/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #ifndef RTE_EXEC_ENV_LINUX #error "KNI is not supported" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_kni_fifo.h" #define MAX_MBUF_BURST_NUM 32 /* Maximum number of ring entries */ #define KNI_FIFO_COUNT_MAX 1024 #define KNI_FIFO_SIZE (KNI_FIFO_COUNT_MAX * sizeof(void *) + \ sizeof(struct rte_kni_fifo)) #define KNI_REQUEST_MBUF_NUM_MAX 32 #define KNI_MEM_CHECK(cond, fail) do { if (cond) goto fail; } while (0) #define KNI_MZ_NAME_FMT "kni_info_%s" #define KNI_TX_Q_MZ_NAME_FMT "kni_tx_%s" #define KNI_RX_Q_MZ_NAME_FMT "kni_rx_%s" #define KNI_ALLOC_Q_MZ_NAME_FMT "kni_alloc_%s" #define KNI_FREE_Q_MZ_NAME_FMT "kni_free_%s" #define KNI_REQ_Q_MZ_NAME_FMT "kni_req_%s" #define KNI_RESP_Q_MZ_NAME_FMT "kni_resp_%s" #define KNI_SYNC_ADDR_MZ_NAME_FMT "kni_sync_%s" TAILQ_HEAD(rte_kni_list, rte_tailq_entry); static struct rte_tailq_elem rte_kni_tailq = { .name = "RTE_KNI", }; EAL_REGISTER_TAILQ(rte_kni_tailq) /** * KNI context */ struct rte_kni { char name[RTE_KNI_NAMESIZE]; /**< KNI interface name */ uint16_t group_id; /**< Group ID of KNI devices */ uint32_t slot_id; /**< KNI pool slot ID */ struct rte_mempool *pktmbuf_pool; /**< pkt mbuf mempool */ unsigned int mbuf_size; /**< mbuf size */ const struct rte_memzone *m_tx_q; /**< TX queue memzone */ const struct rte_memzone *m_rx_q; /**< RX queue memzone */ const struct rte_memzone *m_alloc_q;/**< Alloc queue memzone */ const struct rte_memzone *m_free_q; /**< Free queue memzone */ struct rte_kni_fifo *tx_q; /**< TX queue */ struct rte_kni_fifo *rx_q; /**< RX queue */ struct rte_kni_fifo *alloc_q; /**< Allocated mbufs queue */ struct rte_kni_fifo *free_q; /**< To be freed mbufs queue */ const struct rte_memzone *m_req_q; /**< Request queue memzone */ const struct rte_memzone *m_resp_q; /**< Response queue memzone */ const struct rte_memzone *m_sync_addr;/**< Sync addr memzone */ /* For request & response */ struct rte_kni_fifo *req_q; /**< Request queue */ struct rte_kni_fifo *resp_q; /**< Response queue */ void *sync_addr; /**< Req/Resp Mem address */ struct rte_kni_ops ops; /**< operations for request */ }; enum kni_ops_status { KNI_REQ_NO_REGISTER = 0, KNI_REQ_REGISTERED, }; static void kni_free_mbufs(struct rte_kni *kni); static void kni_allocate_mbufs(struct rte_kni *kni); static volatile int kni_fd = -1; /* Shall be called before any allocation happens */ int rte_kni_init(unsigned int max_kni_ifaces __rte_unused) { #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0) if (rte_eal_iova_mode() != RTE_IOVA_PA) { RTE_LOG(ERR, KNI, "KNI requires IOVA as PA\n"); return -1; } #endif /* Check FD and open */ if (kni_fd < 0) { kni_fd = open("/dev/" KNI_DEVICE, O_RDWR); if (kni_fd < 0) { RTE_LOG(ERR, KNI, "Can not open /dev/%s\n", KNI_DEVICE); return -1; } } return 0; } static struct rte_kni * __rte_kni_get(const char *name) { struct rte_kni *kni; struct rte_tailq_entry *te; struct rte_kni_list *kni_list; kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list); TAILQ_FOREACH(te, kni_list, next) { kni = te->data; if (strncmp(name, kni->name, RTE_KNI_NAMESIZE) == 0) break; } if (te == NULL) kni = NULL; return kni; } static