/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define APP_LOOKUP_EXACT_MATCH 0 #define APP_LOOKUP_LPM 1 #define DO_RFC_1812_CHECKS /* Enable cpu-load stats 0-off, 1-on */ #define APP_CPU_LOAD 1 #ifndef APP_LOOKUP_METHOD #define APP_LOOKUP_METHOD APP_LOOKUP_LPM #endif #ifndef __GLIBC__ /* sched_getcpu() is glibc specific */ #define sched_getcpu() rte_lcore_id() #endif static int check_ptype(int portid) { int i, ret; int ipv4 = 0, ipv6 = 0; ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK, NULL, 0); if (ret <= 0) return 0; uint32_t ptypes[ret]; ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK, ptypes, ret); for (i = 0; i < ret; ++i) { if (ptypes[i] & RTE_PTYPE_L3_IPV4) ipv4 = 1; if (ptypes[i] & RTE_PTYPE_L3_IPV6) ipv6 = 1; } if (ipv4 && ipv6) return 1; return 0; } static inline void parse_ptype(struct rte_mbuf *m) { struct rte_ether_hdr *eth_hdr; uint32_t packet_type = RTE_PTYPE_UNKNOWN; uint16_t ether_type; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); ether_type = eth_hdr->ether_type; if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; m->packet_type = packet_type; } static uint16_t cb_parse_ptype(__rte_unused uint16_t port, __rte_unused uint16_t queue, struct rte_mbuf *pkts[], uint16_t nb_pkts, __rte_unused uint16_t max_pkts, __rte_unused void *user_param) { unsigned int i; for (i = 0; i < nb_pkts; i++) parse_ptype(pkts[i]); return nb_pkts; } /* * When set to zero, simple forwaring path is eanbled. * When set to one, optimized forwarding path is enabled. * Note that LPM optimisation path uses SSE4.1 instructions. */ #define ENABLE_MULTI_BUFFER_OPTIMIZE 1 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) #include #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) #include #include #else #error "APP_LOOKUP_METHOD set to incorrect value" #endif #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1 #define MAX_JUMBO_PKT_LEN 9600 #define IPV6_ADDR_LEN 16 #define MEMPOOL_CACHE_SIZE 256 /* * This expression is used to calculate the number of mbufs needed depending on * user input, taking into account memory for rx and tx hardware rings, cache * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that * NB_MBUF never goes below a minimum value of 8192 */ #define NB_MBUF RTE_MAX(\ (nb_ports*nb_rx_queue*nb_rxd + \ nb_ports*nb_lcores*MAX_PKT_BURST + \ nb_ports*n_tx_queue*nb_txd + \ nb_lcores*MEMPOOL_CACHE_SIZE), \ (unsigned)8192) #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ /* * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send. */ #define MAX_TX_BURST (MAX_PKT_BURST / 2) #define BURST_SIZE MAX_TX_BURST #define NB_SOCKETS 8 /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 /* Used to mark destination port as 'invalid'. */ #define BAD_PORT ((uint16_t)-1) #define FWDSTEP 4 /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 1024 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /* ethernet addresses of ports */ static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS]; static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; static xmm_t val_eth[RTE_MAX_ETHPORTS]; /* replace first 12B of the ethernet header. */ #define MASK_ETH 0x3f /* mask of enabled ports */ static uint32_t enabled_port_mask; static int promiscuous_on; /**< Set in promiscuous mode off by default. */ static int numa_on = 1; /**< NUMA is enabled by default. */ static int parse_ptype_on; #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static int ipv6; /**< ipv6 is false by default. */ #endif #if (APP_CPU_LOAD == 1) #define MAX_CPU RTE_MAX_LCORE #define CPU_LOAD_TIMEOUT_US (5 * 1000 * 1000) /**< Timeout for collecting 5s */ #define CPU_PROCESS 0 #define CPU_POLL 1 #define MAX_CPU_COUNTER 2 struct cpu_load { uint16_t n_cpu; uint64_t counter; uint64_t hits[MAX_CPU_COUNTER][MAX_CPU]; } __rte_cache_aligned; static struct cpu_load cpu_load; static int cpu_load_lcore_id = -1; #define SET_CPU_BUSY(thread, counter) \ thread->conf.busy[counter] = 1 #define SET_CPU_IDLE(thread, counter) \ thread->conf.busy[counter] = 0 #define IS_CPU_BUSY(thread, counter) \ (thread->conf.busy[counter] > 0) #else #define SET_CPU_BUSY(thread, counter) #define SET_CPU_IDLE(thread, counter) #define IS_CPU_BUSY(thread, counter) 0 #endif struct mbuf_table { uint16_t len; struct rte_mbuf *m_table[MAX_PKT_BURST]; }; struct lcore_rx_queue { uint16_t port_id; uint8_t queue_id; } __rte_cache_aligned; #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS #define MAX_RX_QUEUE_PER_PORT 128 #define MAX_LCORE_PARAMS 1024 struct rx_thread_params { uint16_t port_id; uint8_t queue_id; uint8_t lcore_id; uint8_t thread_id; } __rte_cache_aligned; static struct rx_thread_params rx_thread_params_array[MAX_LCORE_PARAMS]; static struct rx_thread_params rx_thread_params_array_default[] = { {0, 0, 2, 0}, {0, 1, 2, 1}, {0, 2, 2, 2}, {1, 0, 2, 3}, {1, 1, 2, 4}, {1, 2, 2, 5}, {2, 0, 2, 6}, {3, 0, 3, 7}, {3, 1, 3, 8}, }; static struct rx_thread_params *rx_thread_params = rx_thread_params_array_default; static uint16_t nb_rx_thread_params = RTE_DIM(rx_thread_params_array_default); struct tx_thread_params { uint8_t lcore_id; uint8_t thread_id; } __rte_cache_aligned; static struct tx_thread_params tx_thread_params_array[MAX_LCORE_PARAMS]; static struct tx_thread_params tx_thread_params_array_default[] = { {4, 0}, {5, 1}, {6, 2}, {7, 3}, {8, 4}, {9, 5}, {10, 6}, {11, 7}, {12, 8}, }; static struct tx_thread_params *tx_thread_params = tx_thread_params_array_default; static uint16_t nb_tx_thread_params = RTE_DIM(tx_thread_params_array_default); static struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = RTE_ETHER_MAX_LEN, .split_hdr_size = 0, .offloads = DEV_RX_OFFLOAD_CHECKSUM, }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = ETH_RSS_TCP, }, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, }; static struct rte_mempool *pktmbuf_pool[NB_SOCKETS]; #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) #include #define DEFAULT_HASH_FUNC rte_hash_crc struct ipv4_5tuple { uint32_t ip_dst; uint32_t ip_src; uint16_t port_dst; uint16_t port_src; uint8_t proto; } __attribute__((__packed__)); union ipv4_5tuple_host { struct { uint8_t pad0; uint8_t proto; uint16_t pad1; uint32_t ip_src; uint32_t ip_dst; uint16_t port_src; uint16_t port_dst; }; __m128i xmm; }; #define XMM_NUM_IN_IPV6_5TUPLE 3 struct ipv6_5tuple { uint8_t ip_dst[IPV6_ADDR_LEN]; uint8_t ip_src[IPV6_ADDR_LEN]; uint16_t port_dst; uint16_t port_src; uint8_t proto; } __attribute__((__packed__)); union ipv6_5tuple_host { struct { uint16_t pad0; uint8_t proto; uint8_t pad1; uint8_t ip_src[IPV6_ADDR_LEN]; uint8_t ip_dst[IPV6_ADDR_LEN]; uint16_t port_src; uint16_t port_dst; uint64_t reserve; }; __m128i xmm[XMM_NUM_IN_IPV6_5TUPLE]; }; struct ipv4_l3fwd_route { struct ipv4_5tuple key; uint8_t if_out; }; struct ipv6_l3fwd_route { struct ipv6_5tuple key; uint8_t if_out; }; static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { {{RTE_IPV4(101, 0, 0, 0), RTE_IPV4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0}, {{RTE_IPV4(201, 0, 0, 0), RTE_IPV4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1}, {{RTE_IPV4(111, 0, 0, 0), RTE_IPV4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2}, {{RTE_IPV4(211, 0, 0, 0), RTE_IPV4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3}, }; static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { {{ {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 101, 11, IPPROTO_TCP}, 0}, {{ {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 102, 12, IPPROTO_TCP}, 1}, {{ {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 101, 11, IPPROTO_TCP}, 2}, {{ {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 102, 12, IPPROTO_TCP}, 3}, }; typedef struct rte_hash lookup_struct_t; static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; #ifdef RTE_ARCH_X86_64 /* default to 4 million hash entries (approx) */ #define L3FWD_HASH_ENTRIES (1024*1024*4) #else /* 32-bit has less address-space for hugepage memory, limit to 1M entries */ #define L3FWD_HASH_ENTRIES (1024*1024*1) #endif #define HASH_ENTRY_NUMBER_DEFAULT 4 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT; static inline uint32_t ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val) { const union ipv4_5tuple_host *k; uint32_t t; const uint32_t *p; k = data; t = k->proto; p = (const uint32_t *)&k->port_src; init_val = rte_hash_crc_4byte(t, init_val); init_val = rte_hash_crc_4byte(k->ip_src, init_val); init_val = rte_hash_crc_4byte(k->ip_dst, init_val); init_val = rte_hash_crc_4byte(*p, init_val); return init_val; } static inline uint32_t ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val) { const union ipv6_5tuple_host *k; uint32_t t; const uint32_t *p; const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3; const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3; k = data; t = k->proto; p = (const uint32_t *)&k->port_src; ip_src0 = (const uint32_t *) k->ip_src; ip_src1 = (const uint32_t *)(k->ip_src + 4); ip_src2 = (const uint32_t *)(k->ip_src + 8); ip_src3 = (const uint32_t *)(k->ip_src + 12); ip_dst0 = (const uint32_t *) k->ip_dst; ip_dst1 = (const uint32_t *)(k->ip_dst + 4); ip_dst2 = (const uint32_t *)(k->ip_dst + 8); ip_dst3 = (const uint32_t *)(k->ip_dst + 12); init_val = rte_hash_crc_4byte(t, init_val); init_val = rte_hash_crc_4byte(*ip_src0, init_val); init_val = rte_hash_crc_4byte(*ip_src1, init_val); init_val = rte_hash_crc_4byte(*ip_src2, init_val); init_val = rte_hash_crc_4byte(*ip_src3, init_val); init_val = rte_hash_crc_4byte(*ip_dst0, init_val); init_val = rte_hash_crc_4byte(*ip_dst1, init_val); init_val = rte_hash_crc_4byte(*ip_dst2, init_val); init_val = rte_hash_crc_4byte(*ip_dst3, init_val); init_val = rte_hash_crc_4byte(*p, init_val); return init_val; } #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array) #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array) static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned; #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) struct ipv4_l3fwd_route { uint32_t ip; uint8_t depth; uint8_t if_out; }; struct ipv6_l3fwd_route { uint8_t ip[16]; uint8_t depth; uint8_t if_out; }; static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = { {RTE_IPV4(1, 1, 1, 0), 24, 0}, {RTE_IPV4(2, 1, 1, 0), 24, 1}, {RTE_IPV4(3, 1, 1, 0), 24, 2}, {RTE_IPV4(4, 1, 1, 0), 24, 3}, {RTE_IPV4(5, 1, 1, 0), 24, 4}, {RTE_IPV4(6, 1, 1, 0), 24, 5}, {RTE_IPV4(7, 1, 1, 0), 24, 6}, {RTE_IPV4(8, 1, 1, 0), 24, 7}, }; static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = { {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0}, {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1}, {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2}, {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3}, {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4}, {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5}, {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6}, {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7}, }; #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array) #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array) #define