/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2022 Intel Corporation */ #include #include #include #include "idpf_ethdev.h" #include "idpf_rxtx.h" #include "idpf_rxtx_vec_common.h" static uint64_t idpf_rx_offload_convert(uint64_t offload) { uint64_t ol = 0; if ((offload & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM) != 0) ol |= IDPF_RX_OFFLOAD_IPV4_CKSUM; if ((offload & RTE_ETH_RX_OFFLOAD_UDP_CKSUM) != 0) ol |= IDPF_RX_OFFLOAD_UDP_CKSUM; if ((offload & RTE_ETH_RX_OFFLOAD_TCP_CKSUM) != 0) ol |= IDPF_RX_OFFLOAD_TCP_CKSUM; if ((offload & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0) ol |= IDPF_RX_OFFLOAD_OUTER_IPV4_CKSUM; if ((offload & RTE_ETH_RX_OFFLOAD_TIMESTAMP) != 0) ol |= IDPF_RX_OFFLOAD_TIMESTAMP; return ol; } static uint64_t idpf_tx_offload_convert(uint64_t offload) { uint64_t ol = 0; if ((offload & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) != 0) ol |= IDPF_TX_OFFLOAD_IPV4_CKSUM; if ((offload & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) != 0) ol |= IDPF_TX_OFFLOAD_UDP_CKSUM; if ((offload & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) != 0) ol |= IDPF_TX_OFFLOAD_TCP_CKSUM; if ((offload & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) != 0) ol |= IDPF_TX_OFFLOAD_SCTP_CKSUM; if ((offload & RTE_ETH_TX_OFFLOAD_MULTI_SEGS) != 0) ol |= IDPF_TX_OFFLOAD_MULTI_SEGS; if ((offload & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) != 0) ol |= IDPF_TX_OFFLOAD_MBUF_FAST_FREE; return ol; } static const struct idpf_rxq_ops def_rxq_ops = { .release_mbufs = idpf_qc_rxq_mbufs_release, }; static const struct idpf_txq_ops def_txq_ops = { .release_mbufs = idpf_qc_txq_mbufs_release, }; static const struct rte_memzone * idpf_dma_zone_reserve(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t len, uint16_t queue_type, unsigned int socket_id, bool splitq) { char ring_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz; uint32_t ring_size; memset(ring_name, 0, RTE_MEMZONE_NAMESIZE); switch (queue_type) { case VIRTCHNL2_QUEUE_TYPE_TX: if (splitq) ring_size = RTE_ALIGN(len * sizeof(struct idpf_flex_tx_sched_desc), IDPF_DMA_MEM_ALIGN); else ring_size = RTE_ALIGN(len * sizeof(struct idpf_base_tx_desc), IDPF_DMA_MEM_ALIGN); rte_memcpy(ring_name, "idpf Tx ring", sizeof("idpf Tx ring")); break; case VIRTCHNL2_QUEUE_TYPE_RX: if (splitq) ring_size = RTE_ALIGN(len * sizeof(struct virtchnl2_rx_flex_desc_adv_nic_3), IDPF_DMA_MEM_ALIGN); else ring_size = RTE_ALIGN(len * sizeof(struct virtchnl2_singleq_rx_buf_desc), IDPF_DMA_MEM_ALIGN); rte_memcpy(ring_name, "idpf Rx ring", sizeof("idpf Rx ring")); break; case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION: ring_size = RTE_ALIGN(len * sizeof(struct idpf_splitq_tx_compl_desc), IDPF_DMA_MEM_ALIGN); rte_memcpy(ring_name, "idpf Tx compl ring", sizeof("idpf Tx compl ring")); break; case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER: ring_size = RTE_ALIGN(len * sizeof(struct virtchnl2_splitq_rx_buf_desc), IDPF_DMA_MEM_ALIGN); rte_memcpy(ring_name, "idpf Rx buf ring", sizeof("idpf Rx buf ring")); break; default: PMD_INIT_LOG(ERR, "Invalid queue type"); return NULL; } mz = rte_eth_dma_zone_reserve(dev, ring_name, queue_idx, ring_size, IDPF_RING_BASE_ALIGN, socket_id); if (mz == NULL) { PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for ring"); return NULL; } /* Zero all the descriptors in the ring. */ memset(mz->addr, 0, ring_size); return mz; } static void idpf_dma_zone_release(const struct rte_memzone *mz) { rte_memzone_free(mz); } static int idpf_rx_split_bufq_setup(struct rte_eth_dev *dev, struct idpf_rx_queue *rxq, uint16_t queue_idx, uint16_t rx_free_thresh, uint16_t nb_desc, unsigned int socket_id, struct rte_mempool *mp, uint8_t