/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_private.h" #define RTE_SERVICE_NUM_MAX 64 #define SERVICE_F_REGISTERED (1 << 0) #define SERVICE_F_STATS_ENABLED (1 << 1) #define SERVICE_F_START_CHECK (1 << 2) /* runstates for services and lcores, denoting if they are active or not */ #define RUNSTATE_STOPPED 0 #define RUNSTATE_RUNNING 1 /* internal representation of a service */ struct rte_service_spec_impl { /* public part of the struct */ struct rte_service_spec spec; /* spin lock that when set indicates a service core is currently * running this service callback. When not set, a core may take the * lock and then run the service callback. */ rte_spinlock_t execute_lock; /* API set/get-able variables */ int8_t app_runstate; int8_t comp_runstate; uint8_t internal_flags; /* per service statistics */ /* Indicates how many cores the service is mapped to run on. * It does not indicate the number of cores the service is running * on currently. */ uint32_t num_mapped_cores; uint64_t calls; uint64_t cycles_spent; } __rte_cache_aligned; /* the internal values of a service core */ struct core_state { /* map of services IDs are run on this core */ uint64_t service_mask; uint8_t runstate; /* running or stopped */ uint8_t thread_active; /* indicates when thread is in service_run() */ uint8_t is_service_core; /* set if core is currently a service core */ uint8_t service_active_on_lcore[RTE_SERVICE_NUM_MAX]; uint64_t loops; uint64_t calls_per_service[RTE_SERVICE_NUM_MAX]; } __rte_cache_aligned; static uint32_t rte_service_count; static struct rte_service_spec_impl *rte_services; static struct core_state *lcore_states; static uint32_t rte_service_library_initialized; int32_t rte_service_init(void) { if (rte_service_library_initialized) { RTE_LOG(NOTICE, EAL, "service library init() called, init flag %d\n", rte_service_library_initialized); return -EALREADY; } rte_services = rte_calloc("rte_services", RTE_SERVICE_NUM_MAX, sizeof(struct rte_service_spec_impl), RTE_CACHE_LINE_SIZE); if (!rte_services) { RTE_LOG(ERR, EAL, "error allocating rte services array\n"); goto fail_mem; } lcore_states = rte_calloc("rte_service_core_states", RTE_MAX_LCORE, sizeof(struct core_state), RTE_CACHE_LINE_SIZE); if (!lcore_states) { RTE_LOG(ERR, EAL, "error allocating core states array\n"); goto fail_mem; } int i; int count = 0; struct rte_config *cfg = rte_eal_get_configuration(); for (i = 0; i < RTE_MAX_LCORE; i++) { if (lcore_config[i].core_role == ROLE_SERVICE) { if ((unsigned int)i == cfg->main_lcore) continue; rte_service_lcore_add(i); count++; } } rte_service_library_initialized = 1; return 0; fail_mem: rte_free(rte_services); rte_free(lcore_states); return -ENOMEM; } void rte_service_finalize(void) { if (!rte_service_library_initialized) return; rte_service_lcore_reset_all(); rte_eal_mp_wait_lcore(); rte_free(rte_services); rte_free(lcore_states); rte_service_library_initialized = 0; } /* returns 1 if service is registered and has not been unregistered * Returns 0 if service never registered, or has been unregistered */ static inline int service_valid(uint32_t id) { return !!(rte_services[id].internal_flags & SERVICE_F_REGISTERED); } static struct rte_service_spec_impl * service_get(uint32_t id) { return &rte_services[id]; } /* validate ID and retrieve service pointer, or return error value */ #define SERVICE_VALID_GET_OR_ERR_RET(id, service, retval) do { \ if (id >= RTE_SERVICE_NUM_MAX || !service_valid(id)) \ return retval; \ service = &rte_services[id]; \ } while (0) /* returns 1 if statistics should be collected for service * Returns 0 if statistics should not be collected for service */ static inline int service_stats_enabled(struct rte_service_spec_impl *impl) { return !!(impl->internal_flags & SERVICE_F_STATS_ENABLED); } static inline int service_mt_safe(struct rte_service_spec_impl *s) { return !!