/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2018 Intel Corporation */ #ifndef _EAL_PRIVATE_H_ #define _EAL_PRIVATE_H_ #include #include #include #include #include #include #include #include "eal_internal_cfg.h" /** * Structure storing internal configuration (per-lcore) */ struct lcore_config { pthread_t thread_id; /**< pthread identifier */ int pipe_main2worker[2]; /**< communication pipe with main */ int pipe_worker2main[2]; /**< communication pipe with main */ lcore_function_t * volatile f; /**< function to call */ void * volatile arg; /**< argument of function */ volatile int ret; /**< return value of function */ volatile enum rte_lcore_state_t state; /**< lcore state */ unsigned int socket_id; /**< physical socket id for this lcore */ unsigned int core_id; /**< core number on socket for this lcore */ int core_index; /**< relative index, starting from 0 */ uint8_t core_role; /**< role of core eg: OFF, RTE, SERVICE */ rte_cpuset_t cpuset; /**< cpu set which the lcore affinity to */ }; extern struct lcore_config lcore_config[RTE_MAX_LCORE]; /** * The global RTE configuration structure. */ struct rte_config { uint32_t main_lcore; /**< Id of the main lcore */ uint32_t lcore_count; /**< Number of available logical cores. */ uint32_t numa_node_count; /**< Number of detected NUMA nodes. */ uint32_t numa_nodes[RTE_MAX_NUMA_NODES]; /**< List of detected NUMA nodes. */ uint32_t service_lcore_count;/**< Number of available service cores. */ enum rte_lcore_role_t lcore_role[RTE_MAX_LCORE]; /**< State of cores. */ /** Primary or secondary configuration */ enum rte_proc_type_t process_type; /** PA or VA mapping mode */ enum rte_iova_mode iova_mode; /** * Pointer to memory configuration, which may be shared across multiple * DPDK instances */ struct rte_mem_config *mem_config; } __rte_packed; /** * Get the global configuration structure. * * @return * A pointer to the global configuration structure. */ struct rte_config *rte_eal_get_configuration(void); /** * Initialize the memzone subsystem (private to eal). * * @return * - 0 on success * - Negative on error */ int rte_eal_memzone_init(void); /** * Fill configuration with number of physical and logical processors * * This function is private to EAL. * * Parse /proc/cpuinfo to get the number of physical and logical * processors on the machine. * * @return * 0 on success, negative on error */ int rte_eal_cpu_init(void); /** * Create memseg lists * * This function is private to EAL. * * Preallocate virtual memory. * * @return * 0 on success, negative on error */ int rte_eal_memseg_init(void); /** * Map memory * * This function is private to EAL. * * Fill configuration structure with these infos, and return 0 on success. * * @return * 0 on success, negative on error */ int rte_eal_memory_init(void); /** * Configure timers * * This function is private to EAL. * * Mmap memory areas used by HPET (high precision event timer) that will * provide our time reference, and configure the TSC frequency also for it * to be used as a reference. * * @return * 0 on success, negative on error */ int rte_eal_timer_init(void); /** * Init tail queues for non-EAL library structures. This is to allow * the rings, mempools, etc. lists to be shared among multiple processes * * This function is private to EAL * * @return * 0 on success, negative on error */ int rte_eal_tailqs_init(void); /** * Init interrupt handling. * * This function is private to EAL. * * @return * 0 on success, negative on error */ int rte_eal_intr_init(void); /** * Init alarm mechanism. This is to allow a callback be called after * specific time. * * This function is private to EAL. * * @return * 0 on success, negative on error */ int rte_eal_alarm_init(void); /** * Alarm mechanism cleanup. * * This function is private to EAL. * * @return * 0 on success, negative on error */ void rte_eal_alarm_cleanup(void); /** * Function is to check if the kernel module(like, vfio, vfio_iommu_type1, * etc.) loaded. * * @param module_name * The module's name which need to be checked * * @return * -1 means some error happens(NULL pointer or open failure) * 0 means the module not loaded * 1 means the module loaded */ int rte_eal_check_module(const char *module_name); /** * Memory reservation flags. */ enum eal_mem_reserve_flags { /** * Reserve hugepages. May be unsupported by some platforms. */ EAL_RESERVE_HUGEPAGES = 1 << 0, /** * Force reserving memory at the requested address. * This can be a destructive action depending on the implementation. * * @see RTE_MAP_FORCE_ADDRESS for description of possible consequences * (although implementations are not required to use it). */ EAL_RESERVE_FORCE_ADDRESS = 1 << 1 }; /** * Get virtual area of specified size from the OS. * * This function is private to the EAL. * * @param requested_addr * Address where to request address space. * @param size * Size of requested area. * @param page_sz * Page size on which to align requested virtual area. * @param flags * EAL_VIRTUAL_AREA_* flags. * @param reserve_flags * Extra flags passed directly to eal_mem_reserve(). * * @return * Virtual area address if successful. * NULL if unsuccessful. */ #define EAL_VIRTUAL_AREA_ADDR_IS_HINT (1 << 0) /**< don't fail if cannot get exact requested address. */ #define EAL_VIRTUAL_AREA_ALLOW_SHRINK (1 << 1) /**< try getting smaller sized (decrement by page size) virtual areas if cannot * get area of requested size. */ #define EAL_VIRTUAL_AREA_UNMAP (1 << 2) /**< immediately unmap reserved virtual area. */ void * eal_get_virtual_area(void *requested_addr, size_t *size, size_t page_sz, int flags, int reserve_flags); /** * Initialize a memory segment list and create its backing storage. * * @param msl * Memory segment list to be filled. * @param name * Name for the backing storage. * @param page_sz * Size of segment pages in the MSL. * @param n_segs * Number of segments. * @param socket_id * Socket ID. Must not be SOCKET_ID_ANY. * @param heap * Mark MSL as pointing to a heap. * @return * 0 on success, (-1) on failure and rte_errno is set. */ int eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name, uint64_t page_sz, int n_segs, int socket_id, bool heap); /** * Initialize memory segment list and create its backing storage * with a name corresponding to MSL parameters. * * @param type_msl_idx * Index of the MSL among other MSLs of the same socket and page size. * * @see eal_memseg_list_init_named for remaining parameters description. */ int eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz, int n_segs, int socket_id, int type_msl_idx, bool heap); /** * Reserve VA space for a memory segment list * previously initialized with eal_memseg_list_init(). * * @param msl * Initialized memory segment list with page size defined. * @param reserve_flags * Extra memory reservation flags. Can be 0 if unnecessary. * @return * 0 on success, (-1) on failure and rte_errno is set. */ int eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags); /** * Populate MSL, each segment is one page long. * * @param msl * Initialized memory segment list with page size defined. * @param addr * Starting address of list segments. * @param n_segs * Number of segments to populate. */ void eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs); /** * Distribute available memory between MSLs. * * @return * 0 on success, (-1) on failure. */ int eal_dynmem_memseg_lists_init(void); /** * Preallocate hugepages for dynamic allocation. * * @return * 0 on success, (-1) on failure. */ int eal_dynmem_hugepage_init(void); /** * Given the list of hugepage sizes and the number of pages thereof, * calculate the best number of pages of each size to fulfill the request * for RAM on each NUMA node. * * @param memory * Amounts of memory requested for each NUMA node of RTE_MAX_NUMA_NODES. * @param hp_info * Information about hugepages of different size. * @param hp_used * Receives information about used hugepages of each size. * @param num_hp_info * Number of elements in hp_info and hp_used. * @return * 0 on success, (-1) on failure. */ int eal_dynmem_calc_num_pages_per_socket( uint64_t *memory, struct hugepage_info *hp_info, struct hugepage_info *hp_used, unsigned int num_hp_info); /** * Get cpu core_id. * * This function is private to the EAL. */ unsigned eal_cpu_core_id(unsigned lcore_id); /** * Check if cpu is present. * * This function is private to the EAL. */ int eal_cpu_detected(unsigned lcore_id); /** * Set TSC frequency from precise value or estimation * * This function is private to the EAL. */ void set_tsc_freq(void); /** * Get precise TSC frequency from system * * This function is private to the EAL. */ uint64_t get_tsc_freq(void); /** * Get TSC frequency if the