int kni_reserve_mz(struct rte_kni *kni) { char mz_name[RTE_MEMZONE_NAMESIZE]; snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_TX_Q_MZ_NAME_FMT, kni->name); kni->m_tx_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG); KNI_MEM_CHECK(kni->m_tx_q == NULL, tx_q_fail); snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_RX_Q_MZ_NAME_FMT, kni->name); kni->m_rx_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG); KNI_MEM_CHECK(kni->m_rx_q == NULL, rx_q_fail); snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_ALLOC_Q_MZ_NAME_FMT, kni->name); kni->m_alloc_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG); KNI_MEM_CHECK(kni->m_alloc_q == NULL, alloc_q_fail); snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_FREE_Q_MZ_NAME_FMT, kni->name); kni->m_free_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG); KNI_MEM_CHECK(kni->m_free_q == NULL, free_q_fail); snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_REQ_Q_MZ_NAME_FMT, kni->name); kni->m_req_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG); KNI_MEM_CHECK(kni->m_req_q == NULL, req_q_fail); snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_RESP_Q_MZ_NAME_FMT, kni->name); kni->m_resp_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG); KNI_MEM_CHECK(kni->m_resp_q == NULL, resp_q_fail); snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_SYNC_ADDR_MZ_NAME_FMT, kni->name); kni->m_sync_addr = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG); KNI_MEM_CHECK(kni->m_sync_addr == NULL, sync_addr_fail); return 0; sync_addr_fail: rte_memzone_free(kni->m_resp_q); resp_q_fail: rte_memzone_free(kni->m_req_q); req_q_fail: rte_memzone_free(kni->m_free_q); free_q_fail: rte_memzone_free(kni->m_alloc_q); alloc_q_fail: rte_memzone_free(kni->m_rx_q); rx_q_fail: rte_memzone_free(kni->m_tx_q); tx_q_fail: return -1; } static void kni_release_mz(struct rte_kni *kni) { rte_memzone_free(kni->m_tx_q); rte_memzone_free(kni->m_rx_q); rte_memzone_free(kni->m_alloc_q); rte_memzone_free(kni->m_free_q); rte_memzone_free(kni->m_req_q); rte_memzone_free(kni->m_resp_q); rte_memzone_free(kni->m_sync_addr); } struct rte_kni * rte_kni_alloc(struct rte_mempool *pktmbuf_pool, const struct rte_kni_conf *conf, struct rte_kni_ops *ops) { int ret; struct rte_kni_device_info dev_info; struct rte_kni *kni; struct rte_tailq_entry *te; struct rte_kni_list *kni_list; if (!pktmbuf_pool || !conf || !conf->name[0]) return NULL; /* Check if KNI subsystem has been initialized */ if (kni_fd < 0) { RTE_LOG(ERR, KNI, "KNI subsystem has not been initialized. Invoke rte_kni_init() first\n"); return NULL; } rte_mcfg_tailq_write_lock(); kni = __rte_kni_get(conf->name); if (kni != NULL) { RTE_LOG(ERR, KNI, "KNI already exists\n"); goto unlock; } te = rte_zmalloc("KNI_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, KNI, "Failed to allocate tailq entry\n"); goto unlock; } kni = rte_zmalloc("KNI", sizeof(struct rte_kni), RTE_CACHE_LINE_SIZE); if (kni == NULL) { RTE_LOG(ERR, KNI, "KNI memory allocation failed\n"); goto kni_fail; } strlcpy(kni->name, conf->name, RTE_KNI_NAMESIZE); if (ops) memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops)); else