L3_PAYLOAD) printf("\n L3_PAYLOAD: "); else if (cfg->type == RTE_ETH_L4_PAYLOAD) printf("\n L4_PAYLOAD: "); else printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); for (j = 0; j < num; j++) printf(" %-5u", cfg->src_offset[j]); } printf("\n"); } static inline void print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) { struct rte_eth_fdir_flex_mask *mask; uint32_t i, j; char *p; for (i = 0; i < flex_conf->nb_flexmasks; i++) { mask = &flex_conf->flex_mask[i]; p = flowtype_to_str(mask->flow_type); printf("\n %s:\t", p ? p : "unknown"); for (j = 0; j < num; j++) printf(" %02x", mask->mask[j]); } printf("\n"); } static inline void print_fdir_flow_type(uint32_t flow_types_mask) { int i; char *p; for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { if (!(flow_types_mask & (1 << i))) continue; p = flowtype_to_str(i); if (p) printf(" %s", p); else printf(" unknown"); } printf("\n"); } static int get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info, struct rte_eth_fdir_stats *fdir_stat) { int ret = -ENOTSUP; #ifdef RTE_NET_I40E if (ret == -ENOTSUP) { ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info); if (!ret) ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat); } #endif #ifdef RTE_NET_IXGBE if (ret == -ENOTSUP) { ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info); if (!ret) ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat); } #endif switch (ret) { case 0: break; case -ENOTSUP: fprintf(stderr, "\n FDIR is not supported on port %-2d\n", port_id); break; default: fprintf(stderr, "programming error: (%s)\n", strerror(-ret)); break; } return ret; } void fdir_get_infos(portid_t port_id) { struct rte_eth_fdir_stats fdir_stat; struct rte_eth_fdir_info fdir_info; static const char *fdir_stats_border = "########################"; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; memset(&fdir_info, 0, sizeof(fdir_info)); memset(&fdir_stat, 0, sizeof(fdir_stat)); if (get_fdir_info(port_id, &fdir_info, &fdir_stat)) return; printf("\n %s FDIR infos for port %-2d %s\n", fdir_stats_border, port_id, fdir_stats_border); printf(" MODE: "); if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) printf(" PERFECT\n"); else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) printf(" PERFECT-MAC-VLAN\n"); else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) printf(" PERFECT-TUNNEL\n"); else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) printf(" SIGNATURE\n"); else printf(" DISABLE\n"); if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { printf(" SUPPORTED FLOW TYPE: "); print_fdir_flow_type(fdir_info.flow_types_mask[0]); } printf(" FLEX PAYLOAD INFO:\n"); printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", fdir_info.max_flexpayload, fdir_info.flex_payload_limit, fdir_info.flex_payload_unit, fdir_info.max_flex_payload_segment_num, fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); printf(" MASK: "); print_fdir_mask(&fdir_info.mask); if (fdir_info.flex_conf.nb_payloads > 0) { printf(" FLEX PAYLOAD SRC OFFSET:"); print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); } if (fdir_info.flex_conf.nb_flexmasks > 0) { printf(" FLEX MASK CFG:"); print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); } printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", fdir_stat.guarant_cnt, fdir_stat.best_cnt); printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", fdir_info.guarant_spc, fdir_info.best_spc); printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" " add: %-10"PRIu64" remove: %"PRIu64"\n" " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", fdir_stat.collision, fdir_stat.free, fdir_stat.maxhash, fdir_stat.maxlen, fdir_stat.add, fdir_stat.remove, fdir_stat.f_add, fdir_stat.f_remove); printf(" %s############################%s\n", fdir_stats_border, fdir_stats_border); } #endif /* RTE_NET_I40E || RTE_NET_IXGBE */ void fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) { struct rte_port *port; struct rte_eth_fdir_flex_conf *flex_conf; int i, idx = 0; port = &ports[port_id]; flex_conf = &port->dev_conf.fdir_conf.flex_conf; for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { idx = i; break; } } if (i >= RTE_ETH_FLOW_MAX) { if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { idx = flex_conf->nb_flexmasks; flex_conf->nb_flexmasks++; } else { fprintf(stderr, "The flex mask table is full. Can not set flex mask for flow_type(%u).", cfg->flow_type); return; } } rte_memcpy(&flex_conf->flex_mask[idx], cfg, sizeof(struct rte_eth_fdir_flex_mask)); } void fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) { struct rte_port *port; struct rte_eth_fdir_flex_conf *flex_conf; int i, idx = 0; port = &ports[port_id]; flex_conf = &port->dev_conf.fdir_conf.flex_conf; for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { if (cfg->type == flex_conf->flex_set[i].type) { idx = i; break; } } if (i >= RTE_ETH_PAYLOAD_MAX) { if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { idx = flex_conf->nb_payloads; flex_conf->nb_payloads++; } else { fprintf(stderr, "The flex payload table is full. Can not set flex payload for type(%u).", cfg->type); return; } } rte_memcpy(&flex_conf->flex_set[idx], cfg, sizeof(struct rte_eth_flex_payload_cfg)); } void