architecture supports. * * This function is private to the EAL. * * @return * The number of TSC cycles in one second. * Returns zero if the architecture support is not available. */ uint64_t get_tsc_freq_arch(void); /** * Allocate a free lcore to associate to a non-EAL thread. * * @return * - the id of a lcore with role ROLE_NON_EAL on success. * - RTE_MAX_LCORE if none was available or initializing was refused (see * rte_lcore_callback_register). */ unsigned int eal_lcore_non_eal_allocate(void); /** * Release the lcore used by a non-EAL thread. * Counterpart of eal_lcore_non_eal_allocate(). * * @param lcore_id * The lcore with role ROLE_NON_EAL to release. */ void eal_lcore_non_eal_release(unsigned int lcore_id); /** * Prepare physical memory mapping * i.e. hugepages on Linux and * contigmem on BSD. * * This function is private to the EAL. */ int rte_eal_hugepage_init(void); /** * Creates memory mapping in secondary process * i.e. hugepages on Linux and * contigmem on BSD. * * This function is private to the EAL. */ int rte_eal_hugepage_attach(void); /** * Detaches all memory mappings from a process. * * This function is private to the EAL. */ int rte_eal_memory_detach(void); /** * Find a bus capable of identifying a device. * * @param str * A device identifier (PCI address, virtual PMD name, ...). * * @return * A valid bus handle if found. * NULL if no bus is able to parse this device. */ struct rte_bus *rte_bus_find_by_device_name(const char *str); /** * Create the unix channel for primary/secondary communication. * * @return * 0 on success; * (<0) on failure. */ int rte_mp_channel_init(void); /** * Primary/secondary communication cleanup. */ void rte_mp_channel_cleanup(void); /** * @internal * Parse a device string and store its information in an * rte_devargs structure. * * A device description is split by layers of abstraction of the device: * bus, class and driver. Each layer will offer a set of properties that * can be applied either to configure or recognize a device. * * This function will parse those properties and prepare the rte_devargs * to be given to each layers for processing. * * Note: if the "data" field of the devargs points to devstr, * then no dynamic allocation is performed and the rte_devargs * can be safely discarded. * * Otherwise ``data`` will hold a workable copy of devstr, that will be * used by layers descriptors within rte_devargs. In this case, * any rte_devargs should be cleaned-up before being freed. * * @param da * rte_devargs structure to fill. * * @param devstr * Device string. * * @return * 0 on success. * Negative errno values on error (rte_errno is set). */ int rte_devargs_layers_parse(struct rte_devargs *devargs, const char *devstr); /* * probe a device at local process. * * @param devargs * Device arguments including bus, class and driver properties. * @param new_dev * new device be probed as output. * @return * 0 on success, negative on error. */ int local_dev_probe(const char *devargs, struct rte_device **new_dev); /** * Hotplug remove a given device from a specific bus at local process. * * @param dev * Data structure of the device to remove. * @return * 0 on success, negative on error. */ int local_dev_remove(struct rte_device *dev); /** * Iterate over all buses to find the corresponding bus to handle the sigbus * error. * @param failure_addr * Pointer of the fault address of the sigbus error. * * @return * 0 success to handle the sigbus. * -1 failed to handle the sigbus * 1 no bus can handler the sigbus */ int rte_bus_sigbus_handler(const void *failure_addr); /** * @internal * Register the sigbus handler. * * @return * - On success, zero. * - On failure, a negative value. */ int dev_sigbus_handler_register(void); /** * @internal * Unregister the sigbus handler. * * @return * - On success, zero. * - On failure, a negative value. */ int dev_sigbus_handler_unregister(void); /** * Get OS-specific EAL mapping base address. */ uint64_t eal_get_baseaddr(void); void * eal_malloc_no_trace(const char *type, size_t size, unsigned int align); void eal_free_no_trace(void *addr); /** Options for eal_file_open(). */ enum eal_open_flags { /** Open file for reading. */ EAL_OPEN_READONLY = 0x00, /** Open file for reading and writing. */ EAL_OPEN_READWRITE = 0x02, /** * Create the file if it doesn't exist. * New files are only accessible