kni->ops.port_id = UINT16_MAX; memset(&dev_info, 0, sizeof(dev_info)); dev_info.core_id = conf->core_id; dev_info.force_bind = conf->force_bind; dev_info.group_id = conf->group_id; dev_info.mbuf_size = conf->mbuf_size; dev_info.mtu = conf->mtu; dev_info.min_mtu = conf->min_mtu; dev_info.max_mtu = conf->max_mtu; memcpy(dev_info.mac_addr, conf->mac_addr, RTE_ETHER_ADDR_LEN); strlcpy(dev_info.name, conf->name, RTE_KNI_NAMESIZE); ret = kni_reserve_mz(kni); if (ret < 0) goto mz_fail; /* TX RING */ kni->tx_q = kni->m_tx_q->addr; kni_fifo_init(kni->tx_q, KNI_FIFO_COUNT_MAX); dev_info.tx_phys = kni->m_tx_q->iova; /* RX RING */ kni->rx_q = kni->m_rx_q->addr; kni_fifo_init(kni->rx_q, KNI_FIFO_COUNT_MAX); dev_info.rx_phys = kni->m_rx_q->iova; /* ALLOC RING */ kni->alloc_q = kni->m_alloc_q->addr; kni_fifo_init(kni->alloc_q, KNI_FIFO_COUNT_MAX); dev_info.alloc_phys = kni->m_alloc_q->iova; /* FREE RING */ kni->free_q = kni->m_free_q->addr; kni_fifo_init(kni->free_q, KNI_FIFO_COUNT_MAX); dev_info.free_phys = kni->m_free_q->iova; /* Request RING */ kni->req_q = kni->m_req_q->addr; kni_fifo_init(kni->req_q, KNI_FIFO_COUNT_MAX); dev_info.req_phys = kni->m_req_q->iova; /* Response RING */ kni->resp_q = kni->m_resp_q->addr; kni_fifo_init(kni->resp_q, KNI_FIFO_COUNT_MAX); dev_info.resp_phys = kni->m_resp_q->iova; /* Req/Resp sync mem area */ kni->sync_addr = kni->m_sync_addr->addr; dev_info.sync_va = kni->m_sync_addr->addr; dev_info.sync_phys = kni->m_sync_addr->iova; kni->pktmbuf_pool = pktmbuf_pool; kni->group_id = conf->group_id; kni->mbuf_size = conf->mbuf_size; dev_info.iova_mode = (rte_eal_iova_mode() == RTE_IOVA_VA) ? 1 : 0; ret = ioctl(kni_fd, RTE_KNI_IOCTL_CREATE, &dev_info); if (ret < 0) goto ioctl_fail; te->data = kni; kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list); TAILQ_INSERT_TAIL(kni_list, te, next); rte_mcfg_tailq_write_unlock(); /* Allocate mbufs and then put them into alloc_q */ kni_allocate_mbufs(kni); return kni; ioctl_fail: kni_release_mz(kni); mz_fail: rte_free(kni); kni_fail: rte_free(te); unlock: rte_mcfg_tailq_write_unlock(); return NULL; } static void kni_free_fifo(struct rte_kni_fifo *fifo) { int ret; struct rte_mbuf *pkt; do { ret = kni_fifo_get(fifo, (void **)&pkt, 1); if (ret) rte_pktmbuf_free(pkt); } while (ret); } static void * va2pa(struct rte_mbuf *m) { return (void *)((unsigned long)m - ((unsigned long)m->buf_addr - (unsigned long)m->buf_iova)); } static void * va2pa_all(struct rte_mbuf *mbuf) { void *phy_mbuf = va2pa(mbuf); struct rte_mbuf *next = mbuf->next; while (next) { mbuf->next = va2pa(next); mbuf = next; next = mbuf->next; } return phy_mbuf; } static void obj_free(struct rte_mempool *mp __rte_unused, void *opaque, void *obj, unsigned obj_idx __rte_unused) { struct rte_mbuf *m = obj; void *mbuf_phys = opaque; if (va2pa(m) == mbuf_phys) rte_pktmbuf_free(m); } static void kni_free_fifo_phy(struct rte_mempool *mp, struct rte_kni_fifo *fifo) { void *mbuf_phys; int ret; do { ret = kni_fifo_get(fifo, &mbuf_phys, 1); if (ret) rte_mempool_obj_iter(mp, obj_free, mbuf_phys); } while (ret); } int rte_kni_release(struct rte_kni *kni) { struct rte_tailq_entry *te; struct rte_kni_list *kni_list; struct