(s->spec.capabilities & RTE_SERVICE_CAP_MT_SAFE); } int32_t rte_service_set_stats_enable(uint32_t id, int32_t enabled) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, 0); if (enabled) s->internal_flags |= SERVICE_F_STATS_ENABLED; else s->internal_flags &= ~(SERVICE_F_STATS_ENABLED); return 0; } int32_t rte_service_set_runstate_mapped_check(uint32_t id, int32_t enabled) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, 0); if (enabled) s->internal_flags |= SERVICE_F_START_CHECK; else s->internal_flags &= ~(SERVICE_F_START_CHECK); return 0; } uint32_t rte_service_get_count(void) { return rte_service_count; } int32_t rte_service_get_by_name(const char *name, uint32_t *service_id) { if (!service_id) return -EINVAL; int i; for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) { if (service_valid(i) && strcmp(name, rte_services[i].spec.name) == 0) { *service_id = i; return 0; } } return -ENODEV; } const char * rte_service_get_name(uint32_t id) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, 0); return s->spec.name; } int32_t rte_service_probe_capability(uint32_t id, uint32_t capability) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); return !!(s->spec.capabilities & capability); } int32_t rte_service_component_register(const struct rte_service_spec *spec, uint32_t *id_ptr) { uint32_t i; int32_t free_slot = -1; if (spec->callback == NULL || strlen(spec->name) == 0) return -EINVAL; for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) { if (!service_valid(i)) { free_slot = i; break; } } if ((free_slot < 0) || (i == RTE_SERVICE_NUM_MAX)) return -ENOSPC; struct rte_service_spec_impl *s = &rte_services[free_slot]; s->spec = *spec; s->internal_flags |= SERVICE_F_REGISTERED | SERVICE_F_START_CHECK; rte_service_count++; if (id_ptr) *id_ptr = free_slot; return 0; } int32_t rte_service_component_unregister(uint32_t id) { uint32_t i; struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); rte_service_count--; s->internal_flags &= ~(SERVICE_F_REGISTERED); /* clear the run-bit in all cores */ for (i = 0; i < RTE_MAX_LCORE; i++) lcore_states[i].service_mask &= ~(UINT64_C(1) << id); memset(&rte_services[id], 0, sizeof(struct rte_service_spec_impl)); return 0; } int32_t rte_service_component_runstate_set(uint32_t id, uint32_t runstate) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); /* comp_runstate act as the guard variable. Use store-release * memory order. This synchronizes with load-acquire in * service_run and service_runstate_get function. */ if (runstate) __atomic_store_n(&s->comp_runstate, RUNSTATE_RUNNING, __ATOMIC_RELEASE); else __atomic_store_n(&s->comp_runstate, RUNSTATE_STOPPED, __ATOMIC_RELEASE); return 0; } int32_t rte_service_runstate_set(uint32_t id, uint32_t runstate) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); /* app_runstate act as the guard variable. Use store-release * memory order. This synchronizes with load-acquire in * service_run runstate_get function. */ if (runstate) __atomic_store_n(&s->app_runstate, RUNSTATE_RUNNING, __ATOMIC_RELEASE); else __atomic_store_n(&s->app_runstate, RUNSTATE_STOPPED, __ATOMIC_RELEASE); return 0; } int32_t rte_service_runstate_get(uint32_t id) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); /* comp_runstate and app_runstate act as the guard variables. * Use load-acquire memory order. This synchronizes with * store-release in service state set functions. */ if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) == RUNSTATE_RUNNING && __atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) == RUNSTATE_RUNNING) { int check_disabled = !(s->internal_flags & SERVICE_F_START_CHECK); int lcore_mapped = (__atomic_load_n(&s->num_mapped_cores, __ATOMIC_RELAXED) > 0); return (check_disabled | lcore_mapped); } else return 0; } static inline void service_runner_do_callback(struct rte_service_spec_impl *s, struct core_state *cs, uint32_t service_idx) { void *userdata = s->spec.callback_userdata; if (service_stats_enabled(s)) { uint64_t start = rte_rdtsc(); s->spec.callback(userdata); uint64_t end = rte_rdtsc(); s->cycles_spent += end - start; cs->calls_per_service[service_idx]++; s->calls++; } else s->spec.callback(userdata); } /* Expects the service 's' is valid. */ static int32_t service_run(uint32_t i, struct core_state *cs, uint64_t service_mask, struct rte_service_spec_impl *s, uint32_t serialize_mt_unsafe) { if (!s) return -EINVAL; /* comp_runstate and app_runstate act as the guard variables. * Use load-acquire memory order. This synchronizes with * store-release in service state set functions. */ if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) != RUNSTATE_RUNNING || __atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) != RUNSTATE_RUNNING || !