/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation. * Copyright(c) 2013 6WIND S.A. */ #include #include #include #include #include "eal_internal_cfg.h" #include "eal_memalloc.h" #include "eal_memcfg.h" #include "eal_private.h" /** @file Functions common to EALs that support dynamic memory allocation. */ int eal_dynmem_memseg_lists_init(void) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct memtype { uint64_t page_sz; int socket_id; } *memtypes = NULL; int i, hpi_idx, msl_idx, ret = -1; /* fail unless told to succeed */ struct rte_memseg_list *msl; uint64_t max_mem, max_mem_per_type; unsigned int max_seglists_per_type; unsigned int n_memtypes, cur_type; struct internal_config *internal_conf = eal_get_internal_configuration(); /* no-huge does not need this at all */ if (internal_conf->no_hugetlbfs) return 0; /* * figuring out amount of memory we're going to have is a long and very * involved process. the basic element we're operating with is a memory * type, defined as a combination of NUMA node ID and page size (so that * e.g. 2 sockets with 2 page sizes yield 4 memory types in total). * * deciding amount of memory going towards each memory type is a * balancing act between maximum segments per type, maximum memory per * type, and number of detected NUMA nodes. the goal is to make sure * each memory type gets at least one memseg list. * * the total amount of memory is limited by RTE_MAX_MEM_MB value. * * the total amount of memory per type is limited by either * RTE_MAX_MEM_MB_PER_TYPE, or by RTE_MAX_MEM_MB divided by the number * of detected NUMA nodes. additionally, maximum number of segments per * type is also limited by RTE_MAX_MEMSEG_PER_TYPE. this is because for * smaller page sizes, it can take hundreds of thousands of segments to * reach the above specified per-type memory limits. * * additionally, each type may have multiple memseg lists associated * with it, each limited by either RTE_MAX_MEM_MB_PER_LIST for bigger * page sizes, or RTE_MAX_MEMSEG_PER_LIST segments for smaller ones. * * the number of memseg lists per type is decided based on the above * limits, and also taking number of detected NUMA nodes, to make sure * that we don't run out of memseg lists before we populate all NUMA * nodes with memory. * * we do this in three stages. first, we collect the number of types. * then, we figure out memory constraints and populate the list of * would-be memseg lists. then, we go ahead and allocate the memseg * lists. */ /* create space for mem types */ n_memtypes = internal_conf->num_hugepage_sizes * rte_socket_count(); memtypes = calloc(n_memtypes, sizeof(*memtypes)); if (memtypes == NULL) { RTE_LOG(ERR, EAL, "Cannot allocate space for memory types\n"); return -1; } /* populate mem types */ cur_type = 0; for (hpi_idx = 0; hpi_idx < (int) internal_conf->num_hugepage_sizes; hpi_idx++) { struct hugepage_info *hpi; uint64_t hugepage_sz; hpi = &internal_conf->hugepage_info[hpi_idx]; hugepage_sz = hpi->hugepage_sz; for (i = 0; i < (int) rte_socket_count(); i++, cur_type++) { int socket_id = rte_socket_id_by_idx(i); #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES /* we can still sort pages by socket in legacy mode */ if (!internal_conf->legacy_mem && socket_id > 0) break; #endif memtypes[cur_type].page_sz = hugepage_sz; memtypes[cur_type].socket_id = socket_id; RTE_LOG(DEBUG, EAL, "Detected memory type: " "socket_id:%u hugepage_sz:%" PRIu64 "\n", socket_id, hugepage_sz); } } /* number of memtypes could have been lower due to no NUMA support */ n_memtypes = cur_type; /* set up limits for types */ max_mem = (uint64_t)RTE_MAX_MEM_MB << 20; max_mem_per_type = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20, max_mem / n_memtypes); /* * limit maximum number of segment lists per type to ensure there's * space for memseg lists for all NUMA nodes with all page sizes */ max_seglists_per_type = RTE_MAX_MEMSEG_LISTS / n_memtypes; if (max_seglists_per_type == 0) { RTE_LOG(ERR, EAL, "Cannot accommodate all memory types, please increase %s\n", RTE_STR(RTE_MAX_MEMSEG_LISTS)); goto out; } /* go through all mem types and create segment lists */ msl_idx = 0; for (cur_type = 0; cur_type < n_memtypes; cur_type++) { unsigned int cur_seglist, n_seglists, n_segs; unsigned int max_segs_per_type, max_segs_per_list; struct memtype *type = &memtypes[cur_type]; uint64_t max_mem_per_list, pagesz; int socket_id; pagesz = type->page_sz; socket_id = type->socket_id; /* * we need to create segment lists for this type. we must take * into account the following things: * * 1. total amount of memory we can use for this memory type * 2. total amount of memory per memseg list allowed * 3. number of segments needed to fit the amount of memory * 4. number of segments allowed per type * 5. number of segments allowed per memseg list * 6. number of memseg lists we are allowed to take up */ /* calculate how much segments we will need in total */ max_segs_per_type = max_mem_per_type / pagesz; /* limit number of segments to maximum allowed per type */ max_segs_per_type = RTE_MIN(max_segs_per_type, (unsigned int)RTE_MAX_MEMSEG_PER_TYPE); /* limit number of segments to maximum allowed per list */ max_segs_per_list = RTE_MIN(max_segs_per_type, (unsigned int)RTE_MAX_MEMSEG_PER_LIST); /* calculate how much memory we can have per segment list */ max_mem_per_list = RTE_MIN(max_segs_per_list * pagesz, (uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20); /* calculate how many segments each segment list will have */ n_segs = RTE_MIN(max_segs_per_list, max_mem_per_list / pagesz); /* calculate how many segment lists we can have */ n_seglists = RTE_MIN(max_segs_per_type / n_segs, max_mem_per_type / max_mem_per_list); /* limit number of segment lists according to our maximum */ n_seglists = RTE_MIN(n_seglists, max_seglists_per_type); RTE_LOG(DEBUG, EAL, "Creating %i segment lists: " "n_segs:%i socket_id:%i hugepage_sz:%" PRIu64 "\n", n_seglists, n_segs, socket_id, pagesz); /* create all segment lists */ for (cur_seglist = 0; cur_seglist < n_seglists; cur_seglist++) { if (msl_idx >= RTE_MAX_MEMSEG_LISTS) { RTE_LOG(ERR, EAL, "No more space in memseg lists, please increase %s\n", RTE_STR(RTE_MAX_MEMSEG_LISTS)); goto out; } msl = &mcfg->memsegs[msl_idx++]; if (eal_memseg_list_init(msl, pagesz, n_segs, socket_id, cur_seglist, true)) goto out; if (eal_memseg_list_alloc(msl, 0)) { RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n"); goto out; } } } /* we're successful */ ret = 0; out: free(memtypes); return ret; } static int __rte_unused hugepage_count_walk(const struct rte_memseg_list *msl, void *arg) { struct hugepage_info *hpi = arg; if (msl->page_sz != hpi->hugepage_sz) return 0; hpi->num_pages[msl->socket_id] += msl->memseg_arr.len; return 0; } static int limits_callback(int socket_id, size_t cur_limit, size_t new_len) { RTE_SET_USED(socket_id); RTE_SET_USED(cur_limit); RTE_SET_USED(new_len); return -1; } int eal_dynmem_hugepage_init(void) { struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; uint64_t memory[RTE_MAX_NUMA_NODES]; int hp_sz_idx, socket_id; struct internal_config *internal_conf = eal_get_internal_configuration(); memset(used_hp, 0, sizeof(used_hp)); for (hp_sz_idx = 0; hp_sz_idx < (int) internal_conf->num_hugepage_sizes; hp_sz_idx++) { #ifndef RTE_ARCH_64 struct hugepage_info dummy; unsigned int i; #endif /* also initialize used_hp hugepage sizes in used_hp */ struct hugepage_info *hpi; hpi = &internal_conf->hugepage_info[hp_sz_idx]; used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz; #ifndef RTE_ARCH_64 /* for 32-bit, limit number of pages on socket to whatever we've * preallocated, as we cannot allocate more. */ memset(&dummy, 0, sizeof(dummy)); dummy.hugepage_sz = hpi->hugepage_sz; if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0) return -1; for (i = 0; i < RTE_DIM(dummy.num_pages); i++) { hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i], dummy.num_pages[i]); } #endif } /* make a copy of socket_mem, needed for balanced allocation. */ for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++) memory[hp_sz_idx] = internal_conf->socket_mem[hp_sz_idx]; /* calculate final number of pages */ if (eal_dynmem_calc_num_pages_per_socket(memory, internal_conf->hugepage_info, used_hp, internal_conf->num_hugepage_sizes) < 0) return -1; for (hp_sz_idx = 0; hp_sz_idx < (int)internal_conf->num_hugepage_sizes; hp_sz_idx++) { for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++) { struct rte_memseg **pages; struct hugepage_info *hpi = &used_hp[hp_sz_idx]; unsigned int num_pages = hpi->num_pages[socket_id]; unsigned int num_pages_alloc; if (num_pages == 0) continue; RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M " "on socket %i\n", num_pages, hpi->hugepage_sz >> 20, socket_id); /* we may not be able to allocate all pages in one go, * because we break up our memory map into multiple * memseg lists. therefore, try allocating multiple * times and see if we can get the desired number of * pages from multiple allocations. */ num_pages_alloc = 0; do { int i, cur_pages, needed; needed = num_pages - num_pages_alloc; pages = malloc(sizeof(*pages) * needed); if (pages == NULL) { RTE_LOG(ERR, EAL, "Failed to malloc pages\n"); return -1; } /* do not request exact number of pages */ cur_pages = eal_memalloc_alloc_seg_bulk(pages, needed, hpi->hugepage_sz, socket_id, false); if (cur_pages <= 0) { free(pages); return -1; } /* mark preallocated pages as unfreeable */ for (i = 0; i < cur_pages; i++) { struct rte_memseg *ms = pages[i]; ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; } free(pages); num_pages_alloc += cur_pages; } while (num_pages_alloc != num_pages); } } /* if socket limits were specified, set them */ if (internal_conf->force_socket_limits) { unsigned int i; for (i = 0; i < RTE_MAX_NUMA_NODES; i++) { uint64_t limit = internal_conf->socket_limit[i]; if (limit == 0) continue; if (rte_mem_alloc_validator_register("socket-limit", limits_callback, i, limit)) RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n"); } } return 0; } __rte_unused /* function is unused on 32-bit builds */ static inline uint64_t get_socket_mem_size(int socket) { uint64_t size = 0; unsigned int i; struct internal_config *internal_conf = eal_get_internal_configuration(); for (i = 0; i < internal_conf->num_hugepage_sizes; i++) { struct hugepage_info *hpi = &internal_conf->hugepage_info[i]; size += hpi->hugepage_sz * hpi->num_pages[socket]; } return size; } int eal_dynmem_calc_num_pages_per_socket( uint64_t *memory, struct hugepage_info *hp_info, struct hugepage_info *hp_used, unsigned int num_hp_info) { unsigned int socket, j, i = 0; unsigned int requested, available; int total_num_pages = 0; uint64_t remaining_mem, cur_mem; const struct internal_config *internal_conf = eal_get_internal_configuration(); uint64_t total_mem = internal_conf->memory; if (num_hp_info == 0) return -1; /* if specific memory amounts per socket weren't requested */ if (internal_conf->force_sockets == 0) { size_t total_size; #ifdef RTE_ARCH_64 int cpu_per_socket[RTE_MAX_NUMA_NODES]; size_t default_size; unsigned int lcore_id; /* Compute number of cores per socket */ memset(cpu_per_socket, 0, sizeof(cpu_per_socket)); RTE_LCORE_FOREACH(lcore_id) { cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++; } /* * Automatically spread requested memory amongst detected * sockets according to number of cores from CPU mask present * on each socket. */ total_size = internal_conf->memory; for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { /* Set memory amount per socket */ default_size = internal_conf->memory * cpu_per_socket[socket] / rte_lcore_count(); /* Limit to maximum available memory on socket */ default_size = RTE_MIN( default_size, get_socket_mem_size(socket)); /* Update sizes */ memory[socket] = default_size; total_size -= default_size; } /* * If some memory is remaining, try to allocate it by getting * all available memory from sockets, one after the other. */ for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { /* take whatever is available */ default_size = RTE_MIN( get_socket_mem_size(socket) - memory[socket], total_size); /* Update sizes */ memory[socket] += default_size; total_size -= default_size; } #else /* in 32-bit mode, allocate all of the memory only on main * lcore socket */ total_size = internal_conf->memory; for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { struct rte_config *cfg = rte_eal_get_configuration(); unsigned int main_lcore_socket; main_lcore_socket = rte_lcore_to_socket_id(cfg->main_lcore); if (main_lcore_socket != socket) continue; /* Update sizes */ memory[socket] = total_size; break; } #endif } for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { /* skips if the memory on specific socket wasn't requested */ for (i = 0; i < num_hp_info && memory[socket] != 0; i++) { rte_strscpy(hp_used[i].hugedir, hp_info[i].hugedir, sizeof(hp_used[i].hugedir)); hp_used[i].num_pages[socket] = RTE_MIN( memory[socket] / hp_info[i].hugepage_sz, hp_info[i].num_pages[socket]); cur_mem = hp_used[i].num_pages[socket] * hp_used[i].hugepage_sz; memory[socket] -= cur_mem; total_mem -= cur_mem; total_num_pages += hp_used[i].num_pages[socket]; /* check if we have met all memory requests */ if (memory[socket] == 0) break; /* Check if we have any more pages left at this size, * if so, move on to next size. */ if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket]) continue; /* At this point we know that there are more pages * available that are bigger than the memory we want, * so lets see if we can get enough from other page * sizes. */ remaining_mem = 0; for (j = i+1; j < num_hp_info; j++) remaining_mem += hp_info[j].hugepage_sz * hp_info[j].num_pages[socket]; /* Is there enough other memory? * If not, allocate another page and quit. */ if (remaining_mem < memory[socket]) { cur_mem = RTE_MIN( memory[socket], hp_info[i].hugepage_sz); memory[socket] -= cur_mem; total_mem -= cur_mem; hp_used[i].num_pages[socket]++; total_num_pages++; break; /* we are done with this socket*/ } } /* if we didn't satisfy all memory requirements per socket */ if (memory[socket] > 0 && internal_conf->socket_mem[socket] != 0) { /* to prevent icc errors */ requested = (unsigned int)( internal_conf->socket_mem[socket] / 0x100000); available = requested - ((unsigned int)(memory[socket] / 0x100000)); RTE_LOG(ERR, EAL, "Not enough memory available on " "socket %u! Requested: %uMB, available: %uMB\n", socket, requested, available); return -1; } } /* if we didn't satisfy total memory requirements */ if (total_mem > 0) { requested = (unsigned int)(internal_conf->memory / 0x100000); available = requested - (unsigned int)(total_mem / 0x100000); RTE_LOG(ERR, EAL, "Not enough memory available! " "Requested: %uMB, available: %uMB\n", requested, available); return -1; } return total_num_pages; }