rte_kni_device_info dev_info; uint32_t retry = 5; if (!kni) return -1; kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list); rte_mcfg_tailq_write_lock(); TAILQ_FOREACH(te, kni_list, next) { if (te->data == kni) break; } if (te == NULL) goto unlock; strlcpy(dev_info.name, kni->name, sizeof(dev_info.name)); if (ioctl(kni_fd, RTE_KNI_IOCTL_RELEASE, &dev_info) < 0) { RTE_LOG(ERR, KNI, "Fail to release kni device\n"); goto unlock; } TAILQ_REMOVE(kni_list, te, next); rte_mcfg_tailq_write_unlock(); /* mbufs in all fifo should be released, except request/response */ /* wait until all rxq packets processed by kernel */ while (kni_fifo_count(kni->rx_q) && retry--) usleep(1000); if (kni_fifo_count(kni->rx_q)) RTE_LOG(ERR, KNI, "Fail to free all Rx-q items\n"); kni_free_fifo_phy(kni->pktmbuf_pool, kni->alloc_q); kni_free_fifo(kni->tx_q); kni_free_fifo(kni->free_q); kni_release_mz(kni); rte_free(kni); rte_free(te); return 0; unlock: rte_mcfg_tailq_write_unlock(); return -1; } /* default callback for request of configuring device mac address */ static int kni_config_mac_address(uint16_t port_id, uint8_t mac_addr[]) { int ret = 0; if (!rte_eth_dev_is_valid_port(port_id)) { RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id); return -EINVAL; } RTE_LOG(INFO, KNI, "Configure mac address of %d", port_id); ret = rte_eth_dev_default_mac_addr_set(port_id, (struct rte_ether_addr *)mac_addr); if (ret < 0) RTE_LOG(ERR, KNI, "Failed to config mac_addr for port %d\n", port_id); return ret; } /* default callback for request of configuring promiscuous mode */ static int kni_config_promiscusity(uint16_t port_id, uint8_t to_on) { int ret; if (!rte_eth_dev_is_valid_port(port_id)) { RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id); return -EINVAL; } RTE_LOG(INFO, KNI, "Configure promiscuous mode of %d to %d\n", port_id, to_on); if (to_on) ret = rte_eth_promiscuous_enable(port_id); else ret = rte_eth_promiscuous_disable(port_id); if (ret != 0) RTE_LOG(ERR, KNI, "Failed to %s promiscuous mode for port %u: %s\n", to_on ? "enable" : "disable", port_id, rte_strerror(-ret)); return ret; } /* default callback for request of configuring allmulticast mode */ static int kni_config_allmulticast(uint16_t port_id, uint8_t to_on) { int ret; if (!rte_eth_dev_is_valid_port(port_id)) { RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id); return -EINVAL; } RTE_LOG(INFO, KNI, "Configure allmulticast mode of %d to %d\n", port_id, to_on); if (to_on) ret = rte_eth_allmulticast_enable(port_id); else ret = rte_eth_allmulticast_disable(port_id); if (ret != 0) RTE_LOG(ERR, KNI, "Failed to %s allmulticast mode for port %u: %s\n", to_on ? "enable" : "disable", port_id, rte_strerror(-ret)); return ret; } int rte_kni_handle_request(struct rte_kni *kni) { unsigned int ret; struct rte_kni_request *req = NULL; if (kni == NULL) return -1; /* Get request mbuf */ ret = kni_fifo_get(kni->req_q, (void **)&req, 1); if (ret != 1) return 0; /* It is OK of can not getting the request mbuf */ if (req != kni->sync_addr) { RTE_LOG(ERR, KNI, "Wrong req pointer %p\n", req); return -1; } /* Analyze the request and call the relevant actions for it */ switch (req->req_id) { case RTE_KNI_REQ_CHANGE_MTU: /* Change MTU */ if (kni->ops.change_mtu) req->result = kni->ops.change_mtu(kni->ops.port_id, req->new_mtu); break; case RTE_KNI_REQ_CFG_NETWORK_IF: /* Set network interface up/down */ if (kni->ops.config_network_if) req->result = kni->ops.config_network_if(kni->ops.port_id, req->if_up); break; case RTE_KNI_REQ_CHANGE_MAC_ADDR: /* Change MAC Address */ if (kni->ops.config_mac_address) req->result = kni->ops.config_mac_address( kni->ops.port_id, req->mac_addr); else if (kni->ops.port_id != UINT16_MAX) req->result = kni_config_mac_address( kni->ops.port_id, req->mac_addr); break; case RTE_KNI_REQ_CHANGE_PROMISC: /* Change PROMISCUOUS MODE */ if (kni->ops.config_promiscusity) req->result = kni->ops.config_promiscusity( kni->ops.port_id, req->promiscusity); else if (kni->ops.port_id != UINT16_MAX) req->result = kni_config_promiscusity( kni->ops.port_id, req->promiscusity); break; case RTE_KNI_REQ_CHANGE_ALLMULTI: /* Change ALLMULTICAST MODE */ if (kni->ops.config_allmulticast) req->result = kni->ops.config_allmulticast( kni->ops.port_id, req->allmulti); else if (kni->ops.port_id != UINT16_MAX) req->result = kni_config_allmulticast( kni->ops.port_id, req->allmulti); break; default: RTE_LOG(ERR, KNI, "Unknown request id %u\n", req->req_id); req->result = -EINVAL; break; } /* if needed, construct response buffer and put it back to resp_q */ if (!req->async) ret = kni_fifo_put(kni->resp_q, (void **)&req, 1); else ret = 1; if (ret != 1) { RTE_LOG(ERR, KNI, "Fail to put the muf back to resp_q\n"); return -1; /* It is an error of can't putting the mbuf back */ } return 0; } unsigned rte_kni_tx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned int num) { num = RTE_MIN(kni_fifo_free_count(kni->rx_q), num); void *phy_mbufs[num]; unsigned int ret; unsigned int i; for (i = 0; i < num; i++) phy_mbufs[i] = va2pa_all(mbufs[i]); ret = kni_fifo_put(kni->rx_q, phy_mbufs, num); /* Get mbufs from free_q and then free them */ kni_free_mbufs(kni); return ret; } unsigned rte_kni_rx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned int num) { unsigned int ret = kni_fifo_get(kni->tx_q, (void **)mbufs, num); /* If buffers removed, allocate mbufs and then put them into alloc_q */ if (ret) kni_allocate_mbufs(kni); return ret; } static void kni_free_mbufs(struct rte_kni *kni) { int i, ret; struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM]; ret = kni_fifo_get(kni->free_q, (void **)pkts, MAX_MBUF_BURST_NUM); if (likely(ret > 0)) { for (i = 0; i < ret; i++) rte_pktmbuf_free(pkts[i]); } } static void kni_allocate_mbufs(struct rte_kni *kni) { int i, ret; struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM]; void *phys[MAX_MBUF_BURST_NUM]; int allocq_free; RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pool) != offsetof(struct rte_kni_mbuf, pool)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_addr) != offsetof(struct rte_kni_mbuf, buf_addr)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, next) != offsetof(struct rte_kni_mbuf, next)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) != offsetof(struct