bufq_id) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; struct idpf_hw *hw = &adapter->hw; const struct rte_memzone *mz; struct idpf_rx_queue *bufq; uint16_t len; int ret; bufq = rte_zmalloc_socket("idpf bufq", sizeof(struct idpf_rx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (bufq == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for rx buffer queue."); ret = -ENOMEM; goto err_bufq1_alloc; } bufq->mp = mp; bufq->nb_rx_desc = nb_desc; bufq->rx_free_thresh = rx_free_thresh; bufq->queue_id = vport->chunks_info.rx_buf_start_qid + queue_idx; bufq->port_id = dev->data->port_id; bufq->rx_hdr_len = 0; bufq->adapter = adapter; len = rte_pktmbuf_data_room_size(bufq->mp) - RTE_PKTMBUF_HEADROOM; bufq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IDPF_RLAN_CTX_DBUF_S)); bufq->rx_buf_len = RTE_MIN(bufq->rx_buf_len, IDPF_RX_MAX_DATA_BUF_SIZE); /* Allocate a little more to support bulk allocate. */ len = nb_desc + IDPF_RX_MAX_BURST; mz = idpf_dma_zone_reserve(dev, queue_idx, len, VIRTCHNL2_QUEUE_TYPE_RX_BUFFER, socket_id, true); if (mz == NULL) { ret = -ENOMEM; goto err_mz_reserve; } bufq->rx_ring_phys_addr = mz->iova; bufq->rx_ring = mz->addr; bufq->mz = mz; bufq->sw_ring = rte_zmalloc_socket("idpf rx bufq sw ring", sizeof(struct rte_mbuf *) * len, RTE_CACHE_LINE_SIZE, socket_id); if (bufq->sw_ring == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring"); ret = -ENOMEM; goto err_sw_ring_alloc; } idpf_qc_split_rx_bufq_reset(bufq); bufq->qrx_tail = hw->hw_addr + (vport->chunks_info.rx_buf_qtail_start + queue_idx * vport->chunks_info.rx_buf_qtail_spacing); bufq->ops = &def_rxq_ops; bufq->q_set = true; if (bufq_id == IDPF_RX_SPLIT_BUFQ1_ID) { rxq->bufq1 = bufq; } else if (bufq_id == IDPF_RX_SPLIT_BUFQ2_ID) { rxq->bufq2 = bufq; } else { PMD_INIT_LOG(ERR, "Invalid buffer queue index."); ret = -EINVAL; goto err_bufq_id; } return 0; err_bufq_id: rte_free(bufq->sw_ring); err_sw_ring_alloc: idpf_dma_zone_release(mz); err_mz_reserve: rte_free(bufq); err_bufq1_alloc: return ret; } static void idpf_rx_split_bufq_release(struct idpf_rx_queue *bufq) { rte_free(bufq->sw_ring); idpf_dma_zone_release(bufq->mz); rte_free(bufq); } int idpf_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; struct idpf_hw *hw = &adapter->hw; const struct rte_memzone *mz; struct idpf_rx_queue *rxq; uint16_t rx_free_thresh; uint64_t offloads; bool is_splitq; uint16_t len; int ret; offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads; /* Check free threshold */ rx_free_thresh = (rx_conf->rx_free_thresh == 0) ? IDPF_DEFAULT_RX_FREE_THRESH : rx_conf->rx_free_thresh; if (idpf_qc_rx_thresh_check(nb_desc, rx_free_thresh) != 0) return -EINVAL; /* Free memory if needed */ if (dev->data->rx_queues[queue_idx] != NULL) { idpf_qc_rx_queue_release(dev->data->rx_queues[queue_idx]); dev->data->rx_queues[queue_idx] = NULL; } /* Setup Rx queue */ rxq = rte_zmalloc_socket("idpf rxq", sizeof(struct idpf_rx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (rxq == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for rx queue data structure"); ret = -ENOMEM; goto err_rxq_alloc; } is_splitq = !!(vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT); rxq->mp = mp; rxq->nb_rx_desc = nb_desc; rxq->rx_free_thresh = rx_free_thresh; rxq->queue_id = vport->chunks_info.rx_start_qid + queue_idx; rxq->port_id = dev->data->port_id; rxq->rx_deferred_start = rx_conf->rx_deferred_start; rxq->rx_hdr_len = 0; rxq->adapter = adapter; rxq->offloads = idpf_rx_offload_convert(offloads); len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM; rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IDPF_RLAN_CTX_DBUF_S)); rxq->rx_buf_len = RTE_MIN(rxq->rx_buf_len, IDPF_RX_MAX_DATA_BUF_SIZE); /* Allocate a little more to support