/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018-2021 HiSilicon Limited. */ #include #include #include #include #include #include #include #include #include #if defined(RTE_ARCH_ARM64) #include #include #endif #include "hns3_common.h" #include "hns3_rxtx.h" #include "hns3_regs.h" #include "hns3_logs.h" #include "hns3_mp.h" #define HNS3_CFG_DESC_NUM(num) ((num) / 8 - 1) #define HNS3_RX_RING_PREFETCTH_MASK 3 static void hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq) { uint16_t i; /* Note: Fake rx queue will not enter here */ if (rxq->sw_ring == NULL) return; if (rxq->rx_rearm_nb == 0) { for (i = 0; i < rxq->nb_rx_desc; i++) { if (rxq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); rxq->sw_ring[i].mbuf = NULL; } } } else { for (i = rxq->next_to_use; i != rxq->rx_rearm_start; i = (i + 1) % rxq->nb_rx_desc) { if (rxq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); rxq->sw_ring[i].mbuf = NULL; } } } for (i = 0; i < rxq->bulk_mbuf_num; i++) rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]); rxq->bulk_mbuf_num = 0; if (rxq->pkt_first_seg) { rte_pktmbuf_free(rxq->pkt_first_seg); rxq->pkt_first_seg = NULL; } } static void hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq) { uint16_t i; /* Note: Fake tx queue will not enter here */ if (txq->sw_ring) { for (i = 0; i < txq->nb_tx_desc; i++) { if (txq->sw_ring[i].mbuf) { rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); txq->sw_ring[i].mbuf = NULL; } } } } static void hns3_rx_queue_release(void *queue) { struct hns3_rx_queue *rxq = queue; if (rxq) { hns3_rx_queue_release_mbufs(rxq); if (rxq->mz) rte_memzone_free(rxq->mz); if (rxq->sw_ring) rte_free(rxq->sw_ring); rte_free(rxq); } } static void hns3_tx_queue_release(void *queue) { struct hns3_tx_queue *txq = queue; if (txq) { hns3_tx_queue_release_mbufs(txq); if (txq->mz) rte_memzone_free(txq->mz); if (txq->sw_ring) rte_free(txq->sw_ring); if (txq->free) rte_free(txq->free); rte_free(txq); } } static void hns3_rx_queue_release_lock(void *queue) { struct hns3_rx_queue *rxq = queue; struct hns3_adapter *hns; if (rxq == NULL) return; hns = rxq->hns; rte_spinlock_lock(&hns->hw.lock); hns3_rx_queue_release(queue); rte_spinlock_unlock(&hns->hw.lock); } void hns3_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id) { hns3_rx_queue_release_lock(dev->data->rx_queues[queue_id]); } static void hns3_tx_queue_release_lock(void *queue) { struct hns3_tx_queue *txq = queue; struct hns3_adapter *hns; if (txq == NULL) return; hns = txq->hns; rte_spinlock_lock(&hns->hw.lock); hns3_tx_queue_release(queue); rte_spinlock_unlock(&hns->hw.lock); } void hns3_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id) { hns3_tx_queue_release_lock(dev->data->tx_queues[queue_id]); } static void hns3_fake_rx_queue_release(struct hns3_rx_queue *queue) { struct hns3_rx_queue *rxq = queue; struct hns3_adapter *hns; struct hns3_hw *hw; uint16_t idx; if (rxq == NULL) return; hns = rxq->hns; hw = &hns->hw; idx = rxq->queue_id; if (hw->fkq_data.rx_queues[idx]) { hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]); hw->fkq_data.rx_queues[idx] = NULL; } /* free fake rx queue arrays */ if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) { hw->fkq_data.nb_fake_rx_queues = 0; rte_free(hw->fkq_data.rx_queues); hw->fkq_data.rx_queues = NULL; } } static void hns3_fake_tx_queue_release(struct hns3_tx_queue *queue) { struct hns3_tx_queue *txq = queue; struct hns3_adapter *hns; struct hns3_hw *hw; uint16_t idx; if (txq == NULL) return; hns = txq->hns; hw = &hns->hw; idx = txq->queue_id; if (hw->fkq_data.tx_queues[idx]) { hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]); hw->fkq_data.tx_queues[idx] = NULL; } /* free fake tx queue arrays */ if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) { hw->fkq_data.nb_fake_tx_queues = 0; rte_free(hw->fkq_data.tx_queues); hw->fkq_data.tx_queues = NULL; } } static void hns3_free_rx_queues(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_fake_queue_data *fkq_data; struct hns3_hw *hw = &hns->hw; uint16_t nb_rx_q; uint16_t i; nb_rx_q = hw->data->nb_rx_queues; for (i = 0; i < nb_rx_q; i++) { if (dev->data->rx_queues[i]) { hns3_rx_queue_release(dev->data->rx_queues[i]); dev->data->rx_queues[i] = NULL; } } /* Free fake Rx queues */ fkq_data = &hw->fkq_data; for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) { if (fkq_data->rx_queues[i]) hns3_fake_rx_queue_release(fkq_data->rx_queues[i]); } } static void hns3_free_tx_queues(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_fake_queue_data *fkq_data; struct hns3_hw *hw = &hns->hw; uint16_t nb_tx_q; uint16_t i; nb_tx_q = hw->data->nb_tx_queues; for (i = 0; i < nb_tx_q; i++) { if (dev->data->tx_queues[i]) { hns3_tx_queue_release(dev->data->tx_queues[i]); dev->data->tx_queues[i] = NULL; } } /* Free fake Tx queues */ fkq_data = &hw->fkq_data; for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) { if (fkq_data->tx_queues[i]) hns3_fake_tx_queue_release(fkq_data->tx_queues[i]); } } void hns3_free_all_queues(struct rte_eth_dev *dev) { hns3_free_rx_queues(dev); hns3_free_tx_queues(dev); } static int hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq) { struct rte_mbuf *mbuf; uint64_t dma_addr; uint16_t i; for (i = 0; i < rxq->nb_rx_desc; i++) { mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); if (unlikely(mbuf == NULL)) { hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!", i); hns3_rx_queue_release_mbufs(rxq); return -ENOMEM; } rte_mbuf_refcnt_set(mbuf, 1); mbuf->next = NULL; mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->nb_segs = 1; mbuf->port = rxq->port_id; rxq->sw_ring[i].mbuf = mbuf; dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); rxq->rx_ring[i].addr = dma_addr; rxq->rx_ring[i].rx.bd_base_info = 0; } return 0; } static int hns3_buf_size2type(uint32_t buf_size) { int bd_size_type; switch (buf_size) { case 512: bd_size_type = HNS3_BD_SIZE_512_TYPE; break; case 1024: bd_size_type = HNS3_BD_SIZE_1024_TYPE; break; case 4096: bd_size_type = HNS3_BD_SIZE_4096_TYPE; break; default: bd_size_type = HNS3_BD_SIZE_2048_TYPE; } return bd_size_type; } static void hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq) { uint32_t rx_buf_len = rxq->rx_buf_len; uint64_t dma_addr = rxq->rx_ring_phys_addr; hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr); hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG, (uint32_t)(dma_addr >> 32)); hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG, hns3_buf_size2type(rx_buf_len)); hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG, HNS3_CFG_DESC_NUM(rxq->nb_rx_desc)); } static void hns3_init_tx_queue_hw(struct hns3_tx_queue *txq) { uint64_t dma_addr = txq->tx_ring_phys_addr; hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr); hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG, (uint32_t)(dma_addr >> 32)); hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG, HNS3_CFG_DESC_NUM(txq->nb_tx_desc)); } void hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw) { uint16_t nb_rx_q = hw->data->nb_rx_queues; uint16_t nb_tx_q = hw->data->nb_tx_queues; struct hns3_rx_queue *rxq; struct hns3_tx_queue *txq; bool pvid_en; int i; pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE; for (i = 0; i < hw->cfg_max_queues; i++) { if (i < nb_rx_q) { rxq = hw->data->rx_queues[i]; if (rxq != NULL) rxq->pvid_sw_discard_en = pvid_en; } if (i < nb_tx_q) { txq = hw->data->tx_queues[i]; if (txq != NULL) txq->pvid_sw_shift_en = pvid_en; } } } static void hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type) { uint32_t reg_offset; uint32_t reg; reg_offset = queue_type == HNS3_RING_TYPE_TX ? HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG; reg = hns3_read_reg(tqp_base, reg_offset); reg &= ~BIT(HNS3_RING_EN_B); hns3_write_reg(tqp_base, reg_offset, reg); } void hns3_enable_all_queues(struct hns3_hw *hw, bool en) { uint16_t nb_rx_q = hw->data->nb_rx_queues; uint16_t nb_tx_q = hw->data->nb_tx_queues; struct hns3_rx_queue *rxq; struct hns3_tx_queue *txq; uint32_t rcb_reg; void *tqp_base; int i; for (i = 0; i < hw->cfg_max_queues; i++) { if (hns3_dev_get_support(hw, INDEP_TXRX)) { rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL; txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL; tqp_base = (void *)((char *)hw->io_base + hns3_get_tqp_reg_offset(i)); /* * If queue struct is not initialized, it means the * related HW ring has not been initialized yet. * So, these queues should be disabled before enable * the tqps to avoid a HW exception since the queues * are enabled by default. */ if (rxq == NULL) hns3_stop_unused_queue(tqp_base, HNS3_RING_TYPE_RX); if (txq == NULL) hns3_stop_unused_queue(tqp_base, HNS3_RING_TYPE_TX); } else { rxq = i < nb_rx_q ? hw->data->rx_queues[i] : hw->fkq_data.rx_queues[i - nb_rx_q]; tqp_base = rxq->io_base; } /* * This is the master switch that used to control the enabling * of a pair of Tx and Rx queues. Both the Rx and Tx point to * the same register */ rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG); if (en) rcb_reg |= BIT(HNS3_RING_EN_B); else rcb_reg &= ~BIT(HNS3_RING_EN_B); hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg); } } static void hns3_enable_txq(struct hns3_tx_queue *txq, bool en) { struct hns3_hw *hw = &txq->hns->hw; uint32_t reg; if (hns3_dev_get_support(hw, INDEP_TXRX)) { reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG); if (en) reg |= BIT(HNS3_RING_EN_B); else reg &= ~BIT(HNS3_RING_EN_B); hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg); } txq->enabled = en; } static void hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en) { struct hns3_hw *hw = &rxq->hns->hw; uint32_t reg; if (hns3_dev_get_support(hw, INDEP_TXRX)) { reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG); if (en) reg |= BIT(HNS3_RING_EN_B); else reg &= ~BIT(HNS3_RING_EN_B); hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg); } rxq->enabled = en; } int hns3_start_all_txqs(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_tx_queue *txq; uint16_t i, j; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = hw->data->tx_queues[i]; if (!txq) { hns3_err(hw, "Tx queue %u not available or setup.", i); goto start_txqs_fail; } /* * Tx queue is enabled by default. Therefore, the Tx queues * needs to be disabled when deferred_start is set. There is * another master switch used to control the enabling of a pair * of Tx and Rx queues. And the master switch is disabled by * default. */ if (txq->tx_deferred_start) hns3_enable_txq(txq, false); else hns3_enable_txq(txq, true); } return 0; start_txqs_fail: for (j = 0; j < i; j++) { txq = hw->data->tx_queues[j]; hns3_enable_txq(txq, false); } return -EINVAL; } int hns3_start_all_rxqs(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_rx_queue *rxq; uint16_t i, j; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = hw->data->rx_queues[i]; if (!rxq) { hns3_err(hw, "Rx queue %u not available or setup.", i); goto start_rxqs_fail; } /* * Rx queue is enabled by default. Therefore, the Rx queues * needs to be disabled when deferred_start is set. There is * another master switch used to control the enabling of a pair * of Tx and Rx queues. And the master switch is disabled by * default. */ if (rxq->rx_deferred_start) hns3_enable_rxq(rxq, false); else hns3_enable_rxq(rxq, true); } return 0; start_rxqs_fail: for (j = 0; j < i; j++) { rxq = hw->data->rx_queues[j]; hns3_enable_rxq(rxq, false); } return -EINVAL; } void hns3_restore_tqp_enable_state(struct hns3_hw *hw) { struct hns3_rx_queue *rxq; struct hns3_tx_queue *txq; uint16_t i; for (i = 0; i < hw->data->nb_rx_queues; i++) { rxq = hw->data->rx_queues[i]; if (rxq != NULL) hns3_enable_rxq(rxq, rxq->enabled); } for (i = 0; i < hw->data->nb_tx_queues; i++) { txq = hw->data->tx_queues[i]; if (txq != NULL) hns3_enable_txq(txq, txq->enabled); } } void hns3_stop_all_txqs(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_tx_queue *txq; uint16_t i; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = hw->data->tx_queues[i]; if (!txq) continue; hns3_enable_txq(txq, false); } } static int hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable) { struct hns3_cfg_com_tqp_queue_cmd *req; struct hns3_cmd_desc desc; int ret; req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false); req->tqp_id = rte_cpu_to_le_16(queue_id); req->stream_id = 0; hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "TQP enable fail, ret = %d", ret); return ret; } static int hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable) { struct hns3_reset_tqp_queue_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false); req = (struct hns3_reset_tqp_queue_cmd *)desc.data; req->tqp_id = rte_cpu_to_le_16(queue_id); hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "send tqp reset cmd error, queue_id = %u, " "ret = %d", queue_id, ret); return ret; } static int hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id, uint8_t *reset_status) { struct hns3_reset_tqp_queue_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true); req = (struct hns3_reset_tqp_queue_cmd *)desc.data; req->tqp_id = rte_cpu_to_le_16(queue_id); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "get tqp reset status error, queue_id = %u, " "ret = %d.", queue_id, ret); return ret; } *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B); return ret; } static int hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id) { #define HNS3_TQP_RESET_TRY_MS 200 uint16_t wait_time = 0; uint8_t reset_status; int ret; /* * In current version VF is not supported when PF is driven by DPDK * driver, all task queue pairs are mapped to PF function, so PF's queue * id is equals to the global queue id in PF range. */ ret = hns3_send_reset_tqp_cmd(hw, queue_id, true); if (ret) { hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret); return ret; } do { /* Wait for tqp hw reset */ rte_delay_ms(HNS3_POLL_RESPONE_MS); wait_time += HNS3_POLL_RESPONE_MS; ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status); if (ret) goto tqp_reset_fail; if (reset_status) break; } while (wait_time < HNS3_TQP_RESET_TRY_MS); if (!reset_status) { ret = -ETIMEDOUT; hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d", queue_id, ret); goto tqp_reset_fail; } ret = hns3_send_reset_tqp_cmd(hw, queue_id, false); if (ret) hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret); return ret; tqp_reset_fail: hns3_send_reset_tqp_cmd(hw, queue_id, false); return ret; } static int hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id) { uint8_t msg_data[2]; int ret; memcpy(msg_data, &queue_id, sizeof(uint16_t)); ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data, sizeof(msg_data), true, NULL, 0); if (ret) hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.", queue_id, ret); return ret; } static int hns3_reset_rcb_cmd(struct hns3_hw *hw, uint8_t *reset_status) { struct hns3_reset_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false); req = (struct hns3_reset_cmd *)desc.data; hns3_set_bit(req->fun_reset_rcb, HNS3_CFG_RESET_RCB_B, 1); /* * The start qid should be the global qid of the first tqp of the * function which should be reset in this port. Since our PF not * support take over of VFs, so we only need to reset function 0, * and its start qid is always 0. */ req->fun_reset_rcb_vqid_start = rte_cpu_to_le_16(0); req->fun_reset_rcb_vqid_num = rte_cpu_to_le_16(hw->cfg_max_queues); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "fail to send rcb reset cmd, ret = %d.", ret); return ret; } *reset_status = req->fun_reset_rcb_return_status; return 0; } static int hns3pf_reset_all_tqps(struct hns3_hw *hw) { #define HNS3_RESET_RCB_NOT_SUPPORT 0U #define HNS3_RESET_ALL_TQP_SUCCESS 1U uint8_t reset_status; int ret; int i; ret = hns3_reset_rcb_cmd(hw, &reset_status); if (ret) return ret; /* * If the firmware version is low, it may not support the rcb reset * which means reset all the tqps at a time. In this case, we should * reset tqps one by one. */ if (reset_status == HNS3_RESET_RCB_NOT_SUPPORT) { for (i = 0; i < hw->cfg_max_queues; i++) { ret = hns3pf_reset_tqp(hw, i); if (ret) { hns3_err(hw, "fail to reset tqp, queue_id = %d, ret = %d.", i, ret); return ret; } } } else if (reset_status != HNS3_RESET_ALL_TQP_SUCCESS) { hns3_err(hw, "fail to reset all tqps, reset_status = %u.", reset_status); return -EIO; } return 0; } static int hns3vf_reset_all_tqps(struct hns3_hw *hw) { #define HNS3VF_RESET_ALL_TQP_DONE 1U uint8_t reset_status; uint8_t msg_data[2]; int ret; int i; memset(msg_data, 0, sizeof(msg_data)); ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data, sizeof(msg_data), true, &reset_status, sizeof(reset_status)); if (ret) { hns3_err(hw, "fail to send rcb reset mbx, ret = %d.", ret); return ret; } if (reset_status == HNS3VF_RESET_ALL_TQP_DONE) return 0; /* * If the firmware version or kernel PF version is low, it may not * support the rcb reset which means reset all the tqps at a time. * In this case, we should reset tqps one by one. */ for (i = 1; i < hw->cfg_max_queues; i++) { ret = hns3vf_reset_tqp(hw, i); if (ret) return ret; } return 0; } int hns3_reset_all_tqps(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; int ret, i; /* Disable all queues before reset all queues */ for (i = 0; i < hw->cfg_max_queues; i++) { ret = hns3_tqp_enable(hw, i, false); if (ret) { hns3_err(hw, "fail to disable tqps before tqps reset, ret = %d.", ret); return ret; } } if (hns->is_vf) return hns3vf_reset_all_tqps(hw); else return hns3pf_reset_all_tqps(hw); } static int hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id, enum hns3_ring_type queue_type, bool enable) { struct hns3_reset_tqp_queue_cmd *req; struct hns3_cmd_desc desc; int queue_direction; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false); req = (struct hns3_reset_tqp_queue_cmd *)desc.data; req->tqp_id = rte_cpu_to_le_16(queue_id); queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1; req->queue_direction = rte_cpu_to_le_16(queue_direction); hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "send queue reset cmd error, queue_id = %u, " "queue_type = %s, ret = %d.", queue_id, queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret); return ret; } static int hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id, enum hns3_ring_type queue_type, uint8_t *reset_status) { struct hns3_reset_tqp_queue_cmd *req; struct hns3_cmd_desc desc; int queue_direction; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true); req = (struct hns3_reset_tqp_queue_cmd *)desc.data; req->tqp_id = rte_cpu_to_le_16(queue_id); queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1; req->queue_direction = rte_cpu_to_le_16(queue_direction); ret = hns3_cmd_send(hw, &desc, 1); if (ret) { hns3_err(hw, "get queue reset status error, queue_id = %u " "queue_type = %s, ret = %d.", queue_id, queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret); return ret; } *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B); return ret; } static int hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id, enum hns3_ring_type queue_type) { #define HNS3_QUEUE_RESET_TRY_MS 200 struct hns3_tx_queue *txq; struct hns3_rx_queue *rxq; uint32_t reset_wait_times; uint32_t max_wait_times; uint8_t reset_status; int ret; if (queue_type == HNS3_RING_TYPE_TX) { txq = hw->data->tx_queues[queue_id]; hns3_enable_txq(txq, false); } else { rxq = hw->data->rx_queues[queue_id]; hns3_enable_rxq(rxq, false); } ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true); if (ret) { hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret); return ret; } reset_wait_times = 0; max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS; while (reset_wait_times < max_wait_times) { /* Wait for queue hw reset */ rte_delay_ms(HNS3_POLL_RESPONE_MS); ret = hns3_get_queue_reset_status(hw, queue_id, queue_type, &reset_status); if (ret) goto queue_reset_fail; if (reset_status) break; reset_wait_times++; } if (!reset_status) { hns3_err(hw, "reset queue timeout, queue_id = %u, " "queue_type = %s", queue_id, queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx"); ret = -ETIMEDOUT; goto queue_reset_fail; } ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false); if (ret) hns3_err(hw, "deassert queue reset fail, ret = %d.", ret); return ret; queue_reset_fail: hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false); return ret; } uint32_t hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id) { uint32_t reg_offset; /* Need an extend offset to config queues > 64 */ if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID) reg_offset = HNS3_TQP_INTR_REG_BASE + tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET; else reg_offset = HNS3_TQP_INTR_EXT_REG_BASE + tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID * HNS3_TQP_INTR_HIGH_ORDER_OFFSET + tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID * HNS3_TQP_INTR_LOW_ORDER_OFFSET; return reg_offset; } void hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id, uint8_t gl_idx, uint16_t gl_value) { uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG, HNS3_TQP_INTR_GL1_REG, HNS3_TQP_INTR_GL2_REG}; uint32_t addr, value; if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX) return; addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id); if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US) value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US; else value = HNS3_GL_USEC_TO_REG(gl_value); hns3_write_dev(hw, addr, value); } void hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value) { uint32_t addr, value; if (rl_value > HNS3_TQP_INTR_RL_MAX) return; addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id); value = HNS3_RL_USEC_TO_REG(rl_value); if (value > 0) value |= HNS3_TQP_INTR_RL_ENABLE_MASK; hns3_write_dev(hw, addr, value); } void hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value) { uint32_t addr; /* * int_ql_max == 0 means the hardware does not support QL, * QL regs config is not permitted if QL is not supported, * here just return. */ if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE) return; addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id); hns3_write_dev(hw, addr, ql_value); addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id); hns3_write_dev(hw, addr, ql_value); } static void hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en) { uint32_t addr, value; addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id); value = en ? 1 : 0; hns3_write_dev(hw, addr, value); } /* * Enable all rx queue interrupt when in interrupt rx mode. * This api was called before enable queue rx&tx (in normal start or reset * recover scenes), used to fix hardware rx queue interrupt enable was clear * when FLR. */ void hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en) { struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; uint16_t nb_rx_q = hw->data->nb_rx_queues; int i; if (dev->data->dev_conf.intr_conf.rxq == 0) return; for (i = 0; i < nb_rx_q; i++) hns3_queue_intr_enable(hw, i, en); } int hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = pci_dev->intr_handle; struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (dev->data->dev_conf.intr_conf.rxq == 0) return -ENOTSUP; hns3_queue_intr_enable(hw, queue_id, true); return rte_intr_ack(intr_handle); } int hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (dev->data->dev_conf.intr_conf.rxq == 0) return -ENOTSUP; hns3_queue_intr_enable(hw, queue_id, false); return 0; } static int hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx) { struct hns3_hw *hw = &hns->hw; struct hns3_rx_queue *rxq; int ret; PMD_INIT_FUNC_TRACE(); rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx]; ret = hns3_alloc_rx_queue_mbufs(hw, rxq); if (ret) { hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.", idx, ret); return ret; } rxq->next_to_use = 0; rxq->rx_rearm_start = 0; rxq->rx_free_hold = 0; rxq->rx_rearm_nb = 0; rxq->pkt_first_seg = NULL; rxq->pkt_last_seg = NULL; hns3_init_rx_queue_hw(rxq); hns3_rxq_vec_setup(rxq); return 0; } static void hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx) { struct hns3_hw *hw = &hns->hw; struct hns3_rx_queue *rxq; rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx]; rxq->next_to_use = 0; rxq->rx_free_hold = 0; rxq->rx_rearm_start = 0; rxq->rx_rearm_nb = 0; hns3_init_rx_queue_hw(rxq); } static void hns3_init_txq(struct hns3_tx_queue *txq) { struct hns3_desc *desc; int i; /* Clear tx bd */ desc = txq->tx_ring; for (i = 0; i < txq->nb_tx_desc; i++) { desc->tx.tp_fe_sc_vld_ra_ri = 0; desc++; } txq->next_to_use = 0; txq->next_to_clean = 0; txq->tx_bd_ready = txq->nb_tx_desc - 1; hns3_init_tx_queue_hw(txq); } static void hns3_init_tx_ring_tc(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; struct hns3_tx_queue *txq; int i, num; for (i = 0; i < HNS3_MAX_TC_NUM; i++) { struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i]; int j; if (!tc_queue->enable) continue; for (j = 0; j < tc_queue->tqp_count; j++) { num = tc_queue->tqp_offset + j; txq = (struct hns3_tx_queue *)hw->data->tx_queues[num]; if (txq == NULL) continue; hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc); } } } static int hns3_init_rx_queues(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; struct hns3_rx_queue *rxq; uint16_t i, j; int ret; /* Initialize RSS for queues */ ret = hns3_config_rss(hns); if (ret) { hns3_err(hw, "failed to configure rss, ret = %d.", ret); return ret; } for (i = 0; i < hw->data->nb_rx_queues; i++) { rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i]; if (!rxq) { hns3_err(hw, "Rx queue %u not available or setup.", i); goto out; } if (rxq->rx_deferred_start) continue; ret = hns3_init_rxq(hns, i); if (ret) { hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i, ret); goto out; } } for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++) hns3_init_fake_rxq(hns, i); return 0; out: for (j = 0; j < i; j++) { rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j]; hns3_rx_queue_release_mbufs(rxq); } return ret; } static int hns3_init_tx_queues(struct hns3_adapter *hns) { struct hns3_hw *hw = &hns->hw; struct hns3_tx_queue *txq; uint16_t i; for (i = 0; i < hw->data->nb_tx_queues; i++) { txq = (struct hns3_tx_queue *)hw->data->tx_queues[i]; if (!txq) { hns3_err(hw, "Tx queue %u not available or setup.", i); return -EINVAL; } if (txq->tx_deferred_start) continue; hns3_init_txq(txq); } for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) { txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i]; hns3_init_txq(txq); } hns3_init_tx_ring_tc(hns); return 0; } /* * Init all queues. * Note: just init and setup queues, and don't enable tqps. */ int hns3_init_queues(struct hns3_adapter *hns, bool reset_queue) { struct hns3_hw *hw = &hns->hw; int ret; if (reset_queue) { ret = hns3_reset_all_tqps(hns); if (ret) { hns3_err(hw, "failed to reset all queues, ret = %d.", ret); return ret; } } ret = hns3_init_rx_queues(hns); if (ret) { hns3_err(hw, "failed to init rx queues, ret = %d.", ret); return ret; } ret = hns3_init_tx_queues(hns); if (ret) { hns3_dev_release_mbufs(hns); hns3_err(hw, "failed to init tx queues, ret = %d.", ret); } return ret; } void hns3_start_tqps(struct hns3_hw *hw) { struct hns3_tx_queue *txq; struct hns3_rx_queue *rxq; uint16_t i; hns3_enable_all_queues(hw, true); for (i = 0; i < hw->data->nb_tx_queues; i++) { txq = hw->data->tx_queues[i]; if (txq->enabled) hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; } for (i = 0; i < hw->data->nb_rx_queues; i++) { rxq = hw->data->rx_queues[i]; if (rxq->enabled) hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; } } void hns3_stop_tqps(struct hns3_hw *hw) { uint16_t i; hns3_enable_all_queues(hw, false); for (i = 0; i < hw->data->nb_tx_queues; i++) hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; for (i = 0; i < hw->data->nb_rx_queues; i++) hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; } /* * Iterate over all Rx Queue, and call the callback() function for each Rx * queue. * * @param[in] dev * The target eth dev. * @param[in] callback * The function to call for each queue. * if callback function return nonzero will stop iterate and return it's value * @param[in] arg * The arguments to provide the callback function with. * * @return * 0 on success, otherwise with errno set. */ int hns3_rxq_iterate(struct rte_eth_dev *dev, int (*callback)(struct hns3_rx_queue *, void *), void *arg) { uint32_t i; int ret; if (dev->data->rx_queues == NULL) return -EINVAL; for (i = 0; i < dev->data->nb_rx_queues; i++) { ret = callback(dev->data->rx_queues[i], arg); if (ret != 0) return ret; } return 0; } static void* hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev, struct hns3_queue_info *q_info) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); const struct rte_memzone *rx_mz; struct hns3_rx_queue *rxq; unsigned int rx_desc; rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue), RTE_CACHE_LINE_SIZE, q_info->socket_id); if (rxq == NULL) { hns3_err(hw, "Failed to allocate memory for No.