(service_mask & (UINT64_C(1) << i))) { cs->service_active_on_lcore[i] = 0; return -ENOEXEC; } cs->service_active_on_lcore[i] = 1; if ((service_mt_safe(s) == 0) && (serialize_mt_unsafe == 1)) { if (!rte_spinlock_trylock(&s->execute_lock)) return -EBUSY; service_runner_do_callback(s, cs, i); rte_spinlock_unlock(&s->execute_lock); } else service_runner_do_callback(s, cs, i); return 0; } int32_t rte_service_may_be_active(uint32_t id) { uint32_t ids[RTE_MAX_LCORE] = {0}; int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE); int i; if (id >= RTE_SERVICE_NUM_MAX || !service_valid(id)) return -EINVAL; for (i = 0; i < lcore_count; i++) { if (lcore_states[ids[i]].service_active_on_lcore[id]) return 1; } return 0; } int32_t rte_service_run_iter_on_app_lcore(uint32_t id, uint32_t serialize_mt_unsafe) { struct core_state *cs = &lcore_states[rte_lcore_id()]; struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); /* Increment num_mapped_cores to reflect that this core is * now mapped capable of running the service. */ __atomic_add_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED); int ret = service_run(id, cs, UINT64_MAX, s, serialize_mt_unsafe); __atomic_sub_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED); return ret; } static int32_t service_runner_func(void *arg) { RTE_SET_USED(arg); uint32_t i; const int lcore = rte_lcore_id(); struct core_state *cs = &lcore_states[lcore]; __atomic_store_n(&cs->thread_active, 1, __ATOMIC_SEQ_CST); /* runstate act as the guard variable. Use load-acquire * memory order here to synchronize with store-release * in runstate update functions. */ while (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) == RUNSTATE_RUNNING) { const uint64_t service_mask = cs->service_mask; for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) { if (!service_valid(i)) continue; /* return value ignored as no change to code flow */ service_run(i, cs, service_mask, service_get(i), 1); } cs->loops++; } /* Use SEQ CST memory ordering to avoid any re-ordering around * this store, ensuring that once this store is visible, the service * lcore thread really is done in service cores code. */ __atomic_store_n(&cs->thread_active, 0, __ATOMIC_SEQ_CST); return 0; } int32_t rte_service_lcore_may_be_active(uint32_t lcore) { if (lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core) return -EINVAL; /* Load thread_active using ACQUIRE to avoid instructions dependent on * the result being re-ordered before this load completes. */ return __atomic_load_n(&lcore_states[lcore].thread_active, __ATOMIC_ACQUIRE); } int32_t rte_service_lcore_count(void) { int32_t count = 0; uint32_t i; for (i = 0; i < RTE_MAX_LCORE; i++) count += lcore_states[i].is_service_core; return count; } int32_t rte_service_lcore_list(uint32_t array[], uint32_t n) { uint32_t count = rte_service_lcore_count(); if (count > n) return -ENOMEM; if (!array) return -EINVAL; uint32_t i; uint32_t idx = 0; for (i = 0; i < RTE_MAX_LCORE; i++) { struct core_state *cs = &lcore_states[i]; if (cs->is_service_core) { array[idx] = i; idx++; } } return count; } int32_t rte_service_lcore_count_services(uint32_t lcore) { if (lcore >= RTE_MAX_LCORE) return -EINVAL; struct core_state *cs = &lcore_states[lcore]; if (!cs->is_service_core) return -ENOTSUP; return __builtin_popcountll(cs->service_mask); } int32_t rte_service_start_with_defaults(void) { /* create a default mapping from cores to services, then start the * services to make them transparent to unaware applications. */ uint32_t i; int ret; uint32_t count = rte_service_get_count(); int32_t lcore_iter = 0; uint32_t ids[RTE_MAX_LCORE] = {0}; int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE); if (lcore_count == 0) return -ENOTSUP; for (i = 0; (int)i < lcore_count; i++) rte_service_lcore_start(ids[i]); for (i = 0; i < count; i++) { /* do 1:1 core mapping here, with each service getting * assigned a single core by default. Adding multiple services * should multiplex to a single core, or 1:1 if there are the * same amount of services as service-cores */ ret = rte_service_map_lcore_set(i, ids[lcore_iter], 1); if (ret) return -ENODEV; lcore_iter++; if (lcore_iter >= lcore_count) lcore_iter = 0; ret = rte_service_runstate_set(i, 1); if (ret) return -ENOEXEC; } return 0; } static int32_t service_update(uint32_t sid, uint32_t lcore, uint32_t *set, uint32_t *enabled) { /* validate ID, or return error value */ if (sid >= RTE_SERVICE_NUM_MAX || !service_valid(sid) || lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core) return -EINVAL; uint64_t sid_mask = UINT64_C(1) << sid; if (set) { uint64_t lcore_mapped = lcore_states[lcore].service_mask & sid_mask; if (*set && !lcore_mapped) { lcore_states[lcore].service_mask |= sid_mask; __atomic_add_fetch(&rte_services[sid].num_mapped_cores, 1, __ATOMIC_RELAXED); } if (!*set && lcore_mapped) { lcore_states[lcore].service_mask &= ~(sid_mask); __atomic_sub_fetch(&rte_services[sid].num_mapped_cores, 1, __ATOMIC_RELAXED); } } if (enabled) *enabled = !!(lcore_states[lcore].service_mask & (sid_mask)); return 0; } int32_t rte_service_map_lcore_set(uint32_t id, uint32_t lcore, uint32_t enabled) { uint32_t on = enabled > 0; return service_update(id, lcore, &on, 0); } int32_t rte_service_map_lcore_get(uint32_t id, uint32_t lcore) { uint32_t enabled; int ret = service_update(id, lcore, 0, &enabled); if (ret == 0) return enabled; return ret; } static void set_lcore_state(uint32_t lcore, int32_t state) { /* mark core state in hugepage backed config */ struct rte_config *cfg = rte_eal_get_configuration(); cfg->lcore_role[lcore] = state; /* mark state in process local lcore_config */ lcore_config[lcore].core_role = state; /* update per-lcore optimized state tracking */ lcore_states[lcore].is_service_core = (state == ROLE_SERVICE); } int32_t rte_service_lcore_reset_all(void) { /* loop over cores, reset all to mask 0 */ uint32_t i; for (i = 0; i < RTE_MAX_LCORE; i++) { if (lcore_states[i].is_service_core) { lcore_states[i].service_mask = 0; set_lcore_state(i, ROLE_RTE); /* runstate act as guard variable Use * store-release memory order here to synchronize * with load-acquire in runstate read functions. */ __atomic_store_n(&lcore_states[i].runstate, RUNSTATE_STOPPED, __ATOMIC_RELEASE); } } for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) __atomic_store_n(&rte_services[i].num_mapped_cores, 0, __ATOMIC_RELAXED); return 0; } int32_t rte_service_lcore_add(uint32_t lcore) { if (lcore >= RTE_MAX_LCORE) return -EINVAL; if (lcore_states[lcore].is_service_core) return -EALREADY; set_lcore_state(lcore, ROLE_SERVICE); /* ensure that after adding a core the mask and state are defaults */ lcore_states[lcore].service_mask = 0; /* Use store-release memory order here to synchronize with * load-acquire in runstate read functions. */ __atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED, __ATOMIC_RELEASE); return rte_eal_wait_lcore(lcore); } int32_t rte_service_lcore_del(uint32_t lcore) { if (lcore >= RTE_MAX_LCORE) return -EINVAL; struct core_state *cs = &lcore_states[lcore]; if (!cs->is_service_core) return -EINVAL; /* runstate act as the guard variable. Use load-acquire * memory order here to synchronize with store-release * in runstate update functions. */ if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) != RUNSTATE_STOPPED) return -EBUSY; set_lcore_state(lcore, ROLE_RTE); rte_smp_wmb(); return 0; } int32_t rte_service_lcore_start(uint32_t lcore) { if (lcore >= RTE_MAX_LCORE) return -EINVAL; struct core_state *cs = &lcore_states[lcore]; if (!cs->is_service_core) return -EINVAL; /* runstate act as the guard variable. Use load-acquire * memory order here to synchronize with store-release * in runstate update functions. */ if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) == RUNSTATE_RUNNING) return -EALREADY; /* set core to run state first, and then launch otherwise it will * return immediately as runstate keeps it in the