bulk allocate. */ len = nb_desc + IDPF_RX_MAX_BURST; mz = idpf_dma_zone_reserve(dev, queue_idx, len, VIRTCHNL2_QUEUE_TYPE_RX, socket_id, is_splitq); if (mz == NULL) { ret = -ENOMEM; goto err_mz_reserve; } rxq->rx_ring_phys_addr = mz->iova; rxq->rx_ring = mz->addr; rxq->mz = mz; if (!is_splitq) { rxq->sw_ring = rte_zmalloc_socket("idpf rxq sw ring", sizeof(struct rte_mbuf *) * len, RTE_CACHE_LINE_SIZE, socket_id); if (rxq->sw_ring == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring"); ret = -ENOMEM; goto err_sw_ring_alloc; } idpf_qc_single_rx_queue_reset(rxq); rxq->qrx_tail = hw->hw_addr + (vport->chunks_info.rx_qtail_start + queue_idx * vport->chunks_info.rx_qtail_spacing); rxq->ops = &def_rxq_ops; } else { idpf_qc_split_rx_descq_reset(rxq); /* Setup Rx buffer queues */ ret = idpf_rx_split_bufq_setup(dev, rxq, 2 * queue_idx, rx_free_thresh, nb_desc, socket_id, mp, 1); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to setup buffer queue 1"); ret = -EINVAL; goto err_bufq1_setup; } ret = idpf_rx_split_bufq_setup(dev, rxq, 2 * queue_idx + 1, rx_free_thresh, nb_desc, socket_id, mp, 2); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to setup buffer queue 2"); ret = -EINVAL; goto err_bufq2_setup; } } rxq->q_set = true; dev->data->rx_queues[queue_idx] = rxq; return 0; err_bufq2_setup: idpf_rx_split_bufq_release(rxq->bufq1); err_bufq1_setup: err_sw_ring_alloc: idpf_dma_zone_release(mz); err_mz_reserve: rte_free(rxq); err_rxq_alloc: return ret; } static int idpf_tx_complq_setup(struct rte_eth_dev *dev, struct idpf_tx_queue *txq, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id) { struct idpf_vport *vport = dev->data->dev_private; const struct rte_memzone *mz; struct idpf_tx_queue *cq; int ret; cq = rte_zmalloc_socket("idpf splitq cq", sizeof(struct idpf_tx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (cq == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for Tx compl queue"); ret = -ENOMEM; goto err_cq_alloc; } cq->nb_tx_desc = nb_desc; cq->queue_id = vport->chunks_info.tx_compl_start_qid + queue_idx; cq->port_id = dev->data->port_id; cq->txqs = dev->data->tx_queues; cq->tx_start_qid = vport->chunks_info.tx_start_qid; mz = idpf_dma_zone_reserve(dev, queue_idx, nb_desc, VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION, socket_id, true); if (mz == NULL) { ret = -ENOMEM; goto err_mz_reserve; } cq->tx_ring_phys_addr = mz->iova; cq->compl_ring = mz->addr; cq->mz = mz; idpf_qc_split_tx_complq_reset(cq); txq->complq = cq; return 0; err_mz_reserve: rte_free(cq); err_cq_alloc: return ret; } int idpf_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; uint16_t tx_rs_thresh, tx_free_thresh; struct idpf_hw *hw = &adapter->hw; const struct rte_memzone *mz; struct idpf_tx_queue *txq; uint64_t offloads; uint16_t len; bool is_splitq; int ret; offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh > 0) ? tx_conf->tx_rs_thresh : IDPF_DEFAULT_TX_RS_THRESH); tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh > 0) ? tx_conf->tx_free_thresh : IDPF_DEFAULT_TX_FREE_THRESH); if (idpf_qc_tx_thresh_check(nb_desc, tx_rs_thresh, tx_free_thresh) != 0) return -EINVAL; /* Free memory if needed. */ if (dev->data->tx_queues[queue_idx] != NULL) { idpf_qc_tx_queue_release(dev->data->tx_queues[queue_idx]); dev->data->tx_queues[queue_idx] = NULL; } /* Allocate the TX queue data structure. */ txq = rte_zmalloc_socket("idpf txq", sizeof(struct idpf_tx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for tx queue structure"); ret = -ENOMEM; goto err_txq_alloc; } is_splitq = !!(vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT); txq->nb_tx_desc = nb_desc; txq->rs_thresh = tx_rs_thresh; txq->free_thresh = tx_free_thresh; txq->queue_id = vport->chunks_info.tx_start_qid + queue_idx; txq->port_id = dev->data->port_id; txq->offloads = idpf_tx_offload_convert(offloads); txq->tx_deferred_start = tx_conf->tx_deferred_start; if (is_splitq) len = 2 * nb_desc; else len = nb_desc; txq->sw_nb_desc = len; /* Allocate TX hardware ring descriptors. */ mz = idpf_dma_zone_reserve(dev, queue_idx, nb_desc, VIRTCHNL2_QUEUE_TYPE_TX, socket_id, is_splitq); if (mz == NULL) { ret = -ENOMEM; goto err_mz_reserve; } txq->tx_ring_phys_addr = mz->iova; txq->mz = mz; txq->sw_ring = rte_zmalloc_socket("idpf tx sw ring", sizeof(struct idpf_tx_entry) * len, RTE_CACHE_LINE_SIZE, socket_id); if (txq->sw_ring == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring"); ret = -ENOMEM; goto err_sw_ring_alloc; } if (!is_splitq) { txq->tx_ring = mz->addr; idpf_qc_single_tx_queue_reset(txq); } else { txq->desc_ring = mz->addr; idpf_qc_split_tx_descq_reset(txq); /* Setup tx completion queue if split model */ ret = idpf_tx_complq_setup(dev, txq, queue_idx, 2 * nb_desc, socket_id); if (ret != 0) goto err_complq_setup; } txq->qtx_tail = hw->hw_addr + (vport->chunks_info.tx_qtail_start + queue_idx * vport->chunks_info.tx_qtail_spacing); txq->ops = &def_txq_ops; txq->q_set = true; dev->data->tx_queues[queue_idx] = txq; return 0; err_complq_setup: err_sw_ring_alloc: idpf_dma_zone_release(mz); err_mz_reserve: rte_free(txq); err_txq_alloc: return ret; } int idpf_rx_queue_init(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct idpf_rx_queue *rxq; uint16_t max_pkt_len; uint32_t frame_size; int err; if (rx_queue_id >= dev->data->nb_rx_queues) return -EINVAL; rxq = dev->data->rx_queues[rx_queue_id]; if (rxq == NULL || !rxq->q_set) { PMD_DRV_LOG(ERR, "RX queue %u not available or setup", rx_queue_id); return -EINVAL; } frame_size = dev->data->mtu + IDPF_ETH_OVERHEAD; max_pkt_len = RTE_MIN((uint32_t)IDPF_SUPPORT_CHAIN_NUM * rxq->rx_buf_len, frame_size); rxq->max_pkt_len = max_pkt_len; if ((dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) || frame_size > rxq->rx_buf_len) dev->data->scattered_rx = 1; err = idpf_qc_ts_mbuf_register(rxq); if (err != 0) { PMD_DRV_LOG(ERR, "fail to residter timestamp mbuf %u", rx_queue_id); return -EIO; } if (rxq->adapter->is_rx_singleq) { /* Single queue */ err = idpf_qc_single_rxq_mbufs_alloc(rxq); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf"); return err; } rte_wmb(); /* Init the RX tail register. */ IDPF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); } else { /* Split queue */ err = idpf_qc_split_rxq_mbufs_alloc(rxq->bufq1); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to allocate RX buffer queue mbuf"); return err; } err = idpf_qc_split_rxq_mbufs_alloc(rxq->bufq2); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to allocate RX buffer queue mbuf"); return err; } rte_wmb(); /* Init the RX tail register. */ IDPF_PCI_REG_WRITE(rxq->bufq1->qrx_tail, rxq->bufq1->rx_tail); IDPF_PCI_REG_WRITE(rxq->bufq2->qrx_tail, rxq->bufq2->rx_tail); } return err; } int idpf_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; int err = 0; err = idpf_vc_rxq_config(vport, rxq); if (err != 0) { PMD_DRV_LOG(ERR, "Fail to configure Rx queue %u", rx_queue_id); return err; } err = idpf_rx_queue_init(dev, rx_queue_id); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to init RX queue %u", rx_queue_id); return err; } /* Ready to switch the queue on */ err = idpf_vc_queue_switch(vport, rx_queue_id, true, true); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on", rx_queue_id); } else { rxq->q_started = true; dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; } return err; } int idpf_tx_queue_init(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct idpf_tx_queue *txq; if (tx_queue_id >= dev->data->nb_tx_queues) return -EINVAL; txq = dev->data->tx_queues[tx_queue_id]; /* Init the RX tail register. */ IDPF_PCI_REG_WRITE(txq->qtx_tail, 0); return 0; } int idpf_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; int err = 0; err = idpf_vc_txq_config(vport, txq); if (err != 0) { PMD_DRV_LOG(ERR, "Fail to configure Tx queue %u", tx_queue_id); return err; } err = idpf_tx_queue_init(dev, tx_queue_id); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to init TX queue %u", tx_queue_id); return err; } /* Ready to switch the queue on */ err = idpf_vc_queue_switch(vport, tx_queue_id, false, true); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on", tx_queue_id); } else { txq->q_started = true; dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; } return err; } int idpf_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_rx_queue *rxq; int err; if (rx_queue_id >= dev->data->nb_rx_queues) return -EINVAL; err = idpf_vc_queue_switch(vport, rx_queue_id, true, false); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off", rx_queue_id); return err; } rxq = dev->data->rx_queues[rx_queue_id]; rxq->q_started = false; if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE) { rxq->ops->release_mbufs(rxq); idpf_qc_single_rx_queue_reset(rxq); } else { rxq->bufq1->ops->release_mbufs(rxq->bufq1); rxq->bufq2->ops->release_mbufs(rxq->bufq2); idpf_qc_split_rx_queue_reset(rxq); } dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } int idpf_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_tx_queue *txq; int err; if (tx_queue_id >= dev->data->nb_tx_queues) return -EINVAL; err = idpf_vc_queue_switch(vport, tx_queue_id, false, false); if (err != 0) { PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off", tx_queue_id); return err; } txq = dev->data->tx_queues[tx_queue_id]; txq->q_started = false; txq->ops->release_mbufs(txq); if (vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE) { idpf_qc_single_tx_queue_reset(txq); } else { idpf_qc_split_tx_descq_reset(txq); idpf_qc_split_tx_complq_reset(txq->complq); } dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } void idpf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid) { idpf_qc_rx_queue_release(dev->data->rx_queues[qid]); } void idpf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid) { idpf_qc_tx_queue_release(dev->data->tx_queues[qid]); } void idpf_stop_queues(struct rte_eth_dev *dev) { struct idpf_rx_queue *rxq; struct idpf_tx_queue *txq; int i; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (rxq == NULL) continue; if (idpf_rx_queue_stop(dev, i) != 0) PMD_DRV_LOG(WARNING, "Fail to stop Rx queue %d", i); } for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq == NULL) continue; if (idpf_tx_queue_stop(dev, i) != 0) PMD_DRV_LOG(WARNING, "Fail to stop Tx queue %d", i); } } void idpf_set_rx_function(struct rte_eth_dev *dev) { struct idpf_vport *vport = dev->data->dev_private; #ifdef RTE_ARCH_X86 struct idpf_rx_queue *rxq; int i; if (idpf_rx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { vport->rx_vec_allowed = true; if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512) #ifdef CC_AVX512_SUPPORT if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512DQ)) vport->rx_use_avx512 = true; #else PMD_DRV_LOG(NOTICE, "AVX512 is not supported in build env"); #endif /* CC_AVX512_SUPPORT */ } else { vport->rx_vec_allowed = false; } #endif /* RTE_ARCH_X86 */ #ifdef RTE_ARCH_X86 if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) { if (vport->rx_vec_allowed) { for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; (void)idpf_qc_splitq_rx_vec_setup(rxq); } #ifdef CC_AVX512_SUPPORT if (vport->rx_use_avx512) { PMD_DRV_LOG(NOTICE, "Using Split AVX512 