IPV4_L3FWD_LPM_MAX_RULES 1024 #define IPV6_L3FWD_LPM_MAX_RULES 1024 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16) typedef struct rte_lpm lookup_struct_t; typedef struct rte_lpm6 lookup6_struct_t; static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS]; static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS]; #endif struct lcore_conf { lookup_struct_t *ipv4_lookup_struct; #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) lookup6_struct_t *ipv6_lookup_struct; #else lookup_struct_t *ipv6_lookup_struct; #endif void *data; } __rte_cache_aligned; static struct lcore_conf lcore_conf[RTE_MAX_LCORE]; RTE_DEFINE_PER_LCORE(struct lcore_conf *, lcore_conf); #define MAX_RX_QUEUE_PER_THREAD 16 #define MAX_TX_PORT_PER_THREAD RTE_MAX_ETHPORTS #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS #define MAX_RX_QUEUE_PER_PORT 128 #define MAX_RX_THREAD 1024 #define MAX_TX_THREAD 1024 #define MAX_THREAD (MAX_RX_THREAD + MAX_TX_THREAD) /** * Producers and consumers threads configuration */ static int lthreads_on = 1; /**< Use lthreads for processing*/ rte_atomic16_t rx_counter; /**< Number of spawned rx threads */ rte_atomic16_t tx_counter; /**< Number of spawned tx threads */ struct thread_conf { uint16_t lcore_id; /**< Initial lcore for rx thread */ uint16_t cpu_id; /**< Cpu id for cpu load stats counter */ uint16_t thread_id; /**< Thread ID */ #if (APP_CPU_LOAD > 0) int busy[MAX_CPU_COUNTER]; #endif }; struct thread_rx_conf { struct thread_conf conf; uint16_t n_rx_queue; struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; uint16_t n_ring; /**< Number of output rings */ struct rte_ring *ring[RTE_MAX_LCORE]; struct lthread_cond *ready[RTE_MAX_LCORE]; #if (APP_CPU_LOAD > 0) int busy[MAX_CPU_COUNTER]; #endif } __rte_cache_aligned; uint16_t n_rx_thread; struct thread_rx_conf rx_thread[MAX_RX_THREAD]; struct thread_tx_conf { struct thread_conf conf; uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; struct rte_ring *ring; struct lthread_cond **ready; } __rte_cache_aligned; uint16_t n_tx_thread; struct thread_tx_conf tx_thread[MAX_TX_THREAD]; /* Send burst of packets on an output interface */ static inline int send_burst(struct thread_tx_conf *qconf, uint16_t n, uint16_t port) { struct rte_mbuf **m_table; int ret; uint16_t queueid; queueid = qconf->tx_queue_id[port]; m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; ret = rte_eth_tx_burst(port, queueid, m_table, n); if (unlikely(ret < n)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < n); } return 0; } /* Enqueue a single packet, and send burst if queue is filled */ static inline int send_single_packet(struct rte_mbuf *m, uint16_t port) { uint16_t len; struct thread_tx_conf *qconf; if (lthreads_on) qconf = (struct thread_tx_conf *)lthread_get_data(); else qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data; len = qconf->tx_mbufs[port].len; qconf->tx_mbufs[port].m_table[len] = m; len++; /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { send_burst(qconf, MAX_PKT_BURST, port); len = 0; } qconf->tx_mbufs[port].len = len; return 0; } #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) static __rte_always_inline void send_packetsx4(uint16_t port, struct rte_mbuf *m[], uint32_t num) { uint32_t len, j, n; struct thread_tx_conf *qconf; if (lthreads_on) qconf = (struct thread_tx_conf *)lthread_get_data(); else qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data; len = qconf->tx_mbufs[port].len; /* * If TX buffer for that queue is empty, and we have enough packets, * then send them straightway. */ if (num >= MAX_TX_BURST && len == 0) { n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num); if (unlikely(n < num)) { do { rte_pktmbuf_free(m[n]); } while (++n < num); } return; } /* * Put packets into TX buffer for that queue. */ n = len + num; n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num; j = 0; switch (n % FWDSTEP) { while (j < n) { case 0: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; /* fall-through */ case 3: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; /* fall-through */ case 2: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; /* fall-through */ case 1: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; } } len += n; /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { send_burst(qconf, MAX_PKT_BURST, port); /* copy rest of the packets into the TX buffer. */ len = num - n; j = 0; switch (len % FWDSTEP) { while (j < len) { case 0: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; /* fall-through */ case 3: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; /* fall-through */ case 2: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; /* fall-through */ case 1: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; } } } qconf->tx_mbufs[port].len = len; } #endif /* APP_LOOKUP_LPM */ #ifdef DO_RFC_1812_CHECKS static inline int is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len) { /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ /* * 1. The packet length reported by the Link Layer must be large * enough to hold the minimum length legal IP datagram (20 bytes). */ if (link_len < sizeof(struct rte_ipv4_hdr)) return -1; /* 2. The IP checksum must be correct. */ /* this is checked in H/W */ /* * 3. The IP version number must be 4. If the version number is not 4 * then the packet may be another version of IP, such as IPng or * ST-II. */ if (((pkt->version_ihl) >> 4) != 4) return -3; /* * 4. The IP header length field must be large enough to hold the * minimum length legal IP datagram (20 bytes = 5 words). */ if ((pkt->version_ihl & 0xf) < 5) return -4; /* * 5. The IP total length field must be large enough to hold the IP * datagram header, whose length is specified in the IP header length * field. */ if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr)) return -5; return 0; } #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static __m128i mask0; static __m128i mask1; static __m128i mask2; static inline uint16_t get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct) { int ret = 0; union ipv4_5tuple_host key; ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct rte_ipv4_hdr, time_to_live); __m128i data = _mm_loadu_si128((__m128i *)(ipv4_hdr)); /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */ key.xmm = _mm_and_si128(data, mask0); /* Find destination port */ ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key); return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]); } static inline uint16_t get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, lookup_struct_t *ipv6_l3fwd_lookup_struct) { int ret = 0; union ipv6_5tuple_host key; ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct rte_ipv6_hdr, payload_len); __m128i data0 = _mm_loadu_si128((__m128i *)(ipv6_hdr)); __m128i data1 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) + sizeof(__m128i))); __m128i data2 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) + sizeof(__m128i) + sizeof(__m128i))); /* Get part of 5 tuple: src IP address lower 96 bits and protocol */ key.xmm[0] = _mm_and_si128(data0, mask1); /* Get part of 5 tuple: dst IP address lower 96 bits and src IP address higher 32 bits */ key.xmm[1] = data1; /* Get part of 5 tuple: dst port and src port and dst IP address higher 32 bits */ key.xmm[2] = _mm_and_si128(data2, mask2); /* Find destination port */ ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key); return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]); } #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) static inline uint16_t get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct) { uint32_t next_hop; return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(((struct rte_ipv4_hdr *)ipv4_hdr)->dst_addr), &next_hop) == 0) ? next_hop : portid); } static inline uint16_t get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, lookup6_struct_t *ipv6_l3fwd_lookup_struct) { uint32_t next_hop; return ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct, ((struct rte_ipv6_hdr *)ipv6_hdr)->dst_addr, &next_hop) == 0) ? next_hop : portid); } #endif static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid) __attribute__((unused)); #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) #define MASK_ALL_PKTS 0xff #define EXCLUDE_1ST_PKT 0xfe #define EXCLUDE_2ND_PKT 0xfd #define EXCLUDE_3RD_PKT 0xfb #define EXCLUDE_4TH_PKT 0xf7 #define EXCLUDE_5TH_PKT 0xef #define EXCLUDE_6TH_PKT 0xdf #define EXCLUDE_7TH_PKT 0xbf #define EXCLUDE_8TH_PKT 0x7f static inline void simple_ipv4_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid) { struct rte_ether_hdr *eth_hdr[8]; struct rte_ipv4_hdr *ipv4_hdr[8]; uint16_t dst_port[8]; int32_t ret[8]; union ipv4_5tuple_host key[8]; __m128i data[8]; eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct rte_ether_hdr *); eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct rte_ether_hdr *); eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct rte_ether_hdr *); eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct rte_ether_hdr *); eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct rte_ether_hdr *); eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct rte_ether_hdr *); eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct rte_ether_hdr *); eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct rte_ether_hdr *); /* Handle IPv4 headers.