rte_kni_mbuf, data_off)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_kni_mbuf, data_len)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_kni_mbuf, pkt_len)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_kni_mbuf, ol_flags)); /* Check if pktmbuf pool has been configured */ if (kni->pktmbuf_pool == NULL) { RTE_LOG(ERR, KNI, "No valid mempool for allocating mbufs\n"); return; } allocq_free = kni_fifo_free_count(kni->alloc_q); allocq_free = (allocq_free > MAX_MBUF_BURST_NUM) ? MAX_MBUF_BURST_NUM : allocq_free; for (i = 0; i < allocq_free; i++) { pkts[i] = rte_pktmbuf_alloc(kni->pktmbuf_pool); if (unlikely(pkts[i] == NULL)) { /* Out of memory */ RTE_LOG(ERR, KNI, "Out of memory\n"); break; } phys[i] = va2pa(pkts[i]); } /* No pkt mbuf allocated */ if (i <= 0) return; ret = kni_fifo_put(kni->alloc_q, phys, i); /* Check if any mbufs not put into alloc_q, and then free them */ if (ret >= 0 && ret < i && ret < MAX_MBUF_BURST_NUM) { int j; for (j = ret; j < i; j++) rte_pktmbuf_free(pkts[j]); } } struct rte_kni * rte_kni_get(const char *name) { struct rte_kni *kni; if (name == NULL || name[0] == '\0') return NULL; rte_mcfg_tailq_read_lock(); kni = __rte_kni_get(name); rte_mcfg_tailq_read_unlock(); return kni; } const char * rte_kni_get_name(const struct rte_kni *kni) { return kni->name; } static enum kni_ops_status kni_check_request_register(struct rte_kni_ops *ops) { /* check if KNI request ops has been registered*/ if (ops == NULL) return KNI_REQ_NO_REGISTER; if (ops->change_mtu == NULL && ops->config_network_if == NULL && ops->config_mac_address == NULL && ops->config_promiscusity == NULL && ops->config_allmulticast == NULL) return KNI_REQ_NO_REGISTER; return KNI_REQ_REGISTERED; } int rte_kni_register_handlers(struct rte_kni *kni, struct rte_kni_ops *ops) { enum kni_ops_status req_status; if (ops == NULL) { RTE_LOG(ERR, KNI, "Invalid KNI request operation.\n"); return -1; } if (kni == NULL) { RTE_LOG(ERR, KNI, "Invalid kni info.\n"); return -1; } req_status = kni_check_request_register(&kni->ops); if (req_status == KNI_REQ_REGISTERED) { RTE_LOG(ERR, KNI, "The KNI request operation has already registered.\n"); return -1; } memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops)); return 0; } int rte_kni_unregister_handlers(struct rte_kni *kni) { if (kni == NULL) { RTE_LOG(ERR, KNI, "Invalid kni info.\n"); return -1; } memset(&kni->ops, 0, sizeof(struct rte_kni_ops)); return 0; } int rte_kni_update_link(struct rte_kni *kni, unsigned int linkup) { char path[64]; char old_carrier[2]; const char *new_carrier; int old_linkup; int fd, ret; if (kni == NULL) return -1; snprintf(path, sizeof(path), "/sys/devices/virtual/net/%s/carrier", kni->name); fd = open(path, O_RDWR); if (fd == -1) { RTE_LOG(ERR, KNI, "Failed to open file: %s.\n", path); return -1; } ret = read(fd, old_carrier, 2); if (ret < 1) { close(fd); return -1; } old_linkup = (old_carrier[0] == '1'); if (old_linkup == (int)linkup) goto out; new_carrier = linkup ? "1" : "0"; ret = write(fd, new_carrier, 1); if (ret < 1) { RTE_LOG(ERR, KNI, "Failed to write file: %s.\n", path); close(fd); return -1; } out: close(fd); return old_linkup; } void rte_kni_close(void) { if (kni_fd < 0) return; close(kni_fd); kni_fd = -1; }