set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) { #ifdef RTE_NET_IXGBE int diag; if (is_rx) diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); else diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); if (diag == 0) return; fprintf(stderr, "rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", is_rx ? "rx" : "tx", port_id, diag); return; #endif fprintf(stderr, "VF %s setting not supported for port %d\n", is_rx ? "Rx" : "Tx", port_id); RTE_SET_USED(vf); RTE_SET_USED(on); } int set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) { int diag; struct rte_eth_link link; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) return 1; ret = eth_link_get_nowait_print_err(port_id, &link); if (ret < 0) return 1; if (link.link_speed != RTE_ETH_SPEED_NUM_UNKNOWN && rate > link.link_speed) { fprintf(stderr, "Invalid rate value:%u bigger than link speed: %u\n", rate, link.link_speed); return 1; } diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); if (diag == 0) return diag; fprintf(stderr, "rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", port_id, diag); return diag; } int set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) { int diag = -ENOTSUP; RTE_SET_USED(vf); RTE_SET_USED(rate); RTE_SET_USED(q_msk); #ifdef RTE_NET_IXGBE if (diag == -ENOTSUP) diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, q_msk); #endif #ifdef RTE_NET_BNXT if (diag == -ENOTSUP) diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); #endif if (diag == 0) return diag; fprintf(stderr, "%s for port_id=%d failed diag=%d\n", __func__, port_id, diag); return diag; } /* * Functions to manage the set of filtered Multicast MAC addresses. * * A pool of filtered multicast MAC addresses is associated with each port. * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. * The address of the pool and the number of valid multicast MAC addresses * recorded in the pool are stored in the fields "mc_addr_pool" and * "mc_addr_nb" of the "rte_port" data structure. * * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes * to be supplied a contiguous array of multicast MAC addresses. * To comply with this constraint, the set of multicast addresses recorded * into the pool are systematically compacted at the beginning of the pool. * Hence, when a multicast address is removed from the pool, all following * addresses, if any, are copied back to keep the set contiguous. */ #define MCAST_POOL_INC 32 static int mcast_addr_pool_extend(struct rte_port *port) { struct rte_ether_addr *mc_pool; size_t mc_pool_size; /* * If a free entry is available at the end of the pool, just * increment the number of recorded multicast addresses. */ if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { port->mc_addr_nb++; return 0; } /* * [re]allocate a pool with MCAST_POOL_INC more entries. * The previous test guarantees that port->mc_addr_nb is a multiple * of MCAST_POOL_INC. */ mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb + MCAST_POOL_INC); mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool, mc_pool_size); if (mc_pool == NULL) { fprintf(stderr, "allocation of pool of %u multicast addresses failed\n", port->mc_addr_nb + MCAST_POOL_INC); return -ENOMEM; } port->mc_addr_pool = mc_pool; port->mc_addr_nb++; return 0; } static void mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr) { if (mcast_addr_pool_extend(port) != 0) return; rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]); } static void mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) { port->mc_addr_nb--; if (addr_idx == port->mc_addr_nb) { /* No need to recompact the set of multicast addresses. */ if (port->mc_addr_nb == 0) { /* free the pool of multicast addresses. */ free(port->mc_addr_pool); port->mc_addr_pool = NULL; } return; } memmove(&port->mc_addr_pool[addr_idx], &port->mc_addr_pool[addr_idx + 1], sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx)); } int mcast_addr_pool_destroy(portid_t port_id) { struct rte_port *port; if (port_id_is_invalid(port_id, ENABLED_WARN) || port_id == (portid_t)RTE_PORT_ALL) return -EINVAL; port = &ports[port_id]; if (port->mc_addr_nb != 0) { /* free the pool of multicast addresses. */ free(port->mc_addr_pool); port->mc_addr_pool = NULL; port->mc_addr_nb = 0; } return 0; } static int eth_port_multicast_addr_list_set(portid_t port_id) { struct rte_port *port; int diag; port = &ports[port_id]; diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, port->mc_addr_nb); if (diag < 0) fprintf(stderr, "rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", port_id, port->mc_addr_nb, diag); return diag; } void mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr) { struct rte_port *port; uint32_t i; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; port = &ports[port_id]; /* * Check that the added multicast MAC address is not already recorded * in the pool of multicast addresses. */ for (i = 0; i < port->mc_addr_nb; i++) { if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { fprintf(stderr, "multicast address already filtered by port\n"); return; } } mcast_addr_pool_append(port, mc_addr); if (eth_port_multicast_addr_list_set(port_id) < 0) /* Rollback on failure, remove the address from the pool */ mcast_addr_pool_remove(port, i); } void mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr) { struct rte_port *port; uint32_t i; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; port = &ports[port_id]; /* * Search the pool of multicast MAC addresses for the removed address. */ for (i = 0; i < port->mc_addr_nb; i++) { if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) break; } if (i == port->mc_addr_nb) { fprintf(stderr, "multicast address not filtered by port %d\n", port_id); return; } mcast_addr_pool_remove(port, i); if (eth_port_multicast_addr_list_set(port_id) < 0) /* Rollback on failure, add the address back into the pool */ mcast_addr_pool_append(port, mc_addr); } void port_dcb_info_display(portid_t port_id) { struct rte_eth_dcb_info dcb_info; uint16_t i; int ret; static const char *border = "================"; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); if (ret) { fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n", port_id); return; } printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); printf("\n TC : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", i); printf("\n Priority : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.prio_tc[i]); printf("\n BW percent :"); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d%%", dcb_info.tc_bws[i]); printf("\n RXQ base : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); printf("\n RXQ number :"); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); printf("\n TXQ base : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); printf("\n TXQ number :"); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); printf("\n"); } uint8_t * open_file(const char *file_path, uint32_t *size) { int fd = open(file_path, O_RDONLY); off_t pkg_size; uint8_t *buf = NULL; int ret = 0; struct stat st_buf; if (size) *size = 0; if (fd == -1) { fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); return buf; } if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { close(fd); fprintf(stderr, "%s: File operations failed\n", __func__); return buf; } pkg_size = st_buf.st_size; if (pkg_size < 0) { close(fd); fprintf(stderr, "%s: File operations failed\n", __func__); return buf; } buf = (uint8_t *)malloc(pkg_size); if (!buf) { close(fd); fprintf(stderr, "%s: Failed to malloc memory\n", __func__); return buf; } ret = read(fd, buf, pkg_size); if (ret < 0) { close(fd); fprintf(stderr, "%s: File read operation failed\n", __func__); close_file(buf); return NULL; } if (size) *size = pkg_size; close(fd); return buf; } int save_file(const char *file_path, uint8_t *buf, uint32_t size) { FILE *fh = fopen(file_path, "wb"); if (fh == NULL) { fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path); return -1; } if (fwrite(buf, 1, size, fh) != size) { fclose(fh); fprintf(stderr, "%s: File write operation failed\n", __func__); return -1; } fclose(fh); return 0; } int close_file(uint8_t *buf) { if (buf) { free((void *)buf); return 0; } return -1; } void port_queue_region_info_display(portid_t port_id, void *buf) { #ifdef RTE_NET_I40E uint16_t i, j; struct rte_pmd_i40e_queue_regions *info = (struct rte_pmd_i40e_queue_regions *)buf; static const char *queue_region_info_stats_border = "-------"; if (!info->queue_region_number) printf("there is no region has been set before"); printf("\n %s All queue region info for port=%2d %s", queue_region_info_stats_border, port_id, queue_region_info_stats_border); printf("\n queue_region_number: %-14u \n", info->queue_region_number); for (i = 0; i < info->queue_region_number; i++) { printf("\n region_id: %-14u queue_number: %-14u " "queue_start_index: %-14u \n", info->region[i].region_id, info->region[i].queue_num, info->region[i].queue_start_index); printf(" user_priority_num is %-14u :", info->region[i].user_priority_num); for (j = 0; j < info->region[i].user_priority_num; j++) printf(" %-14u ", info->region[i].user_priority[j]); printf("\n flowtype_num is %-14u :", info->region[i].flowtype_num); for (j = 0; j < info->region[i].flowtype_num; j++) printf(" %-14u ", info->region[i].hw_flowtype[j]); } #else RTE_SET_USED(port_id); RTE_SET_USED(buf); #endif printf("\n\n"); } void show_macs(portid_t port_id) { char buf[RTE_ETHER_ADDR_FMT_SIZE]; struct rte_eth_dev_info dev_info; int32_t i, rc, num_macs = 0; if (eth_dev_info_get_print_err(port_id, &dev_info)) return; struct rte_ether_addr addr[dev_info.max_mac_addrs]; rc = rte_eth_macaddrs_get(port_id, addr, dev_info.max_mac_addrs); if (rc < 0) return; for (i = 0; i < rc; i++) { /* skip zero address */ if (rte_is_zero_ether_addr(&addr[i])) continue; num_macs++; } printf("Number of MAC address added: %d\n", num_macs); for (i = 0; i < rc; i++) { /* skip zero address */ if (rte_is_zero_ether_addr(&addr[i])) continue; rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, &addr[i]); printf(" %s\n", buf); } } void show_mcast_macs(portid_t port_id) { char buf[RTE_ETHER_ADDR_FMT_SIZE]; struct rte_ether_addr *addr; struct rte_port *port; uint32_t i; port = &ports[port_id]; printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb); for (i = 0; i < port->mc_addr_nb; i++) { addr = &port->mc_addr_pool[i]; rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr); printf(" %s\n", buf); } }