Vector Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_splitq_recv_pkts_avx512; return; } #endif /* CC_AVX512_SUPPORT */ } PMD_DRV_LOG(NOTICE, "Using Split Scalar Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_splitq_recv_pkts; } else { if (vport->rx_vec_allowed) { for (i = 0; i < dev->data->nb_tx_queues; i++) { rxq = dev->data->rx_queues[i]; (void)idpf_qc_singleq_rx_vec_setup(rxq); } #ifdef CC_AVX512_SUPPORT if (vport->rx_use_avx512) { PMD_DRV_LOG(NOTICE, "Using Single AVX512 Vector Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_singleq_recv_pkts_avx512; return; } #endif /* CC_AVX512_SUPPORT */ } if (dev->data->scattered_rx) { PMD_DRV_LOG(NOTICE, "Using Single Scalar Scatterd Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_singleq_recv_scatter_pkts; return; } PMD_DRV_LOG(NOTICE, "Using Single Scalar Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_singleq_recv_pkts; } #else if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) { PMD_DRV_LOG(NOTICE, "Using Split Scalar Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_splitq_recv_pkts; } else { if (dev->data->scattered_rx) { PMD_DRV_LOG(NOTICE, "Using Single Scalar Scatterd Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_singleq_recv_scatter_pkts; return; } PMD_DRV_LOG(NOTICE, "Using Single Scalar Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = idpf_dp_singleq_recv_pkts; } #endif /* RTE_ARCH_X86 */ } void idpf_set_tx_function(struct rte_eth_dev *dev) { struct idpf_vport *vport = dev->data->dev_private; #ifdef RTE_ARCH_X86 #ifdef CC_AVX512_SUPPORT struct idpf_tx_queue *txq; int i; #endif /* CC_AVX512_SUPPORT */ if (idpf_tx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { vport->tx_vec_allowed = true; if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512) #ifdef CC_AVX512_SUPPORT { if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1) vport->tx_use_avx512 = true; if (vport->tx_use_avx512) { for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; idpf_qc_tx_vec_avx512_setup(txq); } } } #else PMD_DRV_LOG(NOTICE, "AVX512 is not supported in build env"); #endif /* CC_AVX512_SUPPORT */ } else { vport->tx_vec_allowed = false; } #endif /* RTE_ARCH_X86 */ #ifdef RTE_ARCH_X86 if (vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) { if (vport->tx_vec_allowed) { #ifdef CC_AVX512_SUPPORT if (vport->tx_use_avx512) { PMD_DRV_LOG(NOTICE, "Using Split AVX512 Vector Tx (port %d).", dev->data->port_id); dev->tx_pkt_burst = idpf_dp_splitq_xmit_pkts_avx512; dev->tx_pkt_prepare = idpf_dp_prep_pkts; return; } #endif /* CC_AVX512_SUPPORT */ } PMD_DRV_LOG(NOTICE, "Using Split Scalar Tx (port %d).", dev->data->port_id); dev->tx_pkt_burst = idpf_dp_splitq_xmit_pkts; dev->tx_pkt_prepare = idpf_dp_prep_pkts; } else { if (vport->tx_vec_allowed) { #ifdef CC_AVX512_SUPPORT if (vport->tx_use_avx512) { for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq == NULL) continue; idpf_qc_tx_vec_avx512_setup(txq); } PMD_DRV_LOG(NOTICE, "Using Single AVX512 Vector Tx (port %d).", dev->data->port_id); dev->tx_pkt_burst = idpf_dp_singleq_xmit_pkts_avx512; dev->tx_pkt_prepare = idpf_dp_prep_pkts; return; } #endif /* CC_AVX512_SUPPORT */ } PMD_DRV_LOG(NOTICE, "Using Single Scalar Tx (port %d).", dev->data->port_id); dev->tx_pkt_burst = idpf_dp_singleq_xmit_pkts; dev->tx_pkt_prepare = idpf_dp_prep_pkts; } #else if (vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) { PMD_DRV_LOG(NOTICE, "Using Split Scalar Tx (port %d).", dev->data->port_id); dev->tx_pkt_burst = idpf_dp_splitq_xmit_pkts; dev->tx_pkt_prepare = idpf_dp_prep_pkts; } else { PMD_DRV_LOG(NOTICE, "Using Single Scalar Tx (port %d).", dev->data->port_id); dev->tx_pkt_burst = idpf_dp_singleq_xmit_pkts; dev->tx_pkt_prepare = idpf_dp_prep_pkts; } #endif /* RTE_ARCH_X86 */ }