*/ ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); #ifdef DO_RFC_1812_CHECKS /* Check to make sure the packet is valid (RFC1812) */ uint8_t valid_mask = MASK_ALL_PKTS; if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) { rte_pktmbuf_free(m[0]); valid_mask &= EXCLUDE_1ST_PKT; } if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) { rte_pktmbuf_free(m[1]); valid_mask &= EXCLUDE_2ND_PKT; } if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) { rte_pktmbuf_free(m[2]); valid_mask &= EXCLUDE_3RD_PKT; } if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) { rte_pktmbuf_free(m[3]); valid_mask &= EXCLUDE_4TH_PKT; } if (is_valid_ipv4_pkt(ipv4_hdr[4], m[4]->pkt_len) < 0) { rte_pktmbuf_free(m[4]); valid_mask &= EXCLUDE_5TH_PKT; } if (is_valid_ipv4_pkt(ipv4_hdr[5], m[5]->pkt_len) < 0) { rte_pktmbuf_free(m[5]); valid_mask &= EXCLUDE_6TH_PKT; } if (is_valid_ipv4_pkt(ipv4_hdr[6], m[6]->pkt_len) < 0) { rte_pktmbuf_free(m[6]); valid_mask &= EXCLUDE_7TH_PKT; } if (is_valid_ipv4_pkt(ipv4_hdr[7], m[7]->pkt_len) < 0) { rte_pktmbuf_free(m[7]); valid_mask &= EXCLUDE_8TH_PKT; } if (unlikely(valid_mask != MASK_ALL_PKTS)) { if (valid_mask == 0) return; uint8_t i = 0; for (i = 0; i < 8; i++) if ((0x1 << i) & valid_mask) l3fwd_simple_forward(m[i], portid); } #endif /* End of #ifdef DO_RFC_1812_CHECKS */ data[0] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[0], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); data[1] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[1], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); data[2] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[2], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); data[3] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[3], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); data[4] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[4], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); data[5] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[5], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); data[6] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[6], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); data[7] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[7], __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live))); key[0].xmm = _mm_and_si128(data[0], mask0); key[1].xmm = _mm_and_si128(data[1], mask0); key[2].xmm = _mm_and_si128(data[2], mask0); key[3].xmm = _mm_and_si128(data[3], mask0); key[4].xmm = _mm_and_si128(data[4], mask0); key[5].xmm = _mm_and_si128(data[5], mask0); key[6].xmm = _mm_and_si128(data[6], mask0); key[7].xmm = _mm_and_si128(data[7], mask0); const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3], &key[4], &key[5], &key[6], &key[7]}; rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, &key_array[0], 8, ret); dst_port[0] = ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]); dst_port[1] = ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]); dst_port[2] = ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]); dst_port[3] = ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]); dst_port[4] = ((ret[4] < 0) ? portid : ipv4_l3fwd_out_if[ret[4]]); dst_port[5] = ((ret[5] < 0) ? portid : ipv4_l3fwd_out_if[ret[5]]); dst_port[6] = ((ret[6] < 0) ? portid : ipv4_l3fwd_out_if[ret[6]]); dst_port[7] = ((ret[7] < 0) ? portid : ipv4_l3fwd_out_if[ret[7]]); if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0) dst_port[0] = portid; if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0) dst_port[1] = portid; if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0) dst_port[2] = portid; if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0) dst_port[3] = portid; if (dst_port[4] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[4]) == 0) dst_port[4] = portid; if (dst_port[5] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[5]) == 0) dst_port[5] = portid; if (dst_port[6] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[6]) == 0) dst_port[6] = portid; if (dst_port[7] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[7]) == 0) dst_port[7] = portid; #ifdef DO_RFC_1812_CHECKS /* Update time to live and header checksum */ --(ipv4_hdr[0]->time_to_live); --(ipv4_hdr[1]->time_to_live); --(ipv4_hdr[2]->time_to_live); --(ipv4_hdr[3]->time_to_live); ++(ipv4_hdr[0]->hdr_checksum); ++(ipv4_hdr[1]->hdr_checksum); ++(ipv4_hdr[2]->hdr_checksum); ++(ipv4_hdr[3]->hdr_checksum); --(ipv4_hdr[4]->time_to_live); --(ipv4_hdr[5]->time_to_live); --(ipv4_hdr[6]->time_to_live); --(ipv4_hdr[7]->time_to_live); ++(ipv4_hdr[4]->hdr_checksum); ++(ipv4_hdr[5]->hdr_checksum); ++(ipv4_hdr[6]->hdr_checksum); ++(ipv4_hdr[7]->hdr_checksum); #endif /* dst addr */ *(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]]; *(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]]; *(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]]; *(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]]; *(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]]; *(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]]; *(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]]; *(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]]; /* src addr */ rte_ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr); send_single_packet(m[0], (uint8_t)dst_port[0]); send_single_packet(m[1], (uint8_t)dst_port[1]); send_single_packet(m[2], (uint8_t)dst_port[2]); send_single_packet(m[3], (uint8_t)dst_port[3]); send_single_packet(m[4], (uint8_t)dst_port[4]); send_single_packet(m[5], (uint8_t)dst_port[5]); send_single_packet(m[6], (uint8_t)dst_port[6]); send_single_packet(m[7], (uint8_t)dst_port[7]); } static inline void get_ipv6_5tuple(struct rte_mbuf *m0, __m128i mask0, __m128i mask1, union ipv6_5tuple_host *key) { __m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv6_hdr, payload_len))); __m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv6_hdr, payload_len) + sizeof(__m128i))); __m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv6_hdr, payload_len) + sizeof(__m128i) + sizeof(__m128i))); key->xmm[0] = _mm_and_si128(tmpdata0, mask0); key->xmm[1] = tmpdata1; key->xmm[2] = _mm_and_si128(tmpdata2, mask1); } static inline void simple_ipv6_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid) { int32_t ret[8]; uint16_t dst_port[8]; struct rte_ether_hdr *eth_hdr[8]; union ipv6_5tuple_host key[8]; __attribute__((unused)) struct rte_ipv6_hdr *ipv6_hdr[8]; eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct rte_ether_hdr *); eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct rte_ether_hdr *); eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct rte_ether_hdr *); eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct rte_ether_hdr *); eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct rte_ether_hdr *); eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct rte_ether_hdr *); eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct rte_ether_hdr *); eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct rte_ether_hdr *); /* Handle IPv6 headers.*/ ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); get_ipv6_5tuple(m[0], mask1, mask2, &key[0]); get_ipv6_5tuple(m[1], mask1, mask2, &key[1]); get_ipv6_5tuple(m[2], mask1, mask2, &key[2]); get_ipv6_5tuple(m[3], mask1, mask2, &key[3]); get_ipv6_5tuple(m[4], mask1, mask2, &key[4]); get_ipv6_5tuple(m[5], mask1, mask2, &key[5]); get_ipv6_5tuple(m[6], mask1, mask2, &key[6]); get_ipv6_5tuple(m[7], mask1, mask2, &key[7]); const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3], &key[4], &key[5], &key[6], &key[7]}; rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct, &key_array[0], 4, ret); dst_port[0] = ((ret[0] < 0) ? portid : ipv6_l3fwd_out_if[ret[0]]); dst_port[1] = ((ret[1] < 0) ? portid : ipv6_l3fwd_out_if[ret[1]]); dst_port[2] = ((ret[2] < 0) ? portid : ipv6_l3fwd_out_if[ret[2]]); dst_port[3] = ((ret[3] < 0) ? portid : ipv6_l3fwd_out_if[ret[3]]); dst_port[4] = ((ret[4] < 0) ? portid : ipv6_l3fwd_out_if[ret[4]]); dst_port[5] = ((ret[5] < 0) ? portid : ipv6_l3fwd_out_if[ret[5]]); dst_port[6] = ((ret[6] < 0) ? portid : ipv6_l3fwd_out_if[ret[6]]); dst_port[7] = ((ret[7] < 0) ? portid : ipv6_l3fwd_out_if[ret[7]]); if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0) dst_port[0] = portid; if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0) dst_port[1] = portid; if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0) dst_port[2] = portid; if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0) dst_port[3] = portid; if (dst_port[4] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[4]) == 0) dst_port[4] = portid; if (dst_port[5] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[5]) == 0) dst_port[5] = portid; if (dst_port[6] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[6]) == 0) dst_port[6] = portid; if (dst_port[7] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[7]) == 0) dst_port[7] = portid; /* dst addr */ *(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]]; *(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]]; *(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]]; *(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]]; *(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]]; *(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]]; *(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]]; *(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]]; /* src addr */ rte_ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr); rte_ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr); send_single_packet(m[0], dst_port[0]); send_single_packet(m[1], dst_port[1]); send_single_packet(m[2], dst_port[2]); send_single_packet(m[3], dst_port[3]); send_single_packet(m[4], dst_port[4]); send_single_packet(m[5], dst_port[5]); send_single_packet(m[6], dst_port[6]); send_single_packet(m[7], dst_port[7]); } #endif /* APP_LOOKUP_METHOD */ static __rte_always_inline void l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid) { struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ipv4_hdr; uint16_t dst_port; eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { /* Handle IPv4 headers.*/ ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr)); #ifdef DO_RFC_1812_CHECKS /* Check to make sure the packet is valid (RFC1812) */ if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) { rte_pktmbuf_free(m); return; } #endif dst_port = get_ipv4_dst_port(ipv4_hdr, portid, RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct); if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0) dst_port = portid; #ifdef DO_RFC_1812_CHECKS /* Update time to live and header checksum */ --(ipv4_hdr->time_to_live); ++(ipv4_hdr->hdr_checksum); #endif /* dst addr */ *(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port]; /* src addr */ rte_ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); send_single_packet(m, dst_port); } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { /* Handle IPv6 headers.