%u rx ring!", q_info->idx); return NULL; } /* Allocate rx ring hardware descriptors. */ rxq->queue_id = q_info->idx; rxq->nb_rx_desc = q_info->nb_desc; /* * Allocate a litter more memory because rx vector functions * don't check boundaries each time. */ rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) * sizeof(struct hns3_desc); rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx, rx_desc, HNS3_RING_BASE_ALIGN, q_info->socket_id); if (rx_mz == NULL) { hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!", q_info->idx); hns3_rx_queue_release(rxq); return NULL; } rxq->mz = rx_mz; rxq->rx_ring = (struct hns3_desc *)rx_mz->addr; rxq->rx_ring_phys_addr = rx_mz->iova; hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx, rxq->rx_ring_phys_addr); return rxq; } static int hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, unsigned int socket_id) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; struct hns3_queue_info q_info; struct hns3_rx_queue *rxq; uint16_t nb_rx_q; if (hw->fkq_data.rx_queues[idx]) { hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]); hw->fkq_data.rx_queues[idx] = NULL; } q_info.idx = idx; q_info.socket_id = socket_id; q_info.nb_desc = nb_desc; q_info.type = "hns3 fake RX queue"; q_info.ring_name = "rx_fake_ring"; rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info); if (rxq == NULL) { hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx); return -ENOMEM; } /* Don't need alloc sw_ring, because upper applications don't use it */ rxq->sw_ring = NULL; rxq->hns = hns; rxq->rx_deferred_start = false; rxq->port_id = dev->data->port_id; rxq->configured = true; nb_rx_q = dev->data->nb_rx_queues; rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + (nb_rx_q + idx) * HNS3_TQP_REG_SIZE); rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE; rte_spinlock_lock(&hw->lock); hw->fkq_data.rx_queues[idx] = rxq; rte_spinlock_unlock(&hw->lock); return 0; } static void* hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev, struct hns3_queue_info *q_info) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); const struct rte_memzone *tx_mz; struct hns3_tx_queue *txq; struct hns3_desc *desc; unsigned int tx_desc; int i; txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue), RTE_CACHE_LINE_SIZE, q_info->socket_id); if (txq == NULL) { hns3_err(hw, "Failed to allocate memory for No.%u tx ring!", q_info->idx); return NULL; } /* Allocate tx ring hardware descriptors. */ txq->queue_id = q_info->idx; txq->nb_tx_desc = q_info->nb_desc; tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc); tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx, tx_desc, HNS3_RING_BASE_ALIGN, q_info->socket_id); if (tx_mz == NULL) { hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!", q_info->idx); hns3_tx_queue_release(txq); return NULL; } txq->mz = tx_mz; txq->tx_ring = (struct hns3_desc *)tx_mz->addr; txq->tx_ring_phys_addr = tx_mz->iova; hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx, txq->tx_ring_phys_addr); /* Clear tx bd */ desc = txq->tx_ring; for (i = 0; i < txq->nb_tx_desc; i++) { desc->tx.tp_fe_sc_vld_ra_ri = 0; desc++; } return txq; } static int hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, unsigned int socket_id) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; struct hns3_queue_info q_info; struct hns3_tx_queue *txq; uint16_t nb_tx_q; if (hw->fkq_data.tx_queues[idx] != NULL) { hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]); hw->fkq_data.tx_queues[idx] = NULL; } q_info.idx = idx; q_info.socket_id = socket_id; q_info.nb_desc = nb_desc; q_info.type = "hns3 fake TX queue"; q_info.ring_name = "tx_fake_ring"; txq = hns3_alloc_txq_and_dma_zone(dev, &q_info); if (txq == NULL) { hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx); return -ENOMEM; } /* Don't need alloc sw_ring, because upper applications don't use it */ txq->sw_ring = NULL; txq->free = NULL; txq->hns = hns; txq->tx_deferred_start = false; txq->port_id = dev->data->port_id; txq->configured = true; nb_tx_q = dev->data->nb_tx_queues; txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + (nb_tx_q + idx) * HNS3_TQP_REG_SIZE); rte_spinlock_lock(&hw->lock); hw->fkq_data.tx_queues[idx] = txq; rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues) { uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues; void **rxq; uint16_t i; if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) { /* first time configuration */ uint32_t size; size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues; hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size, RTE_CACHE_LINE_SIZE); if (hw->fkq_data.rx_queues == NULL) { hw->fkq_data.nb_fake_rx_queues = 0; return -ENOMEM; } } else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) { /* re-configure */ rxq = hw->fkq_data.rx_queues; for (i = nb_queues; i < old_nb_queues; i++) hns3_rx_queue_release_lock(rxq[i]); rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues, RTE_CACHE_LINE_SIZE); if (rxq == NULL) return -ENOMEM; if (nb_queues > old_nb_queues) { uint16_t new_qs = nb_queues - old_nb_queues; memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs); } hw->fkq_data.rx_queues = rxq; } else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) { rxq = hw->fkq_data.rx_queues; for (i = nb_queues; i < old_nb_queues; i++) hns3_rx_queue_release_lock(rxq[i]); rte_free(hw->fkq_data.rx_queues); hw->fkq_data.rx_queues = NULL; } hw->fkq_data.nb_fake_rx_queues = nb_queues; return 0; } static int hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues) { uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues; void **txq; uint16_t i; if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) { /* first time configuration */ uint32_t size; size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues; hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size, RTE_CACHE_LINE_SIZE); if (hw->fkq_data.tx_queues == NULL) { hw->fkq_data.nb_fake_tx_queues = 0; return -ENOMEM; } } else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) { /* re-configure */ txq = hw->fkq_data.tx_queues; for (i = nb_queues; i < old_nb_queues; i++) hns3_tx_queue_release_lock(txq[i]); txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues, RTE_CACHE_LINE_SIZE); if (txq == NULL) return -ENOMEM; if (nb_queues > old_nb_queues) { uint16_t new_qs = nb_queues - old_nb_queues; memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs); } hw->fkq_data.tx_queues = txq; } else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) { txq = hw->fkq_data.tx_queues; for (i = nb_queues; i < old_nb_queues; i++) hns3_tx_queue_release_lock(txq[i]); rte_free(hw->fkq_data.tx_queues); hw->fkq_data.tx_queues = NULL; } hw->fkq_data.nb_fake_tx_queues = nb_queues; return 0; } int hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q, uint16_t nb_tx_q) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint16_t rx_need_add_nb_q; uint16_t tx_need_add_nb_q; uint16_t port_id; uint16_t q; int ret; if (hns3_dev_get_support(hw, INDEP_TXRX)) return 0; /* Setup new number of fake RX/TX queues and reconfigure device. */ rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q; tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q; ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q); if (ret) { hns3_err(hw, "Fail to configure fake rx queues: %d", ret); return ret; } ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q); if (ret) { hns3_err(hw, "Fail to configure fake rx queues: %d", ret); goto cfg_fake_tx_q_fail; } /* Allocate and set up fake RX queue per Ethernet port. */ port_id = hw->data->port_id; for (q = 0; q < rx_need_add_nb_q; q++) { ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC, rte_eth_dev_socket_id(port_id)); if (ret) goto setup_fake_rx_q_fail; } /* Allocate and set up fake TX queue per Ethernet port. */ for (q = 0; q < tx_need_add_nb_q; q++) { ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC, rte_eth_dev_socket_id(port_id)); if (ret) goto setup_fake_tx_q_fail; } return 0; setup_fake_tx_q_fail: setup_fake_rx_q_fail: (void)hns3_fake_tx_queue_config(hw, 0); cfg_fake_tx_q_fail: (void)hns3_fake_rx_queue_config(hw, 0); return ret; } void hns3_dev_release_mbufs(struct hns3_adapter *hns) { struct rte_eth_dev_data *dev_data = hns->hw.data; struct hns3_rx_queue *rxq; struct hns3_tx_queue *txq; int i; if (dev_data->rx_queues) for (i = 0; i < dev_data->nb_rx_queues; i++) { rxq = dev_data->rx_queues[i]; if (rxq == NULL) continue; hns3_rx_queue_release_mbufs(rxq); } if (dev_data->tx_queues) for (i = 0; i < dev_data->nb_tx_queues; i++) { txq = dev_data->tx_queues[i]; if (txq == NULL) continue; hns3_tx_queue_release_mbufs(txq); } } static int hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len) { uint16_t vld_buf_size; uint16_t num_hw_specs; uint16_t i; /* * hns3 network engine only support to set 4 typical specification, and * different buffer size will affect the max packet_len and the max * number of segmentation when hw gro is turned on in receive side. The * relationship between them is as follows: * rx_buf_size | max_gro_pkt_len | max_gro_nb_seg * ---------------------|-------------------|---------------- * HNS3_4K_BD_BUF_SIZE | 60KB | 15 * HNS3_2K_BD_BUF_SIZE | 62KB | 31 * HNS3_1K_BD_BUF_SIZE | 63KB | 63 * HNS3_512_BD_BUF_SIZE | 31.5KB | 63 */ static const uint16_t hw_rx_buf_size[] = { HNS3_4K_BD_BUF_SIZE, HNS3_2K_BD_BUF_SIZE, HNS3_1K_BD_BUF_SIZE, HNS3_512_BD_BUF_SIZE }; vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM); if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE) return -EINVAL; num_hw_specs = RTE_DIM(hw_rx_buf_size); for (i = 0; i < num_hw_specs; i++) { if (vld_buf_size >= hw_rx_buf_size[i]) { *rx_buf_len = hw_rx_buf_size[i]; break; } } return 0; } static int hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size, uint16_t nb_desc) { struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; uint32_t frame_size = dev->data->mtu + HNS3_ETH_OVERHEAD; uint16_t min_vec_bds; /* * HNS3 hardware network engine set scattered as default. If the driver * is not work in scattered mode and the pkts greater than buf_size * but smaller than frame size will be distributed to multiple BDs. * Driver cannot handle this situation. */ if (!hw->data->scattered_rx && frame_size > buf_size) { hns3_err(hw, "frame size is not allowed to be set greater " "than rx_buf_len if scattered is off."); return -EINVAL; } if (pkt_burst == hns3_recv_pkts_vec || pkt_burst == hns3_recv_pkts_vec_sve) { min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH + HNS3_DEFAULT_RX_BURST; if (nb_desc < min_vec_bds || nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) { hns3_err(hw, "if Rx burst mode is vector, " "number of descriptor is required to be " "bigger than min vector bds:%u, and could be " "divided by rxq rearm thresh:%u.", min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH); return -EINVAL; } } return 0; } static int hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf, struct rte_mempool *mp, uint16_t nb_desc, uint16_t *buf_size) { int ret; if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC || nb_desc % HNS3_ALIGN_RING_DESC) { hns3_err(hw, "Number (%u) of rx descriptors is invalid", nb_desc); return -EINVAL; } if (conf->rx_drop_en == 0) hns3_warn(hw, "if no descriptors available, packets are always " "dropped and rx_drop_en (1) is fixed on"); if (hns3_rx_buf_len_calc(mp, buf_size)) { hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! " "minimal data room size (%u).", rte_pktmbuf_data_room_size(mp), HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM); return -EINVAL; } if (hw->data->dev_started) { ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc); if (ret) { hns3_err(hw, "Rx queue runtime setup fail."); return ret; } } return 0; } uint32_t hns3_get_tqp_reg_offset(uint16_t queue_id) { uint32_t reg_offset; /* Need an extend offset to config queue > 1024 */ if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID) reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE; else reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET + (queue_id - HNS3_MIN_EXTEND_QUEUE_ID) * HNS3_TQP_REG_SIZE; return reg_offset; } int hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *conf, struct rte_mempool *mp) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; struct hns3_queue_info q_info; struct hns3_rx_queue *rxq; uint16_t rx_buf_size; int rx_entry_len; int ret; ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size); if (ret) return ret; if (dev->data->rx_queues[idx]) { hns3_rx_queue_release(dev->data->rx_queues[idx]); dev->data->rx_queues[idx] = NULL; } q_info.idx = idx; q_info.socket_id = socket_id; q_info.nb_desc = nb_desc; q_info.type = "hns3 RX queue"; q_info.ring_name = "rx_ring"; rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info); if (rxq == NULL) { hns3_err(hw, "Failed to alloc mem and reserve DMA mem for rx ring!"); return -ENOMEM; } rxq->hns = hns; rxq->ptype_tbl = &hns->ptype_tbl; rxq->mb_pool = mp; rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ? conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH; rxq->rx_deferred_start = conf->rx_deferred_start; if (rxq->rx_deferred_start && !hns3_dev_get_support(hw, INDEP_TXRX)) { hns3_warn(hw, "deferred start is not supported."); rxq->rx_deferred_start = false; } rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) * sizeof(struct hns3_entry); rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len, RTE_CACHE_LINE_SIZE, socket_id); if (rxq->sw_ring == NULL) { hns3_err(hw, "Failed to allocate memory for rx sw ring!"); hns3_rx_queue_release(rxq); return -ENOMEM; } rxq->next_to_use = 0; rxq->rx_free_hold = 0; rxq->rx_rearm_start = 0; rxq->rx_rearm_nb = 0; rxq->pkt_first_seg = NULL; rxq->pkt_last_seg = NULL; rxq->port_id = dev->data->port_id; /* * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE, * the pvid_sw_discard_en in the queue struct should not be changed, * because PVID-related operations do not need to be processed by PMD. * For hns3 VF device, whether it needs to process PVID depends * on the configuration of PF kernel mode netdevice driver. And the * related PF configuration is delivered through the mailbox and finally * reflected in port_base_vlan_cfg. */ if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE) rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE; else rxq->pvid_sw_discard_en = false; rxq->ptype_en = hns3_dev_get_support(hw, RXD_ADV_LAYOUT) ? true : false; rxq->configured = true; rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + idx * HNS3_TQP_REG_SIZE); rxq->io_base = (void *)((char *)hw->io_base + hns3_get_tqp_reg_offset(idx)); rxq->io_head_reg = (volatile void *)((char *)rxq->io_base + HNS3_RING_RX_HEAD_REG); rxq->rx_buf_len = rx_buf_size; memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats)); memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats)); memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats)); /* CRC len set here is used for amending packet length */ if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) rxq->crc_len = RTE_ETHER_CRC_LEN; else rxq->crc_len = 0; rxq->bulk_mbuf_num = 0; rte_spinlock_lock(&hw->lock); dev->data->rx_queues[idx] = rxq; rte_spinlock_unlock(&hw->lock); return 0; } void hns3_rx_scattered_reset(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; hw->rx_buf_len = 0; dev->data->scattered_rx = false; } void hns3_rx_scattered_calc(struct rte_eth_dev *dev) { struct rte_eth_conf *dev_conf = &dev->data->dev_conf; struct hns3_adapter *hns = dev->data->dev_private; struct hns3_hw *hw = &hns->hw; struct hns3_rx_queue *rxq; uint32_t queue_id; if (dev->data->rx_queues == NULL) return; for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) { rxq = dev->data->rx_queues[queue_id]; if (hw->rx_buf_len == 0) hw->rx_buf_len = rxq->rx_buf_len; else hw->rx_buf_len = RTE_MIN(hw->rx_buf_len, rxq->rx_buf_len); } if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER || dev->data->mtu + HNS3_ETH_OVERHEAD > hw->rx_buf_len) dev->data->scattered_rx = true; } const uint32_t * hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_LLDP, RTE_PTYPE_L2_ETHER_ARP, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT, RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L4_IGMP, RTE_PTYPE_L4_ICMP, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_TUNNEL_GRE, RTE_PTYPE_INNER_L2_ETHER, RTE_PTYPE_INNER_L3_IPV4, RTE_PTYPE_INNER_L3_IPV6, RTE_PTYPE_INNER_L3_IPV4_EXT, RTE_PTYPE_INNER_L3_IPV6_EXT, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_SCTP, RTE_PTYPE_INNER_L4_ICMP, RTE_PTYPE_TUNNEL_VXLAN, RTE_PTYPE_TUNNEL_NVGRE, RTE_PTYPE_UNKNOWN }; static const uint32_t adv_layout_ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_TIMESYNC, RTE_PTYPE_L2_ETHER_LLDP, RTE_PTYPE_L2_ETHER_ARP, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_NONFRAG, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_IGMP, RTE_PTYPE_L4_ICMP, RTE_PTYPE_TUNNEL_GRE, RTE_PTYPE_TUNNEL_GRENAT, RTE_PTYPE_INNER_L2_ETHER, RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_INNER_L4_FRAG, RTE_PTYPE_INNER_L4_ICMP, RTE_PTYPE_INNER_L4_NONFRAG, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_SCTP, RTE_PTYPE_INNER_L4_ICMP, RTE_PTYPE_UNKNOWN }; struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (dev->rx_pkt_burst == hns3_recv_pkts_simple || dev->rx_pkt_burst == hns3_recv_scattered_pkts || dev->rx_pkt_burst == hns3_recv_pkts_vec || dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) { if (hns3_dev_get_support(hw, RXD_ADV_LAYOUT)) return adv_layout_ptypes; else return ptypes; } return NULL; } static void hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl) { tbl->l3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4; tbl->l3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6; tbl->l3table[2] = RTE_PTYPE_L2_ETHER_ARP; tbl->l3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT; tbl->l3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT; tbl->l3table[6] = RTE_PTYPE_L2_ETHER_LLDP; tbl->l4table[0] = RTE_PTYPE_L4_UDP; tbl->l4table[1] = RTE_PTYPE_L4_TCP; tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE; tbl->l4table[3] = RTE_PTYPE_L4_SCTP; tbl->l4table[4] = RTE_PTYPE_L4_IGMP; tbl->l4table[5] = RTE_PTYPE_L4_ICMP; } static void hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl) { tbl->inner_l3table[0] = RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4; tbl->inner_l3table[1] = RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6; /* There is not a ptype for inner ARP/RARP */ tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN; tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN; tbl->inner_l3table[4] = RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT; tbl->inner_l3table[5] = RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT; tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP; tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP; /* There is not a ptype for inner GRE */ tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN; tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP; /* There is not a ptype for inner IGMP */ tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN; tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP; tbl->ol3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4; tbl->ol3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6; tbl->ol3table[2] = RTE_PTYPE_UNKNOWN; tbl->ol3table[3] = RTE_PTYPE_UNKNOWN; tbl->ol3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT; tbl->ol3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT; tbl->ol4table[0] = RTE_PTYPE_UNKNOWN; tbl->ol4table[1] = RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN; tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE; } static void hns3_init_adv_layout_ptype(struct hns3_ptype_table *tbl) { uint32_t *ptype = tbl->ptype; /* Non-tunnel L2 */ ptype[1] = RTE_PTYPE_L2_ETHER_ARP; ptype[3] = RTE_PTYPE_L2_ETHER_LLDP; ptype[8] = RTE_PTYPE_L2_ETHER_TIMESYNC; /* Non-tunnel IPv4 */ ptype[17] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG; ptype[18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG; ptype[19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; ptype[20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; ptype[21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE; ptype[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP; ptype[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_IGMP; ptype[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_ICMP; /* The next ptype is PTP over IPv4 + UDP */ ptype[25] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; /* IPv4 --> GRE/Teredo/VXLAN */ ptype[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT; /* IPv4 --> GRE/Teredo/VXLAN --> MAC */ ptype[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER; /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ ptype[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; ptype[32] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; ptype[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; ptype[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; ptype[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP; /* The next ptype's inner L4 is IGMP */ ptype[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN; ptype[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_ICMP; /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ ptype[39] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; ptype[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; ptype[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; ptype[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; ptype[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP; /* The next ptype's inner L4 is IGMP */ ptype[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN; ptype[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_ICMP; /* Non-tunnel IPv6 */ ptype[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG; ptype[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG; ptype[113] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; ptype[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP; ptype[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE; ptype[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP; ptype[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_IGMP; ptype[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_ICMP; /* Special for PTP over IPv6 + UDP */ ptype[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP; /* IPv6 --> GRE/Teredo/VXLAN */ ptype[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT; /* IPv6 --> GRE/Teredo/VXLAN --> MAC */ ptype[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER; /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ ptype[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; ptype[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; ptype[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; ptype[128] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; ptype[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP; /* The next ptype's inner L4 is IGMP */ ptype[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN; ptype[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_ICMP; /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ ptype[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_FRAG; ptype[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_NONFRAG; ptype[135] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_UDP; ptype[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_TCP; ptype[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_SCTP; /* The next ptype's inner L4 is IGMP */ ptype[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN; ptype[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_INNER_L4_ICMP; } void hns3_init_rx_ptype_tble(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; struct hns3_ptype_table *tbl = &hns->ptype_tbl; memset(tbl, 0, sizeof(*tbl)); hns3_init_non_tunnel_ptype_tbl(tbl); hns3_init_tunnel_ptype_tbl(tbl); hns3_init_adv_layout_ptype(tbl); } static inline void hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb, uint32_t l234_info, const struct hns3_desc *rxd) { #define HNS3_STRP_STATUS_NUM 0x4 #define HNS3_NO_STRP_VLAN_VLD 0x0 #define HNS3_INNER_STRP_VLAN_VLD 0x1 #define HNS3_OUTER_STRP_VLAN_VLD 0x2 uint32_t strip_status; uint32_t report_mode; /* * Since HW limitation, the vlan tag will always be inserted into RX * descriptor when strip the tag from packet, driver needs to determine * reporting which tag to mbuf according to the PVID configuration * and vlan striped status. */ static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = { { HNS3_NO_STRP_VLAN_VLD, HNS3_OUTER_STRP_VLAN_VLD, HNS3_INNER_STRP_VLAN_VLD, HNS3_OUTER_STRP_VLAN_VLD }, { HNS3_NO_STRP_VLAN_VLD, HNS3_NO_STRP_VLAN_VLD, HNS3_NO_STRP_VLAN_VLD, HNS3_INNER_STRP_VLAN_VLD } }; strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M, HNS3_RXD_STRP_TAGP_S); report_mode = report_type[rxq->pvid_sw_discard_en][strip_status]; switch (report_mode) { case HNS3_NO_STRP_VLAN_VLD: mb->vlan_tci = 0; return; case HNS3_INNER_STRP_VLAN_VLD: mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED; mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag); return; case HNS3_OUTER_STRP_VLAN_VLD: mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED; mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag); return; default: mb->vlan_tci = 0; return; } } static inline void recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg, struct rte_mbuf *rxm, struct hns3_rx_queue *rxq, uint16_t data_len) { uint8_t crc_len = rxq->crc_len; if (data_len <= crc_len) { rte_pktmbuf_free_seg(rxm); first_seg->nb_segs--; last_seg->data_len = (uint16_t)(last_seg->data_len - (crc_len - data_len)); last_seg->next = NULL; } else rxm->data_len = (uint16_t)(data_len - crc_len); } static inline struct rte_mbuf * hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq) { int ret; if (likely(rxq->bulk_mbuf_num > 0)) return rxq->bulk_mbuf[--rxq->bulk_mbuf_num]; ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf, HNS3_BULK_ALLOC_MBUF_NUM); if (likely(ret == 0)) { rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM; return rxq->bulk_mbuf[--rxq->bulk_mbuf_num]; } else return rte_mbuf_raw_alloc(rxq->mb_pool); } static void hns3_rx_ptp_timestamp_handle(struct hns3_rx_queue *rxq, struct rte_mbuf *mbuf, uint64_t timestamp) { struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(rxq->hns); mbuf->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP | RTE_MBUF_F_RX_IEEE1588_TMST; if (hns3_timestamp_rx_dynflag > 0) { *RTE_MBUF_DYNFIELD(mbuf, hns3_timestamp_dynfield_offset, rte_mbuf_timestamp_t *) = timestamp; mbuf->ol_flags |= hns3_timestamp_rx_dynflag; } pf->rx_timestamp = timestamp; } uint16_t hns3_recv_pkts_simple(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { volatile struct hns3_desc *rx_ring; /* RX ring (desc) */ volatile struct hns3_desc *rxdp; /* pointer of the current desc */ struct hns3_rx_queue *rxq; /* RX queue */ struct hns3_entry *sw_ring; struct hns3_entry *rxe; struct hns3_desc rxd; struct rte_mbuf *nmb; /* pointer of the new mbuf */ struct rte_mbuf *rxm; uint32_t bd_base_info; uint32_t l234_info; uint32_t ol_info; uint64_t dma_addr; uint16_t nb_rx_bd; uint16_t nb_rx; uint16_t rx_id; int ret; nb_rx = 0; nb_rx_bd = 0; rxq = rx_queue; rx_ring = rxq->rx_ring; sw_ring = rxq->sw_ring; rx_id = rxq->next_to_use; while (nb_rx < nb_pkts) { rxdp = &rx_ring[rx_id]; bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) break; rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - (1u << HNS3_RXD_VLD_B)]; nmb = hns3_rx_alloc_buffer(rxq); if (unlikely(nmb == NULL)) { uint16_t port_id; port_id = rxq->port_id; rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++; break; } nb_rx_bd++; rxe = &sw_ring[rx_id]; rx_id++; if (unlikely(rx_id == rxq->nb_rx_desc)) rx_id = 0; rte_prefetch0(sw_ring[rx_id].mbuf); if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) { rte_prefetch0(&rx_ring[rx_id]); rte_prefetch0(&sw_ring[rx_id]); } rxm = rxe->mbuf; rxm->ol_flags = 0; rxe->mbuf = nmb; if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) hns3_rx_ptp_timestamp_handle(rxq, rxm, rte_le_to_cpu_64(rxdp->timestamp)); dma_addr = rte_mbuf_data_iova_default(nmb); rxdp->addr = rte_cpu_to_le_64(dma_addr); rxdp->rx.bd_base_info = 0; rxm->data_off = RTE_PKTMBUF_HEADROOM; rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) - rxq->crc_len; rxm->data_len = rxm->pkt_len; rxm->port = rxq->port_id; rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash); rxm->ol_flags |= RTE_MBUF_F_RX_RSS_HASH; if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) { rxm->hash.fdir.hi = rte_le_to_cpu_16(rxd.rx.fd_id); rxm->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID; } rxm->nb_segs = 1; rxm->next = NULL; /* Load remained descriptor data and extract necessary fields */ l234_info = rte_le_to_cpu_32(rxd.rx.l234_info); ol_info = rte_le_to_cpu_32(rxd.rx.ol_info); ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info, l234_info); if (unlikely(ret)) goto pkt_err; rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info); if (rxm->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC) rxm->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP; hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd); /* Increment bytes counter */ rxq->basic_stats.bytes += rxm->pkt_len; rx_pkts[nb_rx++] = rxm; continue; pkt_err: rte_pktmbuf_free(rxm); } rxq->next_to_use = rx_id; rxq->rx_free_hold += nb_rx_bd; if (rxq->rx_free_hold > rxq->rx_free_thresh) { hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold); rxq->rx_free_hold = 0; } return nb_rx; } uint16_t hns3_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { volatile struct hns3_desc *rx_ring; /* RX ring (desc) */ volatile struct hns3_desc *rxdp; /* pointer of the current desc */ struct hns3_rx_queue *rxq; /* RX queue */ struct hns3_entry *sw_ring; struct hns3_entry *rxe; struct rte_mbuf *first_seg; struct rte_mbuf *last_seg; struct hns3_desc rxd; struct rte_mbuf *nmb; /* pointer of the new mbuf */ struct rte_mbuf *rxm; struct rte_eth_dev *dev; uint32_t bd_base_info; uint64_t timestamp; uint32_t l234_info; uint32_t gro_size; uint32_t ol_info; uint64_t dma_addr; uint16_t nb_rx_bd; uint16_t nb_rx; uint16_t rx_id; int ret; nb_rx = 0; nb_rx_bd = 0; rxq = rx_queue; rx_id = rxq->next_to_use; rx_ring = rxq->rx_ring; sw_ring = rxq->sw_ring; first_seg = rxq->pkt_first_seg; last_seg = rxq->pkt_last_seg; while (nb_rx < nb_pkts) { rxdp = &rx_ring[rx_id]; bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) break; /* * The interactive process between software and hardware of * receiving a new packet in hns3 network engine: * 1. Hardware network engine firstly writes the packet content * to the memory pointed by the 'addr' field of the Rx Buffer * Descriptor, secondly fills the result of parsing the * packet include the valid field into the Rx Buffer * Descriptor in one write operation. * 2. Driver reads the Rx BD's valid field in the loop to check * whether it's valid, if valid then assign a new address to * the addr field, clear the valid field, get the other * information of the packet by parsing Rx BD's other fields, * finally write back the number of Rx BDs processed by the * driver to the HNS3_RING_RX_HEAD_REG register to inform * hardware. * In the above process, the ordering is very important. We must * make sure that CPU read Rx BD's other fields only after the * Rx BD is valid. * * There are two type of re-ordering: compiler re-ordering and * CPU re-ordering under the ARMv8 architecture. * 1. we use volatile to deal with compiler re-ordering, so you * can see that rx_ring/rxdp defined with volatile. * 2. we commonly use memory barrier to deal with CPU * re-ordering, but the cost is high. * * In order to solve the high cost of using memory barrier, we * use the data dependency order under the ARMv8 architecture, * for example: * instr01: load A * instr02: load B <- A * the instr02 will always execute after instr01. * * To construct the data dependency ordering, we use the * following assignment: * rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - * (1u<port_id]; dev->data->rx_mbuf_alloc_failed++; break; } nb_rx_bd++; rxe = &sw_ring[rx_id]; rx_id++; if (unlikely(rx_id == rxq->nb_rx_desc)) rx_id = 0; rte_prefetch0(sw_ring[rx_id].mbuf); if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) { rte_prefetch0(&rx_ring[rx_id]); rte_prefetch0(&sw_ring[rx_id]); } rxm = rxe->mbuf; rxe->mbuf = nmb; if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) timestamp = rte_le_to_cpu_64(rxdp->timestamp); dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); rxdp->rx.bd_base_info = 0; rxdp->addr = dma_addr; if (first_seg == NULL) { first_seg = rxm; first_seg->nb_segs = 1; } else { first_seg->nb_segs++; last_seg->next = rxm; } rxm->data_off = RTE_PKTMBUF_HEADROOM; rxm->data_len = rte_le_to_cpu_16(rxd.rx.size); if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { last_seg = rxm; rxm->next = NULL; continue; } if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) hns3_rx_ptp_timestamp_handle(rxq, first_seg, timestamp); /* * The last buffer of the received packet. packet len from * buffer description may contains CRC len, packet len should * subtract it, same as data len. */ first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len); /* * This is the last buffer of the received packet. If the CRC * is not stripped by the hardware: * - Subtract the CRC length from the total packet length. * - If the last buffer only contains the whole CRC or a part * of it, free the mbuf associated to the last buffer. If part * of the CRC is also contained in the previous mbuf, subtract * the length of that CRC part from the data length of the * previous mbuf. */ rxm->next = NULL; if (unlikely(rxq->crc_len > 0)) { first_seg->pkt_len -= rxq->crc_len; recalculate_data_len(first_seg, last_seg, rxm, rxq, rxm->data_len); } first_seg->port = rxq->port_id; first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash); first_seg->ol_flags = RTE_MBUF_F_RX_RSS_HASH; if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) { first_seg->hash.fdir.hi = rte_le_to_cpu_16(rxd.rx.fd_id); first_seg->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID; } gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M, HNS3_RXD_GRO_SIZE_S); if (gro_size != 0) { first_seg->ol_flags |= RTE_MBUF_F_RX_LRO; first_seg->tso_segsz = gro_size; } l234_info = rte_le_to_cpu_32(rxd.rx.l234_info); ol_info = rte_le_to_cpu_32(rxd.rx.ol_info); ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info, l234_info); if (unlikely(ret)) goto pkt_err; first_seg->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info); if (first_seg->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC) rxm->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP; hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd); /* Increment bytes counter */ rxq->basic_stats.bytes += first_seg->pkt_len; rx_pkts[nb_rx++] = first_seg; first_seg = NULL; continue; pkt_err: rte_pktmbuf_free(first_seg); first_seg = NULL; } rxq->next_to_use = rx_id; rxq->pkt_first_seg = first_seg; rxq->pkt_last_seg = last_seg; rxq->rx_free_hold += nb_rx_bd; if (rxq->rx_free_hold > rxq->rx_free_thresh) { hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold); rxq->rx_free_hold = 0; } return nb_rx; } void __rte_weak hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq) { } int __rte_weak hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev) { return -ENOTSUP; } uint16_t __rte_weak hns3_recv_pkts_vec(__rte_unused void *tx_queue, __rte_unused struct rte_mbuf **rx_pkts, __rte_unused uint16_t nb_pkts) { return 0; } uint16_t __rte_weak hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue, __rte_unused struct rte_mbuf **rx_pkts, __rte_unused uint16_t nb_pkts) { return 0; } int hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode) { static const struct { eth_rx_burst_t pkt_burst; const char *info; } burst_infos[] = { { hns3_recv_pkts_simple, "Scalar Simple" }, { hns3_recv_scattered_pkts, "Scalar Scattered" }, { hns3_recv_pkts_vec, "Vector Neon" }, { hns3_recv_pkts_vec_sve, "Vector Sve" }, }; eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; int ret = -EINVAL; unsigned int i; for (i = 0; i < RTE_DIM(burst_infos); i++) { if (pkt_burst == burst_infos[i].pkt_burst) { snprintf(mode->info, sizeof(mode->info), "%s", burst_infos[i].info); ret = 0; break; } } return ret; } static bool hns3_get_default_vec_support(void) { #if defined(RTE_ARCH_ARM64) if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128) return false; if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON)) return true; #endif return false; } static bool hns3_get_sve_support(void) { #if defined(RTE_HAS_SVE_ACLE) if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_256) return false; if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE)) return true; #endif return false; } static eth_rx_burst_t hns3_get_rx_function(struct rte_eth_dev *dev) { struct hns3_adapter *hns = dev->data->dev_private; uint64_t offloads = dev->data->dev_conf.rxmode.offloads; bool vec_allowed, sve_allowed, simple_allowed; bool vec_support; vec_support = hns3_rx_check_vec_support(dev) == 0; vec_allowed = vec_support && hns3_get_default_vec_support(); sve_allowed = vec_support && hns3_get_sve_support(); simple_allowed = !dev->data->scattered_rx && (offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO) == 0; if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed) return hns3_recv_pkts_vec; if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed) return hns3_recv_pkts_vec_sve; if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed) return hns3_recv_pkts_simple; if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_COMMON) return hns3_recv_scattered_pkts; if (vec_allowed) return hns3_recv_pkts_vec; if (simple_allowed) return hns3_recv_pkts_simple; return hns3_recv_scattered_pkts; } static int hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf, uint16_t nb_desc, uint16_t *tx_rs_thresh, uint16_t *tx_free_thresh, uint16_t idx) { #define HNS3_TX_RS_FREE_THRESH_GAP 8 uint16_t rs_thresh, free_thresh, fast_free_thresh; if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC || nb_desc % HNS3_ALIGN_RING_DESC) { hns3_err(hw, "number (%u) of tx descriptors is invalid", nb_desc); return -EINVAL; } rs_thresh = (conf->tx_rs_thresh > 0) ? conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH; free_thresh = (conf->tx_free_thresh > 0) ? conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH; if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh || rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP || free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) { hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc " "(%u) of tx descriptors for port=%u queue=%u check " "fail!", rs_thresh, free_thresh, nb_desc, hw->data->port_id, idx); return -EINVAL; } if (conf->tx_free_thresh == 0) { /* Fast free Tx memory buffer to improve cache hit rate */ fast_free_thresh = nb_desc - rs_thresh; if (fast_free_thresh >= HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH) free_thresh = fast_free_thresh - HNS3_TX_FAST_FREE_AHEAD; } *tx_rs_thresh = rs_thresh; *tx_free_thresh = free_thresh; return 0; } static void * hns3_tx_push_get_queue_tail_reg(struct rte_eth_dev *dev, uint16_t queue_id) { #define HNS3_TX_PUSH_TQP_REGION_SIZE 0x10000 #define HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET 64 #define HNS3_TX_PUSH_PCI_BAR_INDEX 4 struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device); uint8_t bar_id = HNS3_TX_PUSH_PCI_BAR_INDEX; /* * If device support Tx push then its PCIe bar45 must exist, and DPDK * framework will mmap the bar45 default in PCI probe stage. * * In the bar45, the first half is for RoCE (RDMA over Converged * Ethernet), and the second half is for NIC, every TQP occupy 64KB. * * The quick doorbell located at 64B offset in the TQP region. */ return (char *)pci_dev->mem_resource[bar_id].addr + (pci_dev->mem_resource[bar_id].len >> 1) + HNS3_TX_PUSH_TQP_REGION_SIZE * queue_id + HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET; } void hns3_tx_push_init(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); volatile uint32_t *reg; uint32_t val; if (!hns3_dev_get_support(hw, TX_PUSH)) return; reg = (volatile uint32_t *)hns3_tx_push_get_queue_tail_reg(dev, 0); /* * Because the size of bar45 is about 8GB size, it may take a long time * to do the page fault in Tx process when work with vfio-pci, so use * one read operation to make kernel setup page table mapping for bar45 * in the init stage. * Note: the bar45 is readable but the result is all 1. */ val = *reg; RTE_SET_USED(val); } static void hns3_tx_push_queue_init(struct rte_eth_dev *dev, uint16_t queue_id, struct hns3_tx_queue *txq) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (!hns3_dev_get_support(hw, TX_PUSH)) { txq->tx_push_enable = false; return; } txq->io_tail_reg = (volatile void *)hns3_tx_push_get_queue_tail_reg(dev, queue_id); txq->tx_push_enable = true; } int hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *conf) { struct hns3_adapter *hns = dev->data->dev_private; uint16_t tx_rs_thresh, tx_free_thresh; struct hns3_hw *hw = &hns->hw; struct hns3_queue_info q_info; struct hns3_tx_queue *txq; int tx_entry_len; int ret; ret = hns3_tx_queue_conf_check(hw, conf, nb_desc, &tx_rs_thresh, &tx_free_thresh, idx); if (ret) return ret; if (dev->data->tx_queues[idx] != NULL) { hns3_tx_queue_release(dev->data->tx_queues[idx]); dev->data->tx_queues[idx] = NULL; } q_info.idx = idx; q_info.socket_id = socket_id; q_info.nb_desc = nb_desc; q_info.type = "hns3 TX queue"; q_info.ring_name = "tx_ring"; txq = hns3_alloc_txq_and_dma_zone(dev, &q_info); if (txq == NULL) { hns3_err(hw, "Failed to alloc mem and reserve DMA mem for tx ring!"); return -ENOMEM; } txq->tx_deferred_start = conf->tx_deferred_start; if (txq->tx_deferred_start && !hns3_dev_get_support(hw, INDEP_TXRX)) { hns3_warn(hw, "deferred start is not supported."); txq->tx_deferred_start = false; } tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc; txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len, RTE_CACHE_LINE_SIZE, socket_id); if (txq->sw_ring == NULL) { hns3_err(hw, "Failed to allocate memory for tx sw ring!"); hns3_tx_queue_release(txq); return -ENOMEM; } txq->hns = hns; txq->next_to_use = 0; txq->next_to_clean = 0; txq->tx_bd_ready = txq->nb_tx_desc - 1; txq->tx_free_thresh = tx_free_thresh; txq->tx_rs_thresh = tx_rs_thresh; txq->free = rte_zmalloc_socket("hns3 TX mbuf free array", sizeof(struct rte_mbuf *) * txq->tx_rs_thresh, RTE_CACHE_LINE_SIZE, socket_id); if (!txq->free) { hns3_err(hw, "failed to allocate tx mbuf free array!"); hns3_tx_queue_release(txq); return -ENOMEM; } txq->port_id = dev->data->port_id; /* * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE, * the pvid_sw_shift_en in the queue struct should not be changed, * because PVID-related operations do not need to be processed by PMD. * For hns3 VF device, whether it needs to process PVID depends * on the configuration of PF kernel mode netdev driver. And the * related PF configuration is delivered through the mailbox and finally * reflected in port_base_vlan_cfg. */ if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE) txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE; else txq->pvid_sw_shift_en = false; txq->max_non_tso_bd_num = hw->max_non_tso_bd_num; txq->configured = true; txq->io_base = (void *)((char *)hw->io_base + hns3_get_tqp_reg_offset(idx)); txq->io_tail_reg = (volatile void *)((char *)txq->io_base + HNS3_RING_TX_TAIL_REG); txq->min_tx_pkt_len = hw->min_tx_pkt_len; txq->tso_mode = hw->tso_mode; txq->udp_cksum_mode = hw->udp_cksum_mode; txq->mbuf_fast_free_en = !!