to the owner (0600 equivalent). */ EAL_OPEN_CREATE = 0x04 }; /** * Open or create a file. * * @param path * Path to the file. * @param flags * A combination of eal_open_flags controlling operation and FD behavior. * @return * Open file descriptor on success, (-1) on failure and rte_errno is set. */ int eal_file_open(const char *path, int flags); /** File locking operation. */ enum eal_flock_op { EAL_FLOCK_SHARED, /**< Acquire a shared lock. */ EAL_FLOCK_EXCLUSIVE, /**< Acquire an exclusive lock. */ EAL_FLOCK_UNLOCK /**< Release a previously taken lock. */ }; /** Behavior on file locking conflict. */ enum eal_flock_mode { EAL_FLOCK_WAIT, /**< Wait until the file gets unlocked to lock it. */ EAL_FLOCK_RETURN /**< Return immediately if the file is locked. */ }; /** * Lock or unlock the file. * * On failure @code rte_errno @endcode is set to the error code * specified by POSIX flock(3) description. * * @param fd * Opened file descriptor. * @param op * Operation to perform. * @param mode * Behavior on conflict. * @return * 0 on success, (-1) on failure. */ int eal_file_lock(int fd, enum eal_flock_op op, enum eal_flock_mode mode); /** * Truncate or extend the file to the specified size. * * On failure @code rte_errno @endcode is set to the error code * specified by POSIX ftruncate(3) description. * * @param fd * Opened file descriptor. * @param size * Desired file size. * @return * 0 on success, (-1) on failure. */ int eal_file_truncate(int fd, ssize_t size); /** * Reserve a region of virtual memory. * * Use eal_mem_free() to free reserved memory. * * @param requested_addr * A desired reservation address which must be page-aligned. * The system might not respect it. * NULL means the address will be chosen by the system. * @param size * Reservation size. Must be a multiple of system page size. * @param flags * Reservation options, a combination of eal_mem_reserve_flags. * @returns * Starting address of the reserved area on success, NULL on failure. * Callers must not access this memory until remapping it. */ void * eal_mem_reserve(void *requested_addr, size_t size, int flags); /** * Free memory obtained by eal_mem_reserve() and possibly allocated. * * If *virt* and *size* describe a part of the reserved region, * only this part of the region is freed (accurately up to the system * page size). If *virt* points to allocated memory, *size* must match * the one specified on allocation. The behavior is undefined * if the memory pointed by *virt* is obtained from another source * than listed above. * * @param virt * A virtual address in a region previously reserved. * @param size * Number of bytes to unreserve. */ void eal_mem_free(void *virt, size_t size); /** * Configure memory region inclusion into dumps. * * @param virt * Starting address of the region. * @param size * Size of the region. * @param dump * True to include memory into dumps, false to exclude. * @return * 0 on success, (-1) on failure and rte_errno is set. */ int eal_mem_set_dump(void *virt, size_t size, bool dump); /** * Sets the runtime directory of DPDK * * @param run_dir * The new runtime directory path of DPDK * @param size * The size of the new runtime directory path in bytes. * @return * 0 on success, (-1) on failure. */ int eal_set_runtime_dir(char *run_dir, size_t size); /** * Get the internal configuration structure. * * @return * A pointer to the internal configuration structure. */ struct internal_config * eal_get_internal_configuration(void); /** * Get the current value of the rte_application_usage pointer * * @return * Pointer to the current value of rte_application_usage . */ rte_usage_hook_t eal_get_application_usage_hook(void); /** * Instruct primary process that a secondary process wants to attach. */ bool __rte_mp_enable(void); /** * Init per-lcore info in current thread. * * @param lcore_id * identifier of lcore. * @param cpuset * CPU affinity for this thread. */ void __rte_thread_init(unsigned int lcore_id, rte_cpuset_t *cpuset); /** * Uninitialize per-lcore info for current thread. */ void __rte_thread_uninit(void); /** * asprintf(3) replacement for Windows. */ #ifdef RTE_EXEC_ENV_WINDOWS __rte_format_printf(2, 3) int eal_asprintf(char **buffer, const char *format, ...); #define asprintf(buffer, format, ...) \ eal_asprintf(buffer, format, ##__VA_ARGS__) #endif #endif /* _EAL_PRIVATE_H_ */