*/ struct rte_ipv6_hdr *ipv6_hdr; ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, sizeof(struct rte_ether_hdr)); dst_port = get_ipv6_dst_port(ipv6_hdr, portid, RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct); if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0) dst_port = portid; /* dst addr */ *(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port]; /* src addr */ rte_ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); send_single_packet(m, dst_port); } else /* Free the mbuf that contains non-IPV4/IPV6 packet */ rte_pktmbuf_free(m); } #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) #ifdef DO_RFC_1812_CHECKS #define IPV4_MIN_VER_IHL 0x45 #define IPV4_MAX_VER_IHL 0x4f #define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL) /* Minimum value of IPV4 total length (20B) in network byte order. */ #define IPV4_MIN_LEN_BE (sizeof(struct rte_ipv4_hdr) << 8) /* * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2: * - The IP version number must be 4. * - The IP header length field must be large enough to hold the * minimum length legal IP datagram (20 bytes = 5 words). * - The IP total length field must be large enough to hold the IP * datagram header, whose length is specified in the IP header length * field. * If we encounter invalid IPV4 packet, then set destination port for it * to BAD_PORT value. */ static __rte_always_inline void rfc1812_process(struct rte_ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype) { uint8_t ihl; if (RTE_ETH_IS_IPV4_HDR(ptype)) { ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL; ipv4_hdr->time_to_live--; ipv4_hdr->hdr_checksum++; if (ihl > IPV4_MAX_VER_IHL_DIFF || ((uint8_t)ipv4_hdr->total_length == 0 && ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) { dp[0] = BAD_PORT; } } } #else #define rfc1812_process(mb, dp, ptype) do { } while (0) #endif /* DO_RFC_1812_CHECKS */ #endif /* APP_LOOKUP_LPM && ENABLE_MULTI_BUFFER_OPTIMIZE */ #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) static __rte_always_inline uint16_t get_dst_port(struct rte_mbuf *pkt, uint32_t dst_ipv4, uint16_t portid) { uint32_t next_hop; struct rte_ipv6_hdr *ipv6_hdr; struct rte_ether_hdr *eth_hdr; if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) { return (uint16_t) ((rte_lpm_lookup( RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dst_ipv4, &next_hop) == 0) ? next_hop : portid); } else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) { eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *); ipv6_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1); return (uint16_t) ((rte_lpm6_lookup( RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct, ipv6_hdr->dst_addr, &next_hop) == 0) ? next_hop : portid); } return portid; } static inline void process_packet(struct rte_mbuf *pkt, uint16_t *dst_port, uint16_t portid) { struct rte_ether_hdr *eth_hdr; struct rte_ipv4_hdr *ipv4_hdr; uint32_t dst_ipv4; uint16_t dp; __m128i te, ve; eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *); ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); dst_ipv4 = ipv4_hdr->dst_addr; dst_ipv4 = rte_be_to_cpu_32(dst_ipv4); dp = get_dst_port(pkt, dst_ipv4, portid); te = _mm_load_si128((__m128i *)eth_hdr); ve = val_eth[dp]; dst_port[0] = dp; rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type); te = _mm_blend_epi16(te, ve, MASK_ETH); _mm_store_si128((__m128i *)eth_hdr, te); } /* * Read packet_type and destination IPV4 addresses from 4 mbufs. */ static inline void processx4_step1(struct rte_mbuf *pkt[FWDSTEP], __m128i *dip, uint32_t *ipv4_flag) { struct rte_ipv4_hdr *ipv4_hdr; struct rte_ether_hdr *eth_hdr; uint32_t x0, x1, x2, x3; eth_hdr = rte_pktmbuf_mtod(pkt[0], struct rte_ether_hdr *); ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); x0 = ipv4_hdr->dst_addr; ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4; eth_hdr = rte_pktmbuf_mtod(pkt[1], struct rte_ether_hdr *); ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); x1 = ipv4_hdr->dst_addr; ipv4_flag[0] &= pkt[1]->packet_type; eth_hdr = rte_pktmbuf_mtod(pkt[2], struct rte_ether_hdr *); ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); x2 = ipv4_hdr->dst_addr; ipv4_flag[0] &= pkt[2]->packet_type; eth_hdr = rte_pktmbuf_mtod(pkt[3], struct rte_ether_hdr *); ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); x3 = ipv4_hdr->dst_addr; ipv4_flag[0] &= pkt[3]->packet_type; dip[0] = _mm_set_epi32(x3, x2, x1, x0); } /* * Lookup into LPM for destination port. * If lookup fails, use incoming port (portid) as destination port. */ static inline void processx4_step2(__m128i dip, uint32_t ipv4_flag, uint16_t portid, struct rte_mbuf *pkt[FWDSTEP], uint16_t dprt[FWDSTEP]) { rte_xmm_t dst; const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3); /* Byte swap 4 IPV4 addresses. */ dip = _mm_shuffle_epi8(dip, bswap_mask); /* if all 4 packets are IPV4. */ if (likely(ipv4_flag)) { rte_lpm_lookupx4(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dip, dst.u32, portid); /* get rid of unused upper 16 bit for each dport. */ dst.x = _mm_packs_epi32(dst.x, dst.x); *(uint64_t *)dprt = dst.u64[0]; } else { dst.x = dip; dprt[0] = get_dst_port(pkt[0], dst.u32[0], portid); dprt[1] = get_dst_port(pkt[1], dst.u32[1], portid); dprt[2] = get_dst_port(pkt[2], dst.u32[2], portid); dprt[3] = get_dst_port(pkt[3], dst.u32[3], portid); } } /* * Update source and destination MAC addresses in the ethernet header. * Perform RFC1812 checks and updates for IPV4 packets. */ static inline void processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP]) { __m128i te[FWDSTEP]; __m128i ve[FWDSTEP]; __m128i *p[FWDSTEP]; p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *); p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *); p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *); p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *); ve[0] = val_eth[dst_port[0]]; te[0] = _mm_load_si128(p[0]); ve[1] = val_eth[dst_port[1]]; te[1] = _mm_load_si128(p[1]); ve[2] = val_eth[dst_port[2]]; te[2] = _mm_load_si128(p[2]); ve[3] = val_eth[dst_port[3]]; te[3] = _mm_load_si128(p[3]); /* Update first 12 bytes, keep rest bytes intact. */ te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH); te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH); te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH); te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH); _mm_store_si128(p[0], te[0]); _mm_store_si128(p[1], te[1]); _mm_store_si128(p[2], te[2]); _mm_store_si128(p[3], te[3]); rfc1812_process((struct rte_ipv4_hdr *) ((struct rte_ether_hdr *)p[0] + 1), &dst_port[0], pkt[0]->packet_type); rfc1812_process((struct rte_ipv4_hdr *) ((struct rte_ether_hdr *)p[1] + 1), &dst_port[1], pkt[1]->packet_type); rfc1812_process((struct rte_ipv4_hdr *) ((struct rte_ether_hdr *)p[2] + 1), &dst_port[2], pkt[2]->packet_type); rfc1812_process((struct rte_ipv4_hdr *) ((struct rte_ether_hdr *)p[3] + 1), &dst_port[3], pkt[3]->packet_type); } /* * We group consecutive packets with the same destionation port into one burst. * To avoid extra latency this is done together with some other packet * processing, but after we made a final decision about packet's destination. * To do this we maintain: * pnum - array of number of consecutive packets with the same dest port for * each packet in the input burst. * lp - pointer to the last updated element in the pnum. * dlp - dest port value lp corresponds to. */ #define GRPSZ (1 << FWDSTEP) #define GRPMSK (GRPSZ - 1) #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \ if (likely((dlp) == (dcp)[(idx)])) { \ (lp)[0]++; \ } else { \ (dlp) = (dcp)[idx]; \ (lp) = (pn) + (idx); \ (lp)[0] = 1; \ } \ } while (0) /* * Group consecutive packets with the same destination port in bursts of 4. * Suppose we have array of destionation ports: * dst_port[] = {a, b, c, d,, e, ... } * dp1 should contain: , dp2: . * We doing 4 comparisons at once and the result is 4 bit mask. * This mask is used as an index into prebuild array of pnum values. */ static inline uint16_t * port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2) { static const struct { uint64_t pnum; /* prebuild 4 values for pnum[]. */ int32_t idx; /* index for new last updated elemnet. */ uint16_t lpv; /* add value to the last updated element. */ } gptbl[GRPSZ] = { { /* 0: a != b, b != c, c != d, d != e */ .pnum = UINT64_C(0x0001000100010001), .idx = 4, .lpv = 0, }, { /* 1: a == b, b != c, c != d, d != e */ .pnum = UINT64_C(0x0001000100010002), .idx = 4, .lpv = 1, }, { /* 2: a != b, b == c, c != d, d != e */ .pnum = UINT64_C(0x0001000100020001), .idx = 4, .lpv = 0, }, { /* 3: a == b, b == c, c != d, d != e */ .pnum = UINT64_C(0x0001000100020003), .idx = 4, .lpv = 2, }, { /* 4: a != b, b != c, c == d, d != e */ .pnum = UINT64_C(0x0001000200010001), .idx = 4, .lpv = 0, }, { /* 5: a == b, b != c, c == d, d != e */ .pnum = UINT64_C(0x0001000200010002), .idx = 4, .lpv = 1, }, { /* 6: a != b, b == c, c == d, d != e */ .pnum = UINT64_C(0x0001000200030001), .idx = 4, .lpv = 0, }, { /* 7: a == b, b == c, c == d, d != e */ .pnum = UINT64_C(0x0001000200030004), .idx = 4, .lpv = 3, }, { /* 8: a != b, b != c, c != d, d == e */ .pnum = UINT64_C(0x0002000100010001), .idx = 3, .lpv = 0, }, { /* 9: a == b, b != c, c != d, d == e */ .pnum = UINT64_C(0x0002000100010002), .idx = 3, .lpv = 1, }, { /* 0xa: a != b, b == c, c != d, d == e */ .pnum = UINT64_C(0x0002000100020001), .idx = 3, .lpv = 0, }, { /* 0xb: a == b, b == c, c != d, d == e */ .pnum = UINT64_C(0x0002000100020003), .idx = 3, .lpv = 2, }, { /* 0xc: a != b, b != c, c == d, d == e */ .pnum = UINT64_C(0x0002000300010001), .idx = 2, .lpv = 0, }, { /* 0xd: a == b, b != c, c == d, d == e */ .pnum = UINT64_C(0x0002000300010002), .idx = 2, .lpv = 1, }, { /* 0xe: a != b, b == c, c == d, d == e */ .pnum = UINT64_C(0x0002000300040001), .idx = 1, .lpv = 0, }, { /* 0xf: a == b, b == c, c == d, d == e */ .pnum = UINT64_C(0x0002000300040005), .idx = 0, .lpv = 4, }, }; union { uint16_t u16[FWDSTEP + 1]; uint64_t u64; } *pnum = (void *)pn; int32_t v; dp1 = _mm_cmpeq_epi16(dp1, dp2); dp1 = _mm_unpacklo_epi16(dp1, dp1); v = _mm_movemask_ps((__m128)dp1); /* update last port counter. */ lp[0] += gptbl[v].lpv; /* if dest port value has changed. */ if (v != GRPMSK) { pnum->u64 = gptbl[v].pnum; pnum->u16[FWDSTEP] = 1; lp = pnum->u16 + gptbl[v].idx; } return lp; } #endif /* APP_LOOKUP_METHOD */ static void process_burst(struct rte_mbuf *pkts_burst[MAX_PKT_BURST], int nb_rx, uint16_t portid) { int j; #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) int32_t k; uint16_t dlp; uint16_t *lp; uint16_t dst_port[MAX_PKT_BURST]; __m128i dip[MAX_PKT_BURST / FWDSTEP]; uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP]; uint16_t pnum[MAX_PKT_BURST + 1]; #endif #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1) #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) { /* * Send nb_rx - nb_rx%8 packets * in groups of 8. */ int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8); for (j = 0; j < n; j += 8) { uint32_t pkt_type = pkts_burst[j]->packet_type & pkts_burst[j+1]->packet_type & pkts_burst[j+2]->packet_type & pkts_burst[j+3]->packet_type & pkts_burst[j+4]->packet_type & pkts_burst[j+5]->packet_type & pkts_burst[j+6]->packet_type & pkts_burst[j+7]->packet_type; if (pkt_type & RTE_PTYPE_L3_IPV4) { simple_ipv4_fwd_8pkts(&pkts_burst[j], portid); } else if (pkt_type & RTE_PTYPE_L3_IPV6) { simple_ipv6_fwd_8pkts(&pkts_burst[j], portid); } else { l3fwd_simple_forward(pkts_burst[j], portid); l3fwd_simple_forward(pkts_burst[j+1], portid); l3fwd_simple_forward(pkts_burst[j+2], portid); l3fwd_simple_forward(pkts_burst[j+3], portid); l3fwd_simple_forward(pkts_burst[j+4], portid); l3fwd_simple_forward(pkts_burst[j+5], portid); l3fwd_simple_forward(pkts_burst[j+6], portid); l3fwd_simple_forward(pkts_burst[j+7], portid); } } for (; j < nb_rx ; j++) l3fwd_simple_forward(pkts_burst[j], portid); } #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); for (j = 0; j != k; j += FWDSTEP) processx4_step1(&pkts_burst[j], &dip[j / FWDSTEP], &ipv4_flag[j / FWDSTEP]); k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); for (j = 0; j != k; j += FWDSTEP) processx4_step2(dip[j / FWDSTEP], ipv4_flag[j / FWDSTEP], portid, &pkts_burst[j], &dst_port[j]); /* * Finish packet processing and group consecutive * packets with the same destination port. */ k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); if (k != 0) { __m128i dp1, dp2; lp = pnum; lp[0] = 1; processx4_step3(pkts_burst, dst_port); /* dp1: */ dp1 = _mm_loadu_si128((__m128i *)dst_port); for (j = FWDSTEP; j != k; j += FWDSTEP) { processx4_step3(&pkts_burst[j], &dst_port[j]); /* * dp2: * */ dp2 = _mm_loadu_si128( (__m128i *)&dst_port[j - FWDSTEP + 1]); lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2); /* * dp1: * */ dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) * sizeof(dst_port[0])); } /* * dp2: */ dp2 = _mm_shufflelo_epi16(dp1, 0xf9); lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2); /* * remove values added by the last repeated * dst port. */ lp[0]--; dlp = dst_port[j - 1]; } else { /* set dlp and lp to the never used values. */ dlp = BAD_PORT - 1; lp = pnum + MAX_PKT_BURST; } /* Process up to last 3 packets one by one. */ switch (nb_rx % FWDSTEP) { case 3: process_packet(pkts_burst[j], dst_port + j, portid); GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); j++; /* fall-through */ case 2: process_packet(pkts_burst[j], dst_port + j, portid); GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); j++; /* fall-through */ case 1: process_packet(pkts_burst[j], dst_port + j, portid); GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); j++; } /* * Send packets out, through destination port. * Consecuteve pacekts with the same destination port * are already grouped together. * If destination port for the packet equals BAD_PORT, * then free the packet without sending it out. */ for (j = 0; j < nb_rx; j += k) { int32_t m; uint16_t pn; pn = dst_port[j]; k = pnum[j]; if (likely(pn != BAD_PORT)) send_packetsx4(pn, pkts_burst + j, k); else for (m = j; m != j + k; m++) rte_pktmbuf_free(pkts_burst[m]); } #endif /* APP_LOOKUP_METHOD */ #else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */ /* Prefetch first packets */ for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *)); /* Prefetch and forward already prefetched packets */ for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ j + PREFETCH_OFFSET], void *)); l3fwd_simple_forward(pkts_burst[j], portid); } /* Forward remaining prefetched packets */ for (; j < nb_rx; j++) l3fwd_simple_forward(pkts_burst[j], portid); #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */ } #if (APP_CPU_LOAD > 0) /* * CPU-load stats collector */ static int __attribute__((noreturn)) cpu_load_collector(__rte_unused void *arg) { unsigned i, j, k; uint64_t prev_tsc, diff_tsc, cur_tsc; uint64_t total[MAX_CPU] = { 0 }; unsigned min_cpu = MAX_CPU; unsigned max_cpu = 0; unsigned cpu_id; int busy_total = 0; int busy_flag = 0; unsigned int n_thread_per_cpu[MAX_CPU] = { 0 }; struct thread_conf *thread_per_cpu[MAX_CPU][MAX_THREAD]; struct thread_conf *thread_conf; const uint64_t interval_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * CPU_LOAD_TIMEOUT_US; prev_tsc = 0; /* * Wait for all threads */ printf("Waiting for %d rx threads and %d tx threads\n", n_rx_thread, n_tx_thread); while (rte_atomic16_read(&rx_counter) < n_rx_thread) rte_pause(); while (rte_atomic16_read(&tx_counter) < n_tx_thread) rte_pause(); for (i = 0; i < n_rx_thread; i++) { thread_conf = &rx_thread[i].conf; cpu_id = thread_conf->cpu_id; thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf; if (cpu_id > max_cpu) max_cpu = cpu_id; if (cpu_id < min_cpu) min_cpu = cpu_id; } for (i = 0; i < n_tx_thread; i++) { thread_conf = &tx_thread[i].conf; cpu_id = thread_conf->cpu_id; thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf; if (thread_conf->cpu_id > max_cpu) max_cpu = thread_conf->cpu_id; if (thread_conf->cpu_id < min_cpu) min_cpu = thread_conf->cpu_id; } while (1) { cpu_load.counter++; for (i = min_cpu; i <= max_cpu; i++) { for (j = 0; j < MAX_CPU_COUNTER; j++) { for (k = 0; k < n_thread_per_cpu[i]; k++) if (thread_per_cpu[i][k]->busy[j]) { busy_flag = 1; break; } if (busy_flag) { cpu_load.hits[j][i]++; busy_total = 1; busy_flag = 0; } } if (busy_total) { total[i]++; busy_total = 0; } } cur_tsc = rte_rdtsc(); diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > interval_tsc)) { printf("\033c"); printf("Cpu usage for %d rx threads and %d tx threads:\n\n", n_rx_thread, n_tx_thread); printf("cpu# proc%% poll%% overhead%%\n\n"); for (i = min_cpu; i <= max_cpu; i++) { printf("CPU %d:", i); for (j = 0; j < MAX_CPU_COUNTER; j++) { printf("%7" PRIu64 "", cpu_load.hits[j][i] * 100 / cpu_load.counter); cpu_load.hits[j][i] = 0; } printf("%7" PRIu64 "\n", 100 - total[i] * 100 / cpu_load.counter); total[i] = 0; } cpu_load.counter = 0; prev_tsc = cur_tsc; } } } #endif /* APP_CPU_LOAD */ /* * Null processing lthread loop * * This loop is used to start empty scheduler on lcore. */ static void * lthread_null(__rte_unused void *args) { int lcore_id = rte_lcore_id(); RTE_LOG(INFO, L3FWD, "Starting scheduler on lcore %d.\n", lcore_id); lthread_exit(NULL); return NULL; } /* main processing loop */ static void * lthread_tx_per_ring(void *dummy) { int nb_rx; uint16_t portid; struct rte_ring *ring; struct thread_tx_conf *tx_conf; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct lthread_cond *ready; tx_conf = (struct thread_tx_conf *)dummy; ring = tx_conf->ring; ready = *tx_conf->ready; lthread_set_data((void *)tx_conf); /* * Move this lthread to lcore */ lthread_set_affinity(tx_conf->conf.lcore_id); RTE_LOG(INFO, L3FWD, "entering main tx loop on lcore %u\n", rte_lcore_id()); nb_rx = 0; rte_atomic16_inc(&tx_counter); while (1) { /* * Read packet from ring */ SET_CPU_BUSY(tx_conf, CPU_POLL); nb_rx = rte_ring_sc_dequeue_burst(ring, (void **)pkts_burst, MAX_PKT_BURST, NULL); SET_CPU_IDLE(tx_conf, CPU_POLL); if (nb_rx > 0) { SET_CPU_BUSY(tx_conf, CPU_PROCESS); portid = pkts_burst[0]->port; process_burst(pkts_burst, nb_rx, portid); SET_CPU_IDLE(tx_conf, CPU_PROCESS); lthread_yield(); } else lthread_cond_wait(ready, 0); } return NULL; } /* * Main tx-lthreads spawner lthread. * * This lthread is used to spawn one new lthread per ring from producers. * */ static void * lthread_tx(void *args) { struct lthread *lt; unsigned lcore_id; uint16_t portid; struct thread_tx_conf *tx_conf; tx_conf = (struct thread_tx_conf *)args; lthread_set_data((void *)tx_conf); /* * Move this lthread to the selected lcore */ lthread_set_affinity(tx_conf->conf.lcore_id); /* * Spawn tx readers (one per input ring) */ lthread_create(<, tx_conf->conf.lcore_id, lthread_tx_per_ring, (void *)tx_conf); lcore_id = rte_lcore_id(); RTE_LOG(INFO, L3FWD, "Entering Tx main loop on lcore %u\n", lcore_id); tx_conf->conf.cpu_id = sched_getcpu(); while (1) { lthread_sleep(BURST_TX_DRAIN_US * 1000); /* * TX burst queue drain */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { if (tx_conf->tx_mbufs[portid].len == 0) continue; SET_CPU_BUSY(tx_conf, CPU_PROCESS); send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid); SET_CPU_IDLE(tx_conf, CPU_PROCESS); tx_conf->tx_mbufs[portid].len = 0; } } return NULL; } static void * lthread_rx(void *dummy) { int ret; uint16_t nb_rx; int i; uint16_t portid; uint8_t queueid; int worker_id; int len[RTE_MAX_LCORE] = { 0 }; int old_len, new_len; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct thread_rx_conf *rx_conf; rx_conf = (struct thread_rx_conf *)dummy; lthread_set_data((void *)rx_conf); /* * Move this lthread to lcore */ lthread_set_affinity(rx_conf->conf.lcore_id); if (rx_conf->n_rx_queue == 0) { RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", rte_lcore_id()); return NULL; } RTE_LOG(INFO, L3FWD, "Entering main Rx loop on lcore %u\n", rte_lcore_id()); for (i = 0; i < rx_conf->n_rx_queue; i++) { portid = rx_conf->rx_queue_list[i].port_id; queueid = rx_conf->rx_queue_list[i].queue_id; RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", rte_lcore_id(), portid, queueid); } /* * Init all condition variables (one per rx thread) */ for (i = 0; i < rx_conf->n_rx_queue; i++) lthread_cond_init(NULL, &rx_conf->ready[i], NULL); worker_id = 0; rx_conf->conf.cpu_id = sched_getcpu(); rte_atomic16_inc(&rx_counter); while (1) { /* * Read packet from RX queues */ for (i = 0; i < rx_conf->n_rx_queue; ++i) { portid = rx_conf->rx_queue_list[i].port_id; queueid = rx_conf->rx_queue_list[i].queue_id; SET_CPU_BUSY(rx_conf, CPU_POLL); nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST); SET_CPU_IDLE(rx_conf, CPU_POLL); if (nb_rx != 0) { worker_id = (worker_id + 1) % rx_conf->n_ring; old_len = len[worker_id]; SET_CPU_BUSY(rx_conf, CPU_PROCESS); ret = rte_ring_sp_enqueue_burst( rx_conf->ring[worker_id], (void **) pkts_burst, nb_rx, NULL); new_len = old_len + ret; if (new_len >= BURST_SIZE) { lthread_cond_signal(rx_conf->ready[worker_id]); new_len = 0; } len[worker_id] = new_len; if (unlikely(ret < nb_rx)) { uint32_t k; for (k = ret; k < nb_rx; k++) { struct rte_mbuf *m = pkts_burst[k]; rte_pktmbuf_free(m); } } SET_CPU_IDLE(rx_conf, CPU_PROCESS); } lthread_yield(); } } return NULL; } /* * Start scheduler with initial lthread on lcore * * This lthread loop spawns all rx and tx lthreads on master lcore */ static void * lthread_spawner(__rte_unused void *arg) { struct lthread *lt[MAX_THREAD]; int i; int n_thread = 0; printf("Entering lthread_spawner\n"); /* * Create producers (rx threads) on default lcore */ for (i = 0; i < n_rx_thread; i++) { rx_thread[i].conf.thread_id = i; lthread_create(<[n_thread], -1, lthread_rx, (void *)&rx_thread[i]); n_thread++; } /* * Wait for all producers. Until some producers can be started on the same * scheduler as this lthread, yielding is required to let them to run and * prevent deadlock here. */ while (rte_atomic16_read(&rx_counter) < n_rx_thread) lthread_sleep(100000); /* * Create consumers (tx threads) on default lcore_id */ for (i = 0; i < n_tx_thread; i++) { tx_thread[i].conf.thread_id = i; lthread_create(<[n_thread], -1, lthread_tx, (void *)&tx_thread[i]); n_thread++; } /* * Wait for all threads finished */ for (i = 0; i < n_thread; i++) lthread_join(lt[i], NULL); return NULL; } /* * Start master scheduler with initial lthread spawning rx and tx lthreads * (main_lthread_master). */ static int lthread_master_spawner(__rte_unused void *arg) { struct lthread *lt; int lcore_id = rte_lcore_id(); RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; lthread_create(<, -1, lthread_spawner, NULL); lthread_run(); return 0; } /* * Start scheduler on lcore. */ static int sched_spawner(__rte_unused void *arg) { struct lthread *lt; int lcore_id = rte_lcore_id(); #if (APP_CPU_LOAD) if (lcore_id == cpu_load_lcore_id) { cpu_load_collector(arg); return 0; } #endif /* APP_CPU_LOAD */ RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; lthread_create(<, -1, lthread_null, NULL); lthread_run(); return 0; } /* main processing loop */ static int __attribute__((noreturn)) pthread_tx(void *dummy) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; uint64_t prev_tsc, diff_tsc, cur_tsc; int nb_rx; uint16_t portid; struct thread_tx_conf *tx_conf; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; prev_tsc = 0; tx_conf = (struct thread_tx_conf *)dummy; RTE_LOG(INFO, L3FWD, "Entering main Tx loop on lcore %u\n", rte_lcore_id()); tx_conf->conf.cpu_id = sched_getcpu(); rte_atomic16_inc(&tx_counter); while (1) { cur_tsc = rte_rdtsc(); /* * TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { /* * This could be optimized (use queueid instead of * portid), but it is not called so often */ SET_CPU_BUSY(tx_conf, CPU_PROCESS); for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { if (tx_conf->tx_mbufs[portid].len == 0) continue; send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid); tx_conf->tx_mbufs[portid].len = 0; } SET_CPU_IDLE(tx_conf, CPU_PROCESS); prev_tsc = cur_tsc; } /* * Read packet from ring */ SET_CPU_BUSY(tx_conf, CPU_POLL); nb_rx = rte_ring_sc_dequeue_burst(tx_conf->ring, (void **)pkts_burst, MAX_PKT_BURST, NULL); SET_CPU_IDLE(tx_conf, CPU_POLL); if (unlikely(nb_rx == 0)) { sched_yield(); continue; } SET_CPU_BUSY(tx_conf, CPU_PROCESS); portid = pkts_burst[0]->port; process_burst(pkts_burst, nb_rx, portid); SET_CPU_IDLE(tx_conf, CPU_PROCESS); } } static int pthread_rx(void *dummy) { int i; int worker_id; uint32_t n; uint32_t nb_rx; unsigned lcore_id; uint8_t queueid; uint16_t portid; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct thread_rx_conf *rx_conf; lcore_id = rte_lcore_id(); rx_conf = (struct thread_rx_conf *)dummy; if (rx_conf->n_rx_queue == 0) { RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, L3FWD, "entering main rx loop on lcore %u\n", lcore_id); for (i = 0; i < rx_conf->n_rx_queue; i++) { portid = rx_conf->rx_queue_list[i].port_id; queueid = rx_conf->rx_queue_list[i].queue_id; RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", lcore_id, portid, queueid); } worker_id = 0; rx_conf->conf.cpu_id = sched_getcpu(); rte_atomic16_inc(&rx_counter); while (1) { /* * Read packet from RX queues */ for (i = 0; i < rx_conf->n_rx_queue; ++i) { portid = rx_conf->rx_queue_list[i].port_id; queueid = rx_conf->rx_queue_list[i].queue_id; SET_CPU_BUSY(rx_conf, CPU_POLL); nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST); SET_CPU_IDLE(rx_conf, CPU_POLL); if (nb_rx == 0) { sched_yield(); continue; } SET_CPU_BUSY(rx_conf, CPU_PROCESS); worker_id = (worker_id + 1) % rx_conf->n_ring; n = rte_ring_sp_enqueue_burst(rx_conf->ring[worker_id], (void **)pkts_burst, nb_rx, NULL); if (unlikely(n != nb_rx)) { uint32_t k; for (k = n; k < nb_rx; k++) { struct rte_mbuf *m = pkts_burst[k]; rte_pktmbuf_free(m); } } SET_CPU_IDLE(rx_conf, CPU_PROCESS); } } } /* * P-Thread spawner. */ static int pthread_run(__rte_unused void *arg) { int lcore_id = rte_lcore_id(); int i; for (i = 0; i < n_rx_thread; i++) if (rx_thread[i].conf.lcore_id == lcore_id) { printf("Start rx thread on %d...\n", lcore_id); RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; RTE_PER_LCORE(lcore_conf)->data = (void *)&rx_thread[i]; pthread_rx((void *)&rx_thread[i]); return 0; } for (i = 0; i < n_tx_thread; i++) if (tx_thread[i].conf.lcore_id == lcore_id) { printf("Start tx thread on %d...\n", lcore_id); RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id]; RTE_PER_LCORE(lcore_conf)->data = (void *)&tx_thread[i]; pthread_tx((void *)&tx_thread[i]); return 0; } #if (APP_CPU_LOAD) if (lcore_id == cpu_load_lcore_id) cpu_load_collector(arg); #endif /* APP_CPU_LOAD */ return 0; } static int check_lcore_params(void) { uint8_t queue, lcore; uint16_t i; int socketid; for (i = 0; i < nb_rx_thread_params; ++i) { queue = rx_thread_params[i].queue_id; if (queue >= MAX_RX_QUEUE_PER_PORT) { printf("invalid queue number: %hhu\n", queue); return -1; } lcore = rx_thread_params[i].lcore_id; if (!rte_lcore_is_enabled(lcore)) { printf("error: lcore %hhu is not enabled in lcore mask\n", lcore); return -1; } socketid = rte_lcore_to_socket_id(lcore); if ((socketid != 0) && (numa_on == 0)) printf("warning: lcore %hhu is on socket %d with numa off\n", lcore, socketid); } return 0; } static int check_port_config(void) { unsigned portid; uint16_t i; for (i = 0; i < nb_rx_thread_params; ++i) { portid = rx_thread_params[i].port_id; if ((enabled_port_mask & (1 << portid)) == 0) { printf("port %u is not enabled in port mask\n", portid); return -1; } if (!rte_eth_dev_is_valid_port(portid)) { printf("port %u is not present on the board\n", portid); return -1; } } return 0; } static uint8_t get_port_n_rx_queues(const uint16_t port) { int queue = -1; uint16_t i; for (i = 0; i < nb_rx_thread_params; ++i) if (rx_thread_params[i].port_id == port && rx_thread_params[i].queue_id > queue) queue = rx_thread_params[i].queue_id; return (uint8_t)(++queue); } static int init_rx_rings(void) { unsigned socket_io; struct thread_rx_conf *rx_conf; struct thread_tx_conf *tx_conf; unsigned rx_thread_id, tx_thread_id; char name[256]; struct rte_ring *ring = NULL; for (tx_thread_id = 0; tx_thread_id < n_tx_thread; tx_thread_id++) { tx_conf = &tx_thread[tx_thread_id]; printf("Connecting tx-thread %d with rx-thread %d\n", tx_thread_id, tx_conf->conf.thread_id); rx_thread_id = tx_conf->conf.thread_id; if (rx_thread_id > n_tx_thread) { printf("connection from tx-thread %u to rx-thread %u fails " "(rx-thread not defined)\n", tx_thread_id, rx_thread_id); return -1; } rx_conf = &rx_thread[rx_thread_id]; socket_io = rte_lcore_to_socket_id(rx_conf->conf.lcore_id); snprintf(name, sizeof(name), "app_ring_s%u_rx%u_tx%u", socket_io, rx_thread_id, tx_thread_id); ring = rte_ring_create(name, 1024 * 4, socket_io, RING_F_SP_ENQ | RING_F_SC_DEQ); if (ring == NULL) { rte_panic("Cannot create ring to connect rx-thread %u " "with tx-thread %u\n", rx_thread_id, tx_thread_id); } rx_conf->ring[rx_conf->n_ring] = ring; tx_conf->ring = ring; tx_conf->ready = &rx_conf->ready[rx_conf->n_ring]; rx_conf->n_ring++; } return 0; } static int init_rx_queues(void) { uint16_t i, nb_rx_queue; uint8_t thread; n_rx_thread = 0; for (i = 0; i < nb_rx_thread_params; ++i) { thread = rx_thread_params[i].thread_id; nb_rx_queue = rx_thread[thread].n_rx_queue; if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { printf("error: too many queues (%u) for thread: %u\n", (unsigned)nb_rx_queue + 1, (unsigned)thread); return -1; } rx_thread[thread].conf.thread_id = thread; rx_thread[thread].conf.lcore_id = rx_thread_params[i].lcore_id; rx_thread[thread].rx_queue_list[nb_rx_queue].port_id = rx_thread_params[i].port_id; rx_thread[thread].rx_queue_list[nb_rx_queue].queue_id = rx_thread_params[i].queue_id; rx_thread[thread].n_rx_queue++; if (thread >= n_rx_thread) n_rx_thread = thread + 1; } return 0; } static int init_tx_threads(void) { int i; n_tx_thread = 0; for (i = 0; i < nb_tx_thread_params; ++i) { tx_thread[n_tx_thread].conf.thread_id = tx_thread_params[i].thread_id; tx_thread[n_tx_thread].conf.lcore_id = tx_thread_params[i].lcore_id; n_tx_thread++; } return 0; } /* display usage */ static void print_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK -P" " [--rx (port,queue,lcore,thread)[,(port,queue,lcore,thread]]" " [--tx (lcore,thread)[,(lcore,thread]]" " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" " [--parse-ptype]\n\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -P : enable promiscuous mode\n" " --rx (port,queue,lcore,thread): rx queues configuration\n" " --tx (lcore,thread): tx threads configuration\n" " --stat-lcore LCORE: use lcore for stat collector\n" " --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n" " --no-numa: optional, disable numa awareness\n" " --ipv6: optional, specify it if running ipv6 packets\n" " --enable-jumbo: enable jumbo frame" " which max packet len is PKTLEN in decimal (64-9600)\n" " --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n" " --no-lthreads: turn off lthread model\n" " --parse-ptype: set to use software to analyze packet type\n\n", prgname); } static int parse_max_pkt_len(const char *pktlen) { char *end = NULL; unsigned long len; /* parse decimal string */ len = strtoul(pktlen, &end, 10); if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (len == 0) return -1; return len; } static int parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return -1; return pm; } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static int parse_hash_entry_number(const char *hash_entry_num) { char *end = NULL; unsigned long hash_en; /* parse hexadecimal string */ hash_en = strtoul(hash_entry_num, &end, 16); if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (hash_en == 0) return -1; return hash_en; } #endif static int parse_rx_config(const char *q_arg) { char s[256]; const char *p, *p0 = q_arg; char *end; enum fieldnames { FLD_PORT = 0, FLD_QUEUE, FLD_LCORE, FLD_THREAD, _NUM_FLD }; unsigned long int_fld[_NUM_FLD]; char *str_fld[_NUM_FLD]; int i; unsigned size; nb_rx_thread_params = 0; while ((p = strchr(p0, '(')) != NULL) { ++p; p0 = strchr(p, ')'); if (p0 == NULL) return -1; size = p0 - p; if (size >= sizeof(s)) return -1; snprintf(s, sizeof(s), "%.*s", size, p); if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) return -1; for (i = 0; i < _NUM_FLD; i++) { errno = 0; int_fld[i] = strtoul(str_fld[i], &end, 0); if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) return -1; } if (nb_rx_thread_params >= MAX_LCORE_PARAMS) { printf("exceeded max number of rx params: %hu\n", nb_rx_thread_params); return -1; } rx_thread_params_array[nb_rx_thread_params].port_id = int_fld[FLD_PORT]; rx_thread_params_array[nb_rx_thread_params].queue_id = (uint8_t)int_fld[FLD_QUEUE]; rx_thread_params_array[nb_rx_thread_params].lcore_id = (uint8_t)int_fld[FLD_LCORE]; rx_thread_params_array[nb_rx_thread_params].thread_id = (uint8_t)int_fld[FLD_THREAD]; ++nb_rx_thread_params; } rx_thread_params = rx_thread_params_array; return 0; } static int parse_tx_config(const char *q_arg) { char s[256]; const char *p, *p0 = q_arg; char *end; enum fieldnames { FLD_LCORE = 0, FLD_THREAD, _NUM_FLD }; unsigned long int_fld[_NUM_FLD]; char *str_fld[_NUM_FLD]; int i; unsigned size; nb_tx_thread_params = 0; while ((p = strchr(p0, '(')) != NULL) { ++p; p0 = strchr(p, ')'); if (p0 == NULL) return -1; size = p0 - p; if (size >= sizeof(s)) return -1; snprintf(s, sizeof(s), "%.