(dev->data->dev_conf.txmode.offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE); memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats)); memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats)); /* * Call hns3_tx_push_queue_init after assigned io_tail_reg field because * it may overwrite the io_tail_reg field. */ hns3_tx_push_queue_init(dev, idx, txq); rte_spinlock_lock(&hw->lock); dev->data->tx_queues[idx] = txq; rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq) { uint16_t tx_next_clean = txq->next_to_clean; uint16_t tx_next_use = txq->next_to_use; struct hns3_entry *tx_entry = &txq->sw_ring[tx_next_clean]; struct hns3_desc *desc = &txq->tx_ring[tx_next_clean]; int i; if (tx_next_use >= tx_next_clean && tx_next_use < tx_next_clean + txq->tx_rs_thresh) return -1; /* * All mbufs can be released only when the VLD bits of all * descriptors in a batch are cleared. */ for (i = 0; i < txq->tx_rs_thresh; i++) { if (desc[i].tx.tp_fe_sc_vld_ra_ri & rte_le_to_cpu_16(BIT(HNS3_TXD_VLD_B))) return -1; } for (i = 0; i < txq->tx_rs_thresh; i++) { rte_pktmbuf_free_seg(tx_entry[i].mbuf); tx_entry[i].mbuf = NULL; } /* Update numbers of available descriptor due to buffer freed */ txq->tx_bd_ready += txq->tx_rs_thresh; txq->next_to_clean += txq->tx_rs_thresh; if (txq->next_to_clean >= txq->nb_tx_desc) txq->next_to_clean = 0; return 0; } static inline int hns3_tx_free_required_buffer(struct hns3_tx_queue *txq, uint16_t required_bds) { while (required_bds > txq->tx_bd_ready) { if (hns3_tx_free_useless_buffer(txq) != 0) return -1; } return 0; } int hns3_config_gro(struct hns3_hw *hw, bool en) { struct hns3_cfg_gro_status_cmd *req; struct hns3_cmd_desc desc; int ret; hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false); req = (struct hns3_cfg_gro_status_cmd *)desc.data; req->gro_en = rte_cpu_to_le_16(en ? 1 : 0); ret = hns3_cmd_send(hw, &desc, 1); if (ret) hns3_err(hw, "%s hardware GRO failed, ret = %d", en ? "enable" : "disable", ret); return ret; } int hns3_restore_gro_conf(struct hns3_hw *hw) { uint64_t offloads; bool gro_en; int ret; offloads = hw->data->dev_conf.rxmode.offloads; gro_en = offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false; ret = hns3_config_gro(hw, gro_en); if (ret) hns3_err(hw, "restore hardware GRO to %s failed, ret = %d", gro_en ? "enabled" : "disabled", ret); return ret; } static inline bool hns3_pkt_is_tso(struct rte_mbuf *m) { return (m->tso_segsz != 0 && m->ol_flags & RTE_MBUF_F_TX_TCP_SEG); } static void hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm) { if (!hns3_pkt_is_tso(rxm)) return; if (paylen <= rxm->tso_segsz) return; desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B)); desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz); } static inline void hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm) { desc->addr = rte_mbuf_data_iova(rxm); desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm)); desc->tx.tp_fe_sc_vld_ra_ri |= rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)); } static void hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc, struct rte_mbuf *rxm) { uint64_t ol_flags = rxm->ol_flags; uint32_t hdr_len; uint32_t paylen; hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len; hdr_len += (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ? rxm->outer_l2_len + rxm->outer_l3_len : 0; paylen = rxm->pkt_len - hdr_len; desc->tx.paylen_fd_dop_ol4cs |= rte_cpu_to_le_32(paylen); hns3_set_tso(desc, paylen, rxm); /* * Currently, hardware doesn't support more than two layers VLAN offload * in Tx direction based on hns3 network engine. So when the number of * VLANs in the packets represented by rxm plus the number of VLAN * offload by hardware such as PVID etc, exceeds two, the packets will * be discarded or the original VLAN of the packets will be overwritten * by hardware. When the PF PVID is enabled by calling the API function * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3 * PF kernel ether driver, the outer VLAN tag will always be the PVID. * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should * be added to the position close to the IP header when PVID is enabled. */ if (!txq->pvid_sw_shift_en && ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) { desc->tx.ol_type_vlan_len_msec |= rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B)); if (ol_flags & RTE_MBUF_F_TX_QINQ) desc->tx.outer_vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci_outer); else desc->tx.outer_vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci); } if (ol_flags & RTE_MBUF_F_TX_QINQ || ((ol_flags & RTE_MBUF_F_TX_VLAN) && txq->pvid_sw_shift_en)) { desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B)); desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci); } if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST) desc->tx.tp_fe_sc_vld_ra_ri |= rte_cpu_to_le_16(BIT(HNS3_TXD_TSYN_B)); } static inline int hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf, struct rte_mbuf **alloc_mbuf) { #define MAX_NON_TSO_BD_PER_PKT 18 struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT]; uint16_t i; /* Allocate enough mbufs */ if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf)) return -ENOMEM; for (i = 0; i < nb_new_buf - 1; i++) pkt_segs[i]->next = pkt_segs[i + 1]; pkt_segs[nb_new_buf - 1]->next = NULL; pkt_segs[0]->nb_segs = nb_new_buf; *alloc_mbuf = pkt_segs[0]; return 0; } static inline void hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt) { new_pkt->ol_flags = old_pkt->ol_flags; new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt); new_pkt->outer_l2_len = old_pkt->outer_l2_len; new_pkt->outer_l3_len = old_pkt->outer_l3_len; new_pkt->l2_len = old_pkt->l2_len; new_pkt->l3_len = old_pkt->l3_len; new_pkt->l4_len = old_pkt->l4_len; new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer; new_pkt->vlan_tci = old_pkt->vlan_tci; } static int hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt, uint8_t max_non_tso_bd_num) { struct rte_mempool *mb_pool; struct rte_mbuf *new_mbuf; struct rte_mbuf *temp_new; struct rte_mbuf *temp; uint16_t last_buf_len; uint16_t nb_new_buf; uint16_t buf_size; uint16_t buf_len; uint16_t len_s; uint16_t len_d; uint16_t len; int ret; char *s; char *d; mb_pool = tx_pkt->pool; buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM; nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1; if (nb_new_buf > max_non_tso_bd_num) return -EINVAL; last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size; if (last_buf_len == 0) last_buf_len = buf_size; /* Allocate enough mbufs */ ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf); if (ret) return ret; /* Copy the original packet content to the new mbufs */ temp = tx_pkt; s = rte_pktmbuf_mtod(temp, char *); len_s = rte_pktmbuf_data_len(temp); temp_new = new_mbuf; while (temp != NULL && temp_new != NULL) { d = rte_pktmbuf_mtod(temp_new, char *); buf_len = temp_new->next == NULL ? last_buf_len : buf_size; len_d = buf_len; while (len_d) { len = RTE_MIN(len_s, len_d); memcpy(d, s, len); s = s + len; d = d + len; len_d = len_d - len; len_s = len_s - len; if (len_s == 0) { temp = temp->next; if (temp == NULL) break; s = rte_pktmbuf_mtod(temp, char *); len_s = rte_pktmbuf_data_len(temp); } } temp_new->data_len = buf_len; temp_new = temp_new->next; } hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt); /* free original mbufs */ rte_pktmbuf_free(tx_pkt); *new_pkt = new_mbuf; return 0; } static void hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec) { uint32_t tmp = *ol_type_vlan_len_msec; uint64_t ol_flags = m->ol_flags; /* (outer) IP header type */ if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) { if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM); else tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM); } else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6) { tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6); } /* OL3 header size, defined in 4 bytes */ tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S, m->outer_l3_len >> HNS3_L3_LEN_UNIT); *ol_type_vlan_len_msec = tmp; } static int hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec, uint32_t *type_cs_vlan_tso_len) { #define HNS3_NVGRE_HLEN 8 uint32_t tmp_outer = *ol_type_vlan_len_msec; uint32_t tmp_inner = *type_cs_vlan_tso_len; uint64_t ol_flags = m->ol_flags; uint16_t inner_l2_len; switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) { case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE: case RTE_MBUF_F_TX_TUNNEL_GENEVE: case RTE_MBUF_F_TX_TUNNEL_VXLAN: /* MAC in UDP tunnelling packet, include VxLAN and GENEVE */ tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M, HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP); /* * The inner l2 length of mbuf is the sum of outer l4 length, * tunneling header length and inner l2 length for a tunnel * packet. But in hns3 tx descriptor, the tunneling header * length is contained in the field of outer L4 length. * Therefore, driver need to calculate the outer L4 length and * inner L2 length. */ tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S, (uint8_t)RTE_ETHER_VXLAN_HLEN >> HNS3_L4_LEN_UNIT); inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN; break; case RTE_MBUF_F_TX_TUNNEL_GRE: tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M, HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE); /* * For NVGRE tunnel packet, the outer L4 is empty. So only * fill the NVGRE header length to the outer L4 field. */ tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S, (uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT); inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN; break; default: /* For non UDP / GRE tunneling, drop the tunnel packet */ return -EINVAL; } tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S, inner_l2_len >> HNS3_L2_LEN_UNIT); /* OL2 header size, defined in 2 bytes */ tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S, m->outer_l2_len >> HNS3_L2_LEN_UNIT); *type_cs_vlan_tso_len = tmp_inner; *ol_type_vlan_len_msec = tmp_outer; return 0; } static int hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m, uint16_t tx_desc_id) { struct hns3_desc *tx_ring = txq->tx_ring; struct hns3_desc *desc = &tx_ring[tx_desc_id]; uint64_t ol_flags = m->ol_flags; uint32_t tmp_outer = 0; uint32_t tmp_inner = 0; uint32_t tmp_ol4cs; int ret; /* * The tunnel header is contained in the inner L2 header field of the * mbuf, but for hns3 descriptor, it is contained in the outer L4. So, * there is a need that switching between them. To avoid multiple * calculations, the length of the L2 header include the outer and * inner, will be filled during the parsing of tunnel packets. */ if (!(ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)) { /* * For non tunnel type the tunnel type id is 0, so no need to * assign a value to it. Only the inner(normal) L2 header length * is assigned. */ tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT); } else { /* * If outer csum is not offload, the outer length may be filled * with 0. And the length of the outer header is added to the * inner l2_len. It would lead a cksum error. So driver has to * calculate the header length. */ if (unlikely(!(ol_flags & (RTE_MBUF_F_TX_OUTER_IP_CKSUM | RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) && m->outer_l2_len == 0)) { struct rte_net_hdr_lens hdr_len; (void)rte_net_get_ptype(m, &hdr_len, RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK); m->outer_l3_len = hdr_len.l3_len; m->outer_l2_len = hdr_len.l2_len; m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len; } hns3_parse_outer_params(m, &tmp_outer); ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner); if (ret) return -EINVAL; } desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer); desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner); tmp_ol4cs = ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM ? BIT(HNS3_TXD_OL4CS_B) : 0; desc->tx.paylen_fd_dop_ol4cs = rte_cpu_to_le_32(tmp_ol4cs); return 0; } static void hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len) { uint64_t ol_flags = m->ol_flags; uint32_t l3_type; uint32_t tmp; tmp = *type_cs_vlan_tso_len; if (ol_flags & RTE_MBUF_F_TX_IPV4) l3_type = HNS3_L3T_IPV4; else if (ol_flags & RTE_MBUF_F_TX_IPV6) l3_type = HNS3_L3T_IPV6; else l3_type = HNS3_L3T_NONE; /* inner(/normal) L3 header size, defined in 4 bytes */ tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S, m->l3_len >> HNS3_L3_LEN_UNIT); tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type); /* Enable L3 checksum offloads */ if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) tmp |= BIT(HNS3_TXD_L3CS_B); *type_cs_vlan_tso_len = tmp; } static void hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len) { uint64_t ol_flags = m->ol_flags; uint32_t tmp; /* Enable L4 checksum offloads */ switch (ol_flags & (RTE_MBUF_F_TX_L4_MASK | RTE_MBUF_F_TX_TCP_SEG)) { case RTE_MBUF_F_TX_TCP_CKSUM | RTE_MBUF_F_TX_TCP_SEG: case RTE_MBUF_F_TX_TCP_CKSUM: case RTE_MBUF_F_TX_TCP_SEG: tmp = *type_cs_vlan_tso_len; tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, HNS3_L4T_TCP); break; case RTE_MBUF_F_TX_UDP_CKSUM: tmp = *type_cs_vlan_tso_len; tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, HNS3_L4T_UDP); break; case RTE_MBUF_F_TX_SCTP_CKSUM: tmp = *type_cs_vlan_tso_len; tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, HNS3_L4T_SCTP); break; default: return; } tmp |= BIT(HNS3_TXD_L4CS_B); tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S, m->l4_len >> HNS3_L4_LEN_UNIT); *type_cs_vlan_tso_len = tmp; } static void hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m, uint16_t tx_desc_id) { struct hns3_desc *tx_ring = txq->tx_ring; struct hns3_desc *desc = &tx_ring[tx_desc_id]; uint32_t value = 0; hns3_parse_l3_cksum_params(m, &value); hns3_parse_l4_cksum_params(m, &value); desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value); } static bool hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num, uint32_t max_non_tso_bd_num) { struct rte_mbuf *m_first = tx_pkts; struct rte_mbuf *m_last = tx_pkts; uint32_t tot_len = 0; uint32_t hdr_len; uint32_t i; /* * Hardware requires that the sum of the data length of every 8 * consecutive buffers is greater than MSS in hns3 network engine. * We simplify it by ensuring pkt_headlen + the first 8 consecutive * frags greater than gso header len + mss, and the remaining 7 * consecutive frags greater than MSS except the last 7 frags. */ if (bd_num <= max_non_tso_bd_num) return false; for (i = 0; m_last && i < max_non_tso_bd_num - 1; i++, m_last = m_last->next) tot_len += m_last->data_len; if (!m_last) return true; /* ensure the first 8 frags is greater than mss + header */ hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len; hdr_len += (tx_pkts->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ? tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0; if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len) return true; /* * ensure the sum of the data length of every 7 consecutive buffer * is greater than mss except the last one. */ for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) { tot_len -= m_first->data_len; tot_len += m_last->data_len; if (tot_len < tx_pkts->tso_segsz) return true; m_first = m_first->next; m_last = m_last->next; } return false; } static bool hns3_outer_ipv4_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags, uint32_t *l4_proto) { struct rte_ipv4_hdr *ipv4_hdr; ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, m->outer_l2_len); if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) ipv4_hdr->hdr_checksum = 0; if (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM) { struct rte_udp_hdr *udp_hdr; /* * If OUTER_UDP_CKSUM is support, HW can calculate the pseudo * header for TSO packets */ if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) return true; udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, m->outer_l2_len + m->outer_l3_len); udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); return true; } *l4_proto = ipv4_hdr->next_proto_id; return false; } static bool hns3_outer_ipv6_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags, uint32_t *l4_proto) { struct rte_ipv6_hdr *ipv6_hdr; ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, m->outer_l2_len); if (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM) { struct rte_udp_hdr *udp_hdr; /* * If OUTER_UDP_CKSUM is support, HW can calculate the pseudo * header for TSO packets */ if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) return true; udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, m->outer_l2_len + m->outer_l3_len); udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); return true; } *l4_proto = ipv6_hdr->proto; return false; } static void hns3_outer_header_cksum_prepare(struct rte_mbuf *m) { uint64_t ol_flags = m->ol_flags; uint32_t paylen, hdr_len, l4_proto; struct rte_udp_hdr *udp_hdr; if (!(ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IPV6))) return; if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) { if (hns3_outer_ipv4_cksum_prepared(m, ol_flags, &l4_proto)) return; } else { if (hns3_outer_ipv6_cksum_prepared(m, ol_flags, &l4_proto)) return; } /* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */ if (l4_proto == IPPROTO_UDP && (ol_flags & RTE_MBUF_F_TX_TCP_SEG)) { hdr_len = m->l2_len + m->l3_len + m->l4_len; hdr_len += m->outer_l2_len + m->outer_l3_len; paylen = m->pkt_len - hdr_len; if (paylen <= m->tso_segsz) return; udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, m->outer_l2_len + m->outer_l3_len); udp_hdr->dgram_cksum = 0; } } static int hns3_check_tso_pkt_valid(struct rte_mbuf *m) { uint32_t tmp_data_len_sum = 0; uint16_t nb_buf = m->nb_segs; uint32_t paylen, hdr_len; struct rte_mbuf *m_seg; int i; if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT) return -EINVAL; hdr_len = m->l2_len + m->l3_len + m->l4_len; hdr_len += (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ? m->outer_l2_len + m->outer_l3_len : 0; if (hdr_len > HNS3_MAX_TSO_HDR_SIZE) return -EINVAL; paylen = m->pkt_len - hdr_len; if (paylen > HNS3_MAX_BD_PAYLEN) return -EINVAL; /* * The TSO header (include outer and inner L2, L3 and L4 header) * should be provided by three descriptors in maximum in hns3 network * engine. */ m_seg = m; for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf; i++, m_seg = m_seg->next) { tmp_data_len_sum += m_seg->data_len; } if (hdr_len > tmp_data_len_sum) return -EINVAL; return 0; } #ifdef RTE_LIBRTE_ETHDEV_DEBUG static inline int hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m) { struct rte_ether_hdr *eh; struct rte_vlan_hdr *vh; if (!txq->pvid_sw_shift_en) return 0; /* * Due to hardware limitations, we only support two-layer VLAN hardware * offload in Tx direction based on hns3 network engine, so when PVID is * enabled, QinQ insert is no longer supported. * And when PVID is enabled, in the following two cases: * i) packets with more than two VLAN tags. * ii) packets with one VLAN tag while the hardware VLAN insert is * enabled. * The packets will be regarded as abnormal packets and discarded by * hardware in Tx direction. For debugging purposes, a validation check * for these types of packets is added to the '.tx_pkt_prepare' ops * implementation function named hns3_prep_pkts to inform users that * these packets will be discarded. */ if (m->ol_flags & RTE_MBUF_F_TX_QINQ) return -EINVAL; eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) { if (m->ol_flags & RTE_MBUF_F_TX_VLAN) return -EINVAL; /* Ensure the incoming packet is not a QinQ packet */ vh = (struct rte_vlan_hdr *)(eh + 1); if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) return -EINVAL; } return 0; } #endif static uint16_t hns3_udp_cksum_help(struct rte_mbuf *m) { uint64_t ol_flags = m->ol_flags; uint16_t cksum = 0; uint32_t l4_len; if (ol_flags & RTE_MBUF_F_TX_IPV4) { struct rte_ipv4_hdr *ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, m->l2_len); l4_len = rte_be_to_cpu_16(ipv4_hdr->total_length) - m->l3_len; } else { struct rte_ipv6_hdr *ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, m->l2_len); l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len); } rte_raw_cksum_mbuf(m, m->l2_len + m->l3_len, l4_len, &cksum); cksum = ~cksum; /* * RFC 768:If the computed checksum is zero for UDP, it is transmitted * as all ones */ if (cksum == 0) cksum = 0xffff; return (uint16_t)cksum; } static bool hns3_validate_tunnel_cksum(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m) { uint64_t ol_flags = m->ol_flags; struct rte_udp_hdr *udp_hdr; uint16_t dst_port; if (tx_queue->udp_cksum_mode == HNS3_SPECIAL_PORT_HW_CKSUM_MODE || ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK || (ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_UDP_CKSUM) return true; /* * A UDP packet with the same dst_port as VXLAN\VXLAN_GPE\GENEVE will * be recognized as a tunnel packet in HW. In this case, if UDP CKSUM * offload is set and the tunnel mask has not been set, the CKSUM will * be wrong since the header length is wrong and driver should complete * the CKSUM to avoid CKSUM error. */ udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, m->l2_len + m->l3_len); dst_port = rte_be_to_cpu_16(udp_hdr->dst_port); switch (dst_port) { case RTE_VXLAN_DEFAULT_PORT: case RTE_VXLAN_GPE_DEFAULT_PORT: case RTE_GENEVE_DEFAULT_PORT: udp_hdr->dgram_cksum = hns3_udp_cksum_help(m); m->ol_flags = ol_flags & ~RTE_MBUF_F_TX_L4_MASK; return false; default: return true; } } static int hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m) { int ret; #ifdef RTE_LIBRTE_ETHDEV_DEBUG ret = rte_validate_tx_offload(m); if (ret != 0) { rte_errno = -ret; return ret; } ret = hns3_vld_vlan_chk(tx_queue, m); if (ret != 0) { rte_errno = EINVAL; return ret; } #endif if (hns3_pkt_is_tso(m)) { if (hns3_pkt_need_linearized(m, m->nb_segs, tx_queue->max_non_tso_bd_num) || hns3_check_tso_pkt_valid(m)) { rte_errno = EINVAL; return -EINVAL; } if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) { /* * (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means * hardware support recalculate the TCP pseudo header * checksum of packets that need TSO, so network driver * software not need to recalculate it. */ hns3_outer_header_cksum_prepare(m); return 0; } } ret = rte_net_intel_cksum_prepare(m); if (ret != 0) { rte_errno = -ret; return ret; } if (!hns3_validate_tunnel_cksum(tx_queue, m)) return 0; hns3_outer_header_cksum_prepare(m); return 0; } uint16_t hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct rte_mbuf *m; uint16_t i; for (i = 0; i < nb_pkts; i++) { m = tx_pkts[i]; if (hns3_prep_pkt_proc(tx_queue, m)) return i; } return i; } static int hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id, struct rte_mbuf *m) { struct hns3_desc *tx_ring = txq->tx_ring; struct hns3_desc *desc = &tx_ring[tx_desc_id]; /* Enable checksum offloading */ if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) { /* Fill in tunneling parameters if necessary */ if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) { txq->dfx_stats.unsupported_tunnel_pkt_cnt++; return -EINVAL; } hns3_txd_enable_checksum(txq, m, tx_desc_id); } else { /* clear the control bit */ desc->tx.type_cs_vlan_tso_len = 0; desc->tx.ol_type_vlan_len_msec = 0; } return 0; } static int hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg, struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq) { uint8_t max_non_tso_bd_num; struct rte_mbuf *new_pkt; int ret; if (hns3_pkt_is_tso(*m_seg)) return 0; /* * If packet length is greater than HNS3_MAX_FRAME_LEN * driver support, the packet will be ignored. */ if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) { txq->dfx_stats.over_length_pkt_cnt++; return -EINVAL; } max_non_tso_bd_num = txq->max_non_tso_bd_num; if (unlikely(nb_buf > max_non_tso_bd_num)) { txq->dfx_stats.exceed_limit_bd_pkt_cnt++; ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt, max_non_tso_bd_num); if (ret) { txq->dfx_stats.exceed_limit_bd_reassem_fail++; return ret; } *m_seg = new_pkt; } return 0; } static inline void hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq) { struct hns3_entry *tx_entry; struct hns3_desc *desc; uint16_t tx_next_clean; int i; while (1) { if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh) break; /* * All mbufs can be released only when the VLD bits of all * descriptors in a batch are cleared. */ tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) % txq->nb_tx_desc; desc = &txq->tx_ring[tx_next_clean]; for (i = 0; i < txq->tx_rs_thresh; i++) { if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) & BIT(HNS3_TXD_VLD_B)) return; desc--; } tx_entry = &txq->sw_ring[txq->next_to_clean]; if (txq->mbuf_fast_free_en) { rte_mempool_put_bulk(tx_entry->mbuf->pool, (void **)tx_entry, txq->tx_rs_thresh); for (i = 0; i < txq->tx_rs_thresh; i++) tx_entry[i].mbuf = NULL; goto update_field; } for (i = 0; i < txq->tx_rs_thresh; i++) rte_prefetch0((tx_entry + i)->mbuf); for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) { rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf); tx_entry->mbuf = NULL; } update_field: txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc; txq->tx_bd_ready += txq->tx_rs_thresh; } } static inline void hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts) { tx_entry->mbuf = pkts[0]; } static inline void hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts) { hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]); hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]); hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]); hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]); } static inline void hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts) { #define PER_LOOP_NUM 4 uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B); uint64_t dma_addr; uint32_t i; for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) { dma_addr = rte_mbuf_data_iova(*pkts); txdp->addr = rte_cpu_to_le_64(dma_addr); txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len); txdp->tx.paylen_fd_dop_ol4cs = 0; txdp->tx.type_cs_vlan_tso_len = 0; txdp->tx.ol_type_vlan_len_msec = 0; if (unlikely((*pkts)->ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)) bd_flag |= BIT(HNS3_TXD_TSYN_B); txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag); } } static inline void hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts) { uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B); uint64_t dma_addr; dma_addr = rte_mbuf_data_iova(*pkts); txdp->addr = rte_cpu_to_le_64(dma_addr); txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len); txdp->tx.paylen_fd_dop_ol4cs = 0; txdp->tx.type_cs_vlan_tso_len = 0; txdp->tx.ol_type_vlan_len_msec = 0; if (unlikely((*pkts)->ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)) bd_flag |= BIT(HNS3_TXD_TSYN_B); txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag); } static inline void hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq, struct rte_mbuf **pkts, uint16_t nb_pkts) { #define PER_LOOP_NUM 4 #define PER_LOOP_MASK (PER_LOOP_NUM - 1) struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use]; struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use]; const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK)); const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK)); uint32_t i; for (i = 0; i < mainpart; i += PER_LOOP_NUM) { hns3_tx_backup_4mbuf(tx_entry + i, pkts + i); hns3_tx_setup_4bd(txdp + i, pkts + i); /* Increment bytes counter */ uint32_t j; for (j = 0; j < PER_LOOP_NUM; j++) txq->basic_stats.bytes += pkts[i + j]->pkt_len; } if (unlikely(leftover > 0)) { for (i = 0; i < leftover; i++) { hns3_tx_backup_1mbuf(tx_entry + mainpart + i, pkts + mainpart + i); hns3_tx_setup_1bd(txdp + mainpart + i, pkts + mainpart + i); /* Increment bytes counter */ txq->basic_stats.bytes += pkts[mainpart + i]->pkt_len; } } } uint16_t hns3_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct hns3_tx_queue *txq = tx_queue; uint16_t nb_tx = 0; hns3_tx_free_buffer_simple(txq); nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts); if (unlikely(nb_pkts == 0)) { if (txq->tx_bd_ready == 0) txq->dfx_stats.queue_full_cnt++; return 0; } txq->tx_bd_ready -= nb_pkts; if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) { nb_tx = txq->nb_tx_desc - txq->next_to_use; hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx); txq->next_to_use = 0; } hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx); txq->next_to_use += nb_pkts - nb_tx; hns3_write_txq_tail_reg(txq, nb_pkts); return nb_pkts; } uint16_t hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct hns3_tx_queue *txq = tx_queue; struct hns3_entry *tx_bak_pkt; struct hns3_desc *tx_ring; struct rte_mbuf *tx_pkt; struct rte_mbuf *m_seg; struct hns3_desc *desc; uint32_t nb_hold = 0; uint16_t tx_next_use; uint16_t tx_pkt_num; uint16_t tx_bd_max; uint16_t nb_buf; uint16_t nb_tx; uint16_t i; if (txq->tx_bd_ready < txq->tx_free_thresh) (void)hns3_tx_free_useless_buffer(txq); tx_next_use = txq->next_to_use; tx_bd_max = txq->nb_tx_desc; tx_pkt_num = nb_pkts; tx_ring = txq->tx_ring; /* send packets */ tx_bak_pkt = &txq->sw_ring[tx_next_use]; for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) { tx_pkt = *tx_pkts++; nb_buf = tx_pkt->nb_segs; if (nb_buf > txq->tx_bd_ready) { /* Try to release the required MBUF, but avoid releasing * all MBUFs, otherwise, the MBUFs will be released for * a long time and may cause jitter. */ if (hns3_tx_free_required_buffer(txq, nb_buf) != 0) { txq->dfx_stats.queue_full_cnt++; goto end_of_tx; } } /* * If packet length is less than minimum packet length supported * by hardware in Tx direction, driver need to pad it to avoid * error. */ if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) < txq->min_tx_pkt_len)) { uint16_t add_len; char *appended; add_len = txq->min_tx_pkt_len - rte_pktmbuf_pkt_len(tx_pkt); appended = rte_pktmbuf_append(tx_pkt, add_len); if (appended == NULL) { txq->dfx_stats.pkt_padding_fail_cnt++; break; } memset(appended, 0, add_len); } m_seg = tx_pkt; if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq)) goto end_of_tx; if (hns3_parse_cksum(txq, tx_next_use, m_seg)) goto end_of_tx; i = 0; desc = &tx_ring[tx_next_use]; /* * If the packet is divided into multiple Tx Buffer Descriptors, * only need to fill vlan, paylen and tso into the first Tx * Buffer Descriptor. */ hns3_fill_first_desc(txq, desc, m_seg); do { desc = &tx_ring[tx_next_use]; /* * Fill valid bits, DMA address and data length for each * Tx Buffer Descriptor. */ hns3_fill_per_desc(desc, m_seg); tx_bak_pkt->mbuf = m_seg; m_seg = m_seg->next; tx_next_use++; tx_bak_pkt++; if (tx_next_use >= tx_bd_max) { tx_next_use = 0; tx_bak_pkt = txq->sw_ring; } i++; } while (m_seg != NULL); /* Add end flag for the last Tx Buffer Descriptor */ desc->tx.tp_fe_sc_vld_ra_ri |= rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B)); /* Increment bytes counter */ txq->basic_stats.bytes += tx_pkt->pkt_len; nb_hold += i; txq->next_to_use = tx_next_use; txq->tx_bd_ready -= i; } end_of_tx: if (likely(nb_tx)) hns3_write_txq_tail_reg(txq, nb_hold); return nb_tx; } int __rte_weak hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev) { return -ENOTSUP; } uint16_t __rte_weak hns3_xmit_pkts_vec(__rte_unused void *tx_queue, __rte_unused struct rte_mbuf **tx_pkts, __rte_unused uint16_t nb_pkts) { return 0; } uint16_t __rte_weak hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue, struct rte_mbuf __rte_unused **tx_pkts, uint16_t __rte_unused nb_pkts) { return 0; } int hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, struct rte_eth_burst_mode *mode) { eth_tx_burst_t pkt_burst = dev->tx_pkt_burst; const char *info = NULL; if (pkt_burst == hns3_xmit_pkts_simple) info = "Scalar Simple"; else if (pkt_burst == hns3_xmit_pkts) info = "Scalar"; else if (pkt_burst == hns3_xmit_pkts_vec) info = "Vector Neon"; else if (pkt_burst == hns3_xmit_pkts_vec_sve) info = "Vector Sve"; if (info == NULL) return -EINVAL; snprintf(mode->info, sizeof(mode->info), "%s", info); return 0; } static bool hns3_tx_check_simple_support(struct rte_eth_dev *dev) { uint64_t offloads = dev->data->dev_conf.txmode.offloads; return (offloads == (offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)); } static bool hns3_get_tx_prep_needed(struct rte_eth_dev *dev) { #ifdef RTE_LIBRTE_ETHDEV_DEBUG RTE_SET_USED(dev); /* always perform tx_prepare when debug */ return true; #else #define HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK (\ RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \ RTE_ETH_TX_OFFLOAD_TCP_CKSUM | \ RTE_ETH_TX_OFFLOAD_UDP_CKSUM | \ RTE_ETH_TX_OFFLOAD_SCTP_CKSUM | \ RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM | \ RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM | \ RTE_ETH_TX_OFFLOAD_TCP_TSO | \ RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO | \ RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO | \ RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO) uint64_t tx_offload = dev->data->dev_conf.txmode.offloads; if (tx_offload & HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK) return true; return false; #endif } eth_tx_burst_t hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep) { struct hns3_adapter *hns = dev->data->dev_private; bool vec_allowed, sve_allowed, simple_allowed; bool vec_support, tx_prepare_needed; vec_support = hns3_tx_check_vec_support(dev) == 0; vec_allowed = vec_support && hns3_get_default_vec_support(); sve_allowed = vec_support && hns3_get_sve_support(); simple_allowed = hns3_tx_check_simple_support(dev); tx_prepare_needed = hns3_get_tx_prep_needed(dev); *prep = NULL; if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed) return hns3_xmit_pkts_vec; if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed) return hns3_xmit_pkts_vec_sve; if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed) return hns3_xmit_pkts_simple; if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_COMMON) { if (tx_prepare_needed) *prep = hns3_prep_pkts; return hns3_xmit_pkts; } if (vec_allowed) return hns3_xmit_pkts_vec; if (simple_allowed) return hns3_xmit_pkts_simple; if (tx_prepare_needed) *prep = hns3_prep_pkts; return hns3_xmit_pkts; } uint16_t hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused, struct rte_mbuf **pkts __rte_unused, uint16_t pkts_n __rte_unused) { return 0; } static void hns3_trace_rxtx_function(struct rte_eth_dev *dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_burst_mode rx_mode; struct rte_eth_burst_mode tx_mode; memset(&rx_mode, 0, sizeof(rx_mode)); memset(&tx_mode, 0, sizeof(tx_mode)); (void)hns3_rx_burst_mode_get(dev, 0, &rx_mode); (void)hns3_tx_burst_mode_get(dev, 0, &tx_mode); hns3_dbg(hw, "using rx_pkt_burst: %s, tx_pkt_burst: %s.", rx_mode.info, tx_mode.info); } static void hns3_eth_dev_fp_ops_config(const struct rte_eth_dev *dev) { struct rte_eth_fp_ops *fpo = rte_eth_fp_ops; uint16_t port_id = dev->data->port_id; fpo[port_id].rx_pkt_burst = dev->rx_pkt_burst; fpo[port_id].tx_pkt_burst = dev->tx_pkt_burst; fpo[port_id].tx_pkt_prepare = dev->tx_pkt_prepare; fpo[port_id].rx_descriptor_status = dev->rx_descriptor_status; fpo[port_id].tx_descriptor_status = dev->tx_descriptor_status; fpo[port_id].rxq.data = dev->data->rx_queues; fpo[port_id].txq.data = dev->data->tx_queues; } void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct hns3_adapter *hns = eth_dev->data->dev_private; eth_tx_prep_t prep = NULL; if (hns->hw.adapter_state == HNS3_NIC_STARTED && __atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) { eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev); eth_dev->rx_descriptor_status = hns3_dev_rx_descriptor_status; eth_dev->tx_pkt_burst = hw->set_link_down ? hns3_dummy_rxtx_burst : hns3_get_tx_function(eth_dev, &prep); eth_dev->tx_pkt_prepare = prep; eth_dev->tx_descriptor_status = hns3_dev_tx_descriptor_status; hns3_trace_rxtx_function(eth_dev); } else { eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst; eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst; eth_dev->tx_pkt_prepare = NULL; } hns3_eth_dev_fp_ops_config(eth_dev); } void hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_rxq_info *qinfo) { struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id]; qinfo->mp = rxq->mb_pool; qinfo->nb_desc = rxq->nb_rx_desc; qinfo->scattered_rx = dev->data->scattered_rx; /* Report the HW Rx buffer length to user */ qinfo->rx_buf_size = rxq->rx_buf_len; /* * If there are no available Rx buffer descriptors, incoming packets * are always dropped by hardware based on hns3 network engine. */ qinfo->conf.rx_drop_en = 1; qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; } void hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_txq_info *qinfo) { struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id]; qinfo->nb_desc = txq->nb_tx_desc; qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads; qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh; qinfo->conf.tx_free_thresh = txq->tx_free_thresh; qinfo->conf.tx_deferred_start = txq->tx_deferred_start; } int hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); int ret; if (!hns3_dev_get_support(hw, INDEP_TXRX)) return -ENOTSUP; rte_spinlock_lock(&hw->lock); ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX); if (ret) { hns3_err(hw, "fail to reset Rx queue %u, ret = %d.", rx_queue_id, ret); rte_spinlock_unlock(&hw->lock); return ret; } ret = hns3_init_rxq(hns, rx_queue_id); if (ret) { hns3_err(hw, "fail to init Rx queue %u, ret = %d.", rx_queue_id, ret); rte_spinlock_unlock(&hw->lock); return ret; } hns3_enable_rxq(rxq, true); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; rte_spinlock_unlock(&hw->lock); return ret; } static void hns3_reset_sw_rxq(struct hns3_rx_queue *rxq) { rxq->next_to_use = 0; rxq->rx_rearm_start = 0; rxq->rx_free_hold = 0; rxq->rx_rearm_nb = 0; rxq->pkt_first_seg = NULL; rxq->pkt_last_seg = NULL; memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc)); hns3_rxq_vec_setup(rxq); } int hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; if (!hns3_dev_get_support(hw, INDEP_TXRX)) return -ENOTSUP; rte_spinlock_lock(&hw->lock); hns3_enable_rxq(rxq, false); hns3_rx_queue_release_mbufs(rxq); hns3_reset_sw_rxq(rxq); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; rte_spinlock_unlock(&hw->lock); return 0; } int hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; int ret; if (!hns3_dev_get_support(hw, INDEP_TXRX)) return -ENOTSUP; rte_spinlock_lock(&hw->lock); ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX); if (ret) { hns3_err(hw, "fail to reset Tx queue %u, ret = %d.", tx_queue_id, ret); rte_spinlock_unlock(&hw->lock); return ret; } hns3_init_txq(txq); hns3_enable_txq(txq, true); dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; rte_spinlock_unlock(&hw->lock); return ret; } int hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; if (!hns3_dev_get_support(hw, INDEP_TXRX)) return -ENOTSUP; rte_spinlock_lock(&hw->lock); hns3_enable_txq(txq, false); hns3_tx_queue_release_mbufs(txq); /* * All the mbufs in sw_ring are released and all the pointers in sw_ring * are set to NULL. If this queue is still called by upper layer, * residual SW status of this txq may cause these pointers in sw_ring * which have been set to NULL to be released again. To avoid it, * reinit the txq. */ hns3_init_txq(txq); dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; rte_spinlock_unlock(&hw->lock); return 0; } static int hns3_tx_done_cleanup_full(struct hns3_tx_queue *txq, uint32_t free_cnt) { uint16_t round_cnt; uint32_t idx; if (free_cnt == 0 || free_cnt > txq->nb_tx_desc) free_cnt = txq->nb_tx_desc; if (txq->tx_rs_thresh == 0) return 0; round_cnt = rounddown(free_cnt, txq->tx_rs_thresh); for (idx = 0; idx < round_cnt; idx += txq->tx_rs_thresh) { if (hns3_tx_free_useless_buffer(txq) != 0) break; } return idx; } int hns3_tx_done_cleanup(void *txq, uint32_t free_cnt) { struct hns3_tx_queue *q = (struct hns3_tx_queue *)txq; struct rte_eth_dev *dev = &rte_eth_devices[q->port_id]; if (dev->tx_pkt_burst == hns3_xmit_pkts) return hns3_tx_done_cleanup_full(q, free_cnt); else if (dev->tx_pkt_burst == hns3_dummy_rxtx_burst) return 0; else return -ENOTSUP; } int hns3_dev_rx_descriptor_status(void *rx_queue, uint16_t offset) { volatile struct hns3_desc *rxdp; struct hns3_rx_queue *rxq; struct rte_eth_dev *dev; uint32_t bd_base_info; uint16_t desc_id; rxq = (struct hns3_rx_queue *)rx_queue; if (offset >= rxq->nb_rx_desc) return -EINVAL; desc_id = (rxq->next_to_use + offset) % rxq->nb_rx_desc; rxdp = &rxq->rx_ring[desc_id]; bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); dev = &rte_eth_devices[rxq->port_id]; if (dev->rx_pkt_burst == hns3_recv_pkts_simple || dev->rx_pkt_burst == hns3_recv_scattered_pkts) { if (offset >= rxq->nb_rx_desc - rxq->rx_free_hold) return RTE_ETH_RX_DESC_UNAVAIL; } else if (dev->rx_pkt_burst == hns3_recv_pkts_vec || dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) { if (offset >= rxq->nb_rx_desc - rxq->rx_rearm_nb) return RTE_ETH_RX_DESC_UNAVAIL; } else { return RTE_ETH_RX_DESC_UNAVAIL; } if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) return RTE_ETH_RX_DESC_AVAIL; else return RTE_ETH_RX_DESC_DONE; } int hns3_dev_tx_descriptor_status(void *tx_queue, uint16_t offset) { volatile struct hns3_desc *txdp; struct hns3_tx_queue *txq; struct rte_eth_dev *dev; uint16_t desc_id; txq = (struct hns3_tx_queue *)tx_queue; if (offset >= txq->nb_tx_desc) return -EINVAL; dev = &rte_eth_devices[txq->port_id]; if (dev->tx_pkt_burst != hns3_xmit_pkts_simple && dev->tx_pkt_burst != hns3_xmit_pkts && dev->tx_pkt_burst != hns3_xmit_pkts_vec_sve && dev->tx_pkt_burst != hns3_xmit_pkts_vec) return RTE_ETH_TX_DESC_UNAVAIL; desc_id = (txq->next_to_use + offset) % txq->nb_tx_desc; txdp = &txq->tx_ring[desc_id]; if (txdp->tx.tp_fe_sc_vld_ra_ri & rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B))) return RTE_ETH_TX_DESC_FULL; else return RTE_ETH_TX_DESC_DONE; } uint32_t hns3_rx_queue_count(void *rx_queue) { /* * Number of BDs that have been processed by the driver * but have not been notified to the hardware. */ uint32_t driver_hold_bd_num; struct hns3_rx_queue *rxq; const struct rte_eth_dev *dev; uint32_t fbd_num; rxq = rx_queue; dev = &rte_eth_devices[rxq->port_id]; fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG); if (dev->rx_pkt_burst == hns3_recv_pkts_vec || dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) driver_hold_bd_num = rxq->rx_rearm_nb; else driver_hold_bd_num = rxq->rx_free_hold; if (fbd_num <= driver_hold_bd_num) return 0; else return fbd_num - driver_hold_bd_num; } void hns3_enable_rxd_adv_layout(struct hns3_hw *hw) { /* * If the hardware support rxd advanced layout, then driver enable it * default. */ if (hns3_dev_get_support(hw, RXD_ADV_LAYOUT)) hns3_write_dev(hw, HNS3_RXD_ADV_LAYOUT_EN_REG, 1); } void hns3_stop_tx_datapath(struct rte_eth_dev *dev) { dev->tx_pkt_burst = hns3_dummy_rxtx_burst; dev->tx_pkt_prepare = NULL; hns3_eth_dev_fp_ops_config(dev); if (rte_eal_process_type() == RTE_PROC_SECONDARY) return; rte_wmb(); /* Disable tx datapath on secondary process. */ hns3_mp_req_stop_tx(dev); /* Prevent crashes when queues are still in use. */ rte_delay_ms(dev->data->nb_tx_queues); } void hns3_start_tx_datapath(struct rte_eth_dev *dev) { eth_tx_prep_t prep = NULL; dev->tx_pkt_burst = hns3_get_tx_function(dev, &prep); dev->tx_pkt_prepare = prep; hns3_eth_dev_fp_ops_config(dev); if (rte_eal_process_type() == RTE_PROC_SECONDARY) return; hns3_mp_req_start_tx(dev); }