service poll loop */ /* Use load-acquire memory order here to synchronize with * store-release in runstate update functions. */ __atomic_store_n(&cs->runstate, RUNSTATE_RUNNING, __ATOMIC_RELEASE); int ret = rte_eal_remote_launch(service_runner_func, 0, lcore); /* returns -EBUSY if the core is already launched, 0 on success */ return ret; } int32_t rte_service_lcore_stop(uint32_t lcore) { if (lcore >= RTE_MAX_LCORE) return -EINVAL; /* runstate act as the guard variable. Use load-acquire * memory order here to synchronize with store-release * in runstate update functions. */ if (__atomic_load_n(&lcore_states[lcore].runstate, __ATOMIC_ACQUIRE) == RUNSTATE_STOPPED) return -EALREADY; uint32_t i; struct core_state *cs = &lcore_states[lcore]; uint64_t service_mask = cs->service_mask; for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) { int32_t enabled = service_mask & (UINT64_C(1) << i); int32_t service_running = rte_service_runstate_get(i); int32_t only_core = (1 == __atomic_load_n(&rte_services[i].num_mapped_cores, __ATOMIC_RELAXED)); /* Switch off this core for all services, to ensure that future * calls to may_be_active() know this core is switched off. */ cs->service_active_on_lcore[i] = 0; /* if the core is mapped, and the service is running, and this * is the only core that is mapped, the service would cease to * run if this core stopped, so fail instead. */ if (enabled && service_running && only_core) return -EBUSY; } /* Use store-release memory order here to synchronize with * load-acquire in runstate read functions. */ __atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED, __ATOMIC_RELEASE); return 0; } int32_t rte_service_attr_get(uint32_t id, uint32_t attr_id, uint64_t *attr_value) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); if (!attr_value) return -EINVAL; switch (attr_id) { case RTE_SERVICE_ATTR_CYCLES: *attr_value = s->cycles_spent; return 0; case RTE_SERVICE_ATTR_CALL_COUNT: *attr_value = s->calls; return 0; default: return -EINVAL; } } int32_t rte_service_lcore_attr_get(uint32_t lcore, uint32_t attr_id, uint64_t *attr_value) { struct core_state *cs; if (lcore >= RTE_MAX_LCORE || !attr_value) return -EINVAL; cs = &lcore_states[lcore]; if (!cs->is_service_core) return -ENOTSUP; switch (attr_id) { case RTE_SERVICE_LCORE_ATTR_LOOPS: *attr_value = cs->loops; return 0; default: return -EINVAL; } } int32_t rte_service_attr_reset_all(uint32_t id) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); s->cycles_spent = 0; s->calls = 0; return 0; } int32_t rte_service_lcore_attr_reset_all(uint32_t lcore) { struct core_state *cs; if (lcore >= RTE_MAX_LCORE) return -EINVAL; cs = &lcore_states[lcore]; if (!cs->is_service_core) return -ENOTSUP; cs->loops = 0; return 0; } static void service_dump_one(FILE *f, struct rte_service_spec_impl *s) { /* avoid divide by zero */ int calls = 1; if (s->calls != 0) calls = s->calls; fprintf(f, " %s: stats %d\tcalls %"PRIu64"\tcycles %" PRIu64"\tavg: %"PRIu64"\n", s->spec.name, service_stats_enabled(s), s->calls, s->cycles_spent, s->cycles_spent / calls); } static void service_dump_calls_per_lcore(FILE *f, uint32_t lcore) { uint32_t i; struct core_state *cs = &lcore_states[lcore]; fprintf(f, "%02d\t", lcore); for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) { if (!service_valid(i)) continue; fprintf(f, "%"PRIu64"\t", cs->calls_per_service[i]); } fprintf(f, "\n"); } int32_t rte_service_dump(FILE *f, uint32_t id) { uint32_t i; int print_one = (id != UINT32_MAX); /* print only the specified service */ if (print_one) { struct rte_service_spec_impl *s; SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL); fprintf(f, "Service %s Summary\n", s->spec.name); service_dump_one(f, s); return 0; } /* print all services, as UINT32_MAX was passed as id */ fprintf(f, "Services Summary\n"); for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) { if (!service_valid(i)) continue; service_dump_one(f, &rte_services[i]); } fprintf(f, "Service Cores Summary\n"); for (i = 0; i < RTE_MAX_LCORE; i++) { if (lcore_config[i].core_role != ROLE_SERVICE) continue; service_dump_calls_per_lcore(f, i); } return 0; }