*s", size, p); if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) return -1; for (i = 0; i < _NUM_FLD; i++) { errno = 0; int_fld[i] = strtoul(str_fld[i], &end, 0); if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) return -1; } if (nb_tx_thread_params >= MAX_LCORE_PARAMS) { printf("exceeded max number of tx params: %hu\n", nb_tx_thread_params); return -1; } tx_thread_params_array[nb_tx_thread_params].lcore_id = (uint8_t)int_fld[FLD_LCORE]; tx_thread_params_array[nb_tx_thread_params].thread_id = (uint8_t)int_fld[FLD_THREAD]; ++nb_tx_thread_params; } tx_thread_params = tx_thread_params_array; return 0; } #if (APP_CPU_LOAD > 0) static int parse_stat_lcore(const char *stat_lcore) { char *end = NULL; unsigned long lcore_id; lcore_id = strtoul(stat_lcore, &end, 10); if ((stat_lcore[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; return lcore_id; } #endif static void parse_eth_dest(const char *optarg) { uint16_t portid; char *port_end; uint8_t c, *dest, peer_addr[6]; errno = 0; portid = strtoul(optarg, &port_end, 10); if (errno != 0 || port_end == optarg || *port_end++ != ',') rte_exit(EXIT_FAILURE, "Invalid eth-dest: %s", optarg); if (portid >= RTE_MAX_ETHPORTS) rte_exit(EXIT_FAILURE, "eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n", portid, RTE_MAX_ETHPORTS); if (cmdline_parse_etheraddr(NULL, port_end, &peer_addr, sizeof(peer_addr)) < 0) rte_exit(EXIT_FAILURE, "Invalid ethernet address: %s\n", port_end); dest = (uint8_t *)&dest_eth_addr[portid]; for (c = 0; c < 6; c++) dest[c] = peer_addr[c]; *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid]; } #define CMD_LINE_OPT_RX_CONFIG "rx" #define CMD_LINE_OPT_TX_CONFIG "tx" #define CMD_LINE_OPT_STAT_LCORE "stat-lcore" #define CMD_LINE_OPT_ETH_DEST "eth-dest" #define CMD_LINE_OPT_NO_NUMA "no-numa" #define CMD_LINE_OPT_IPV6 "ipv6" #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo" #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num" #define CMD_LINE_OPT_NO_LTHREADS "no-lthreads" #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype" /* Parse the argument given in the command line of the application */ static int parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {CMD_LINE_OPT_RX_CONFIG, 1, 0, 0}, {CMD_LINE_OPT_TX_CONFIG, 1, 0, 0}, {CMD_LINE_OPT_STAT_LCORE, 1, 0, 0}, {CMD_LINE_OPT_ETH_DEST, 1, 0, 0}, {CMD_LINE_OPT_NO_NUMA, 0, 0, 0}, {CMD_LINE_OPT_IPV6, 0, 0, 0}, {CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0}, {CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0}, {CMD_LINE_OPT_NO_LTHREADS, 0, 0, 0}, {CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0}, {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:P", lgopts, &option_index)) != EOF) { switch (opt) { /* portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; case 'P': printf("Promiscuous mode selected\n"); promiscuous_on = 1; break; /* long options */ case 0: if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_RX_CONFIG, sizeof(CMD_LINE_OPT_RX_CONFIG))) { ret = parse_rx_config(optarg); if (ret) { printf("invalid rx-config\n"); print_usage(prgname); return -1; } } if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_TX_CONFIG, sizeof(CMD_LINE_OPT_TX_CONFIG))) { ret = parse_tx_config(optarg); if (ret) { printf("invalid tx-config\n"); print_usage(prgname); return -1; } } #if (APP_CPU_LOAD > 0) if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_STAT_LCORE, sizeof(CMD_LINE_OPT_STAT_LCORE))) { cpu_load_lcore_id = parse_stat_lcore(optarg); } #endif if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST, sizeof(CMD_LINE_OPT_ETH_DEST))) parse_eth_dest(optarg); if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA, sizeof(CMD_LINE_OPT_NO_NUMA))) { printf("numa is disabled\n"); numa_on = 0; } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6, sizeof(CMD_LINE_OPT_IPV6))) { printf("ipv6 is specified\n"); ipv6 = 1; } #endif if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_LTHREADS, sizeof(CMD_LINE_OPT_NO_LTHREADS))) { printf("l-threads model is disabled\n"); lthreads_on = 0; } if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_PARSE_PTYPE, sizeof(CMD_LINE_OPT_PARSE_PTYPE))) { printf("software packet type parsing enabled\n"); parse_ptype_on = 1; } if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO, sizeof(CMD_LINE_OPT_ENABLE_JUMBO))) { struct option lenopts = {"max-pkt-len", required_argument, 0, 0}; printf("jumbo frame is enabled - disabling simple TX path\n"); port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS; /* if no max-pkt-len set, use the default value * RTE_ETHER_MAX_LEN */ if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) { ret = parse_max_pkt_len(optarg); if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)) { printf("invalid packet length\n"); print_usage(prgname); return -1; } port_conf.rxmode.max_rx_pkt_len = ret; } printf("set jumbo frame max packet length to %u\n", (unsigned int)port_conf.rxmode.max_rx_pkt_len); } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM, sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) { ret = parse_hash_entry_number(optarg); if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) { hash_entry_number = ret; } else { printf("invalid hash entry number\n"); print_usage(prgname); return -1; } } #endif break; default: print_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ return ret; } static void print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr) { char buf[RTE_ETHER_ADDR_FMT_SIZE]; rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static void convert_ipv4_5tuple(struct ipv4_5tuple *key1, union ipv4_5tuple_host *key2) { key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst); key2->ip_src = rte_cpu_to_be_32(key1->ip_src); key2->port_dst = rte_cpu_to_be_16(key1->port_dst); key2->port_src = rte_cpu_to_be_16(key1->port_src); key2->proto = key1->proto; key2->pad0 = 0; key2->pad1 = 0; } static void convert_ipv6_5tuple(struct ipv6_5tuple *key1, union ipv6_5tuple_host *key2) { uint32_t i; for (i = 0; i < 16; i++) { key2->ip_dst[i] = key1->ip_dst[i]; key2->ip_src[i] = key1->ip_src[i]; } key2->port_dst = rte_cpu_to_be_16(key1->port_dst); key2->port_src = rte_cpu_to_be_16(key1->port_src); key2->proto = key1->proto; key2->pad0 = 0; key2->pad1 = 0; key2->reserve = 0; } #define BYTE_VALUE_MAX 256 #define ALL_32_BITS 0xffffffff #define BIT_8_TO_15 0x0000ff00 static inline void populate_ipv4_few_flow_into_table(const struct rte_hash *h) { uint32_t i; int32_t ret; uint32_t array_len = RTE_DIM(ipv4_l3fwd_route_array); mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15); for (i = 0; i < array_len; i++) { struct ipv4_l3fwd_route entry; union ipv4_5tuple_host newkey; entry = ipv4_l3fwd_route_array[i]; convert_ipv4_5tuple(&entry.key, &newkey); ret = rte_hash_add_key(h, (void *)&newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 " to the l3fwd hash.\n", i); } ipv4_l3fwd_out_if[ret] = entry.if_out; } printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len); } #define BIT_16_TO_23 0x00ff0000 static inline void populate_ipv6_few_flow_into_table(const struct rte_hash *h) { uint32_t i; int32_t ret; uint32_t array_len = RTE_DIM(ipv6_l3fwd_route_array); mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23); mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS); for (i = 0; i < array_len; i++) { struct ipv6_l3fwd_route entry; union ipv6_5tuple_host newkey; entry = ipv6_l3fwd_route_array[i]; convert_ipv6_5tuple(&entry.key, &newkey); ret = rte_hash_add_key(h, (void *)&newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 " to the l3fwd hash.\n", i); } ipv6_l3fwd_out_if[ret] = entry.if_out; } printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len); } #define NUMBER_PORT_USED 4 static inline void populate_ipv4_many_flow_into_table(const struct rte_hash *h, unsigned int nr_flow) { unsigned i; mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15); for (i = 0; i < nr_flow; i++) { struct ipv4_l3fwd_route entry; union ipv4_5tuple_host newkey; uint8_t a = (uint8_t)((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX); uint8_t b = (uint8_t)(((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) % BYTE_VALUE_MAX); uint8_t c = (uint8_t)((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX * BYTE_VALUE_MAX)); /* Create the ipv4 exact match flow */ memset(&entry, 0, sizeof(entry)); switch (i & (NUMBER_PORT_USED - 1)) { case 0: entry = ipv4_l3fwd_route_array[0]; entry.key.ip_dst = RTE_IPV4(101, c, b, a); break; case 1: entry = ipv4_l3fwd_route_array[1]; entry.key.ip_dst = RTE_IPV4(201, c, b, a); break; case 2: entry = ipv4_l3fwd_route_array[2]; entry.key.ip_dst = RTE_IPV4(111, c, b, a); break; case 3: entry = ipv4_l3fwd_route_array[3]; entry.key.ip_dst = RTE_IPV4(211, c, b, a); break; }; convert_ipv4_5tuple(&entry.key, &newkey); int32_t ret = rte_hash_add_key(h, (void *)&newkey); if (ret < 0) rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); ipv4_l3fwd_out_if[ret] = (uint8_t)entry.if_out; } printf("Hash: Adding 0x%x keys\n", nr_flow); } static inline void populate_ipv6_many_flow_into_table(const struct rte_hash *h, unsigned int nr_flow) { unsigned i; mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23); mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS); for (i = 0; i < nr_flow; i++) { struct ipv6_l3fwd_route entry; union ipv6_5tuple_host newkey; uint8_t a = (uint8_t) ((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX); uint8_t b = (uint8_t) (((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) % BYTE_VALUE_MAX); uint8_t c = (uint8_t) ((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX * BYTE_VALUE_MAX)); /* Create the ipv6 exact match flow */ memset(&entry, 0, sizeof(entry)); switch (i & (NUMBER_PORT_USED - 1)) { case 0: entry = ipv6_l3fwd_route_array[0]; break; case 1: entry = ipv6_l3fwd_route_array[1]; break; case 2: entry = ipv6_l3fwd_route_array[2]; break; case 3: entry = ipv6_l3fwd_route_array[3]; break; }; entry.key.ip_dst[13] = c; entry.key.ip_dst[14] = b; entry.key.ip_dst[15] = a; convert_ipv6_5tuple(&entry.key, &newkey); int32_t ret = rte_hash_add_key(h, (void *)&newkey); if (ret < 0) rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out; } printf("Hash: Adding 0x%x keys\n", nr_flow); } static void setup_hash(int socketid) { struct rte_hash_parameters ipv4_l3fwd_hash_params = { .name = NULL, .entries = L3FWD_HASH_ENTRIES, .key_len = sizeof(union ipv4_5tuple_host), .hash_func = ipv4_hash_crc, .hash_func_init_val = 0, }; struct rte_hash_parameters ipv6_l3fwd_hash_params = { .name = NULL, .entries = L3FWD_HASH_ENTRIES, .key_len = sizeof(union ipv6_5tuple_host), .hash_func = ipv6_hash_crc, .hash_func_init_val = 0, }; char s[64]; /* create ipv4 hash */ snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid); ipv4_l3fwd_hash_params.name = s; ipv4_l3fwd_hash_params.socket_id = socketid; ipv4_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv4_l3fwd_hash_params); if (ipv4_l3fwd_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " "socket %d\n", socketid); /* create ipv6 hash */ snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid); ipv6_l3fwd_hash_params.name = s; ipv6_l3fwd_hash_params.socket_id = socketid; ipv6_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv6_l3fwd_hash_params); if (ipv6_l3fwd_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on " "socket %d\n", socketid); if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) { /* For testing hash matching with a large number of flows we * generate millions of IP 5-tuples with an incremented dst * address to initialize the hash table. */ if (ipv6 == 0) { /* populate the ipv4 hash */ populate_ipv4_many_flow_into_table( ipv4_l3fwd_lookup_struct[socketid], hash_entry_number); } else { /* populate the ipv6 hash */ populate_ipv6_many_flow_into_table( ipv6_l3fwd_lookup_struct[socketid], hash_entry_number); } } else { /* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize * the hash table */ if (ipv6 == 0) { /* populate the ipv4 hash */ populate_ipv4_few_flow_into_table( ipv4_l3fwd_lookup_struct[socketid]); } else { /* populate the ipv6 hash */ populate_ipv6_few_flow_into_table( ipv6_l3fwd_lookup_struct[socketid]); } } } #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) static void setup_lpm(int socketid) { struct rte_lpm6_config config; struct rte_lpm_config lpm_ipv4_config; unsigned i; int ret; char s[64]; /* create the LPM table */ snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid); lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES; lpm_ipv4_config.number_tbl8s = 256; lpm_ipv4_config.flags = 0; ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, &lpm_ipv4_config); if (ipv4_l3fwd_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" " on socket %d\n", socketid); /* populate the LPM table */ for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) { /* skip unused ports */ if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0) continue; ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " "l3fwd LPM table on socket %d\n", i, socketid); } printf("LPM: Adding route 0x%08x / %d (%d)\n", (unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out); } /* create the LPM6 table */ snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid); config.max_rules = IPV6_L3FWD_LPM_MAX_RULES; config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S; config.flags = 0; ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid, &config); if (ipv6_l3fwd_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table" " on socket %d\n", socketid); /* populate the LPM table */ for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) { /* skip unused ports */ if ((1 << ipv6_l3fwd_route_array[i].if_out & enabled_port_mask) == 0) continue; ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid], ipv6_l3fwd_route_array[i].ip, ipv6_l3fwd_route_array[i].depth, ipv6_l3fwd_route_array[i].if_out); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " "l3fwd LPM table on socket %d\n", i, socketid); } printf("LPM: Adding route %s / %d (%d)\n", "IPV6", ipv6_l3fwd_route_array[i].depth, ipv6_l3fwd_route_array[i].if_out); } } #endif static int init_mem(unsigned nb_mbuf) { struct lcore_conf *qconf; int socketid; unsigned lcore_id; char s[64]; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socketid = rte_lcore_to_socket_id(lcore_id); else socketid = 0; if (socketid >= NB_SOCKETS) { rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n", socketid, lcore_id, NB_SOCKETS); } if (pktmbuf_pool[socketid] == NULL) { snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); pktmbuf_pool[socketid] = rte_pktmbuf_pool_create(s, nb_mbuf, MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, socketid); if (pktmbuf_pool[socketid] == NULL) rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n", socketid); else printf("Allocated mbuf pool on socket %d\n", socketid); #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) setup_lpm(socketid); #else setup_hash(socketid); #endif } qconf = &lcore_conf[lcore_id]; qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid]; qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid]; } return 0; } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; int ret; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; RTE_ETH_FOREACH_DEV(portid) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); ret = rte_eth_link_get_nowait(portid, &link); if (ret < 0) { all_ports_up = 0; if (print_flag == 1) printf("Port %u link get failed: %s\n", portid, rte_strerror(-ret)); continue; } /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf( "Port%d Link Up. Speed %u Mbps - %s\n", portid, link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex")); else printf("Port %d Link Down\n", portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } int main(int argc, char **argv) { struct rte_eth_dev_info dev_info; struct rte_eth_txconf *txconf; int ret; int i; unsigned nb_ports; uint16_t queueid, portid; unsigned lcore_id; uint32_t n_tx_queue, nb_lcores; uint8_t nb_rx_queue, queue, socketid; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); argc -= ret; argv += ret; ret = rte_timer_subsystem_init(); if (ret < 0) rte_exit(EXIT_FAILURE, "Failed to initialize timer subystem\n"); /* pre-init dst MACs for all ports to 02:00:00:00:00:xx */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { dest_eth_addr[portid] = RTE_ETHER_LOCAL_ADMIN_ADDR + ((uint64_t)portid << 40); *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid]; } /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n"); if (check_lcore_params() < 0) rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); printf("Initializing rx-queues...\n"); ret = init_rx_queues(); if (ret < 0) rte_exit(EXIT_FAILURE, "init_rx_queues failed\n"); printf("Initializing tx-threads...\n"); ret = init_tx_threads(); if (ret < 0) rte_exit(EXIT_FAILURE, "init_tx_threads failed\n"); printf("Initializing rings...\n"); ret = init_rx_rings(); if (ret < 0) rte_exit(EXIT_FAILURE, "init_rx_rings failed\n"); nb_ports = rte_eth_dev_count_avail(); if (check_port_config() < 0) rte_exit(EXIT_FAILURE, "check_port_config failed\n"); nb_lcores = rte_lcore_count(); /* initialize all ports */ RTE_ETH_FOREACH_DEV(portid) { struct rte_eth_conf local_port_conf = port_conf; /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { printf("\nSkipping disabled port %d\n", portid); continue; } /* init port */ printf("Initializing port %d ... ", portid); fflush(stdout); nb_rx_queue = get_port_n_rx_queues(portid); n_tx_queue = nb_lcores; if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) n_tx_queue = MAX_TX_QUEUE_PER_PORT; printf("Creating queues: nb_rxq=%d nb_txq=%u... ", nb_rx_queue, (unsigned)n_tx_queue); ret = rte_eth_dev_info_get(portid, &dev_info); if (ret != 0) rte_exit(EXIT_FAILURE, "Error during getting device (port %u) info: %s\n", portid, strerror(-ret)); if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; local_port_conf.rx_adv_conf.rss_conf.rss_hf &= dev_info.flow_type_rss_offloads; if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != port_conf.rx_adv_conf.rss_conf.rss_hf) { printf("Port %u modified RSS hash function based on hardware support," "requested:%#"PRIx64" configured:%#"PRIx64"\n", portid, port_conf.rx_adv_conf.rss_conf.rss_hf, local_port_conf.rx_adv_conf.rss_conf.rss_hf); } ret = rte_eth_dev_configure(portid, nb_rx_queue, (uint16_t)n_tx_queue, &local_port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", ret, portid); ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n", ret, portid); ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_macaddr_get: err=%d, port=%d\n", ret, portid); print_ethaddr(" Address:", &ports_eth_addr[portid]); printf(", "); print_ethaddr("Destination:", (const struct rte_ether_addr *)&dest_eth_addr[portid]); printf(", "); /* * prepare src MACs for each port. */ rte_ether_addr_copy(&ports_eth_addr[portid], (struct rte_ether_addr *)(val_eth + portid) + 1); /* init memory */ ret = init_mem(NB_MBUF); if (ret < 0) rte_exit(EXIT_FAILURE, "init_mem failed\n"); /* init one TX queue per couple (lcore,port) */ queueid = 0; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socketid = 0; printf("txq=%u,%d,%d ", lcore_id, queueid, socketid); fflush(stdout); txconf = &dev_info.default_txconf; txconf->offloads = local_port_conf.txmode.offloads; ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, socketid, txconf); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " "port=%d\n", ret, portid); tx_thread[lcore_id].tx_queue_id[portid] = queueid; queueid++; } printf("\n"); } for (i = 0; i < n_rx_thread; i++) { lcore_id = rx_thread[i].conf.lcore_id; if (rte_lcore_is_enabled(lcore_id) == 0) { rte_exit(EXIT_FAILURE, "Cannot start Rx thread on lcore %u: lcore disabled\n", lcore_id ); } printf("\nInitializing rx queues for Rx thread %d on lcore %u ... ", i, lcore_id); fflush(stdout); /* init RX queues */ for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) { struct rte_eth_rxconf rxq_conf; portid = rx_thread[i].rx_queue_list[queue].port_id; queueid = rx_thread[i].rx_queue_list[queue].queue_id; if (numa_on) socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socketid = 0; printf("rxq=%d,%d,%d ", portid, queueid, socketid); fflush(stdout); ret = rte_eth_dev_info_get(portid, &dev_info); if (ret != 0) rte_exit(EXIT_FAILURE, "Error during getting device (port %u) info: %s\n", portid, strerror(-ret)); rxq_conf = dev_info.default_rxconf; rxq_conf.offloads = port_conf.rxmode.offloads; ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, socketid, &rxq_conf, pktmbuf_pool[socketid]); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, " "port=%d\n", ret, portid); } } printf("\n"); /* start ports */ RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; /* Start device */ ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", ret, portid); /* * If enabled, put device in promiscuous mode. * This allows IO forwarding mode to forward packets * to itself through 2 cross-connected ports of the * target machine. */ if (promiscuous_on) { ret = rte_eth_promiscuous_enable(portid); if (ret != 0) rte_exit(EXIT_FAILURE, "rte_eth_promiscuous_enable: err=%s, port=%u\n", rte_strerror(-ret), portid); } } for (i = 0; i < n_rx_thread; i++) { lcore_id = rx_thread[i].conf.lcore_id; if (rte_lcore_is_enabled(lcore_id) == 0) continue; /* check if hw packet type is supported */ for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) { portid = rx_thread[i].rx_queue_list[queue].port_id; queueid = rx_thread[i].rx_queue_list[queue].queue_id; if (parse_ptype_on) { if (!rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL)) rte_exit(EXIT_FAILURE, "Failed to add rx callback: " "port=%d\n", portid); } else if (!check_ptype(portid)) rte_exit(EXIT_FAILURE, "Port %d cannot parse packet type.\n\n" "Please add --parse-ptype to use sw " "packet type analyzer.\n\n", portid); } } check_all_ports_link_status(enabled_port_mask); if (lthreads_on) { printf("Starting L-Threading Model\n"); #if (APP_CPU_LOAD > 0) if (cpu_load_lcore_id > 0) /* Use one lcore for cpu load collector */ nb_lcores--; #endif lthread_num_schedulers_set(nb_lcores); rte_eal_mp_remote_launch(sched_spawner, NULL, SKIP_MASTER); lthread_master_spawner(NULL); } else { printf("Starting P-Threading Model\n"); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(pthread_run, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } } /* clean up the EAL